
Chapter 12

Logistic Regression

12.1 Modeling Conditional Probabilities

So far, we either looked at estimating the conditional expectations of continuous
variables (as in regression), or at estimating distributions. There are many situations
where however we are interested in input-output relationships, as in regression, but
the output variable is discrete rather than continuous. In particular there are many
situations where we have binary outcomes (it snows in Pittsburgh on a given day, or
it doesnÕt; this squirrel carries plague, or it doesnÕt; this loan will be paid back, or
it wonÕt; this person will get heart disease in the next Þve years, or they wonÕt). In
addition to the binary outcome, we have some input variables, which may or may
not be continuous. How could we model and analyze such data?

We could try to come up with a rule which guesses the binary output from the
input variables. This is calledclassiÞcation, and is an important topic in statistics
and machine learning. However, simply guessing ÒyesÓ or ÒnoÓ is pretty crude Ñ
especially if there is no perfect rule. (Why should there be?) Something which takes
noise into account, and doesnÕt just give a binary answer, will often be useful. In
short, we want probabilities Ñ which means we need to Þt a stochastic model.

What would be nice, in fact, would be to have conditional distribution of the
responseY , given the input variables, Pr(Y |X ). This would tell us about how pre-
cise our predictions are. If our model says that thereÕs a 51% chance of snow and it
doesnÕt snow, thatÕs better than if it had said there was a 99% chance of snow (though
even a 99% chance is not a sure thing). We have seen how to estimate conditional
probabilities non-parametrically, and could do this using the kernels for discrete vari-
ables from lecture 6. While there are a lot of merits to this approach, it does involve
coming up with a model for the joint distribution of outputsY and inputsX , which
can be quite time-consuming.

LetÕs pick one of the classes and call it Ò1Ó and the other Ò0Ó. (It doesnÕt mat-
ter which is which. ThenY becomes anindicator variable , and you can convince
yourself that Pr(Y = 1) = E[Y ]. Similarly, Pr(Y = 1|X = x) = E[Y |X = x]. (In
a phrase, Òconditional probability is the conditional expectation of the indicatorÓ.)
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224 CHAPTER 12. LOGISTIC REGRESSION

This helps us because by this point we know all about estimating conditional ex-
pectations. The most straightforward thing for us to do at this point would be to
pick out our favorite smoother and estimate the regression function for the indicator
variable; this will be an estimate of the conditional probability function.

There are two reasons not to just plunge ahead with that idea. One is that proba-
bilities must be between 0 and 1, but our smoothers will not necessarily respect that,
even if all the observedyi they get are either 0 or 1. The other is that we might be
better off making more use of the fact that we are trying to estimate probabilities, by
more explicitly modeling the probability.

Assume that Pr(Y = 1|X = x) = p(x;θ), for some function p parameterized by
θ. parameterized functionθ, andfurther assume that observations are independent
of each other. The the (conditional) likelihood function is

n�
i=1

Pr
�
Y = yi |X = xi

�
=

n�
i=1

p(xi ;θ)
yi (1− p(xi ;θ)

1−yi ) (12.1)

Recall that in a sequence of Bernoulli trialsy1, . . .yn, where there is a constant
probability of successp, the likelihood is

n�
i=1

pyi (1− p)1−yi (12.2)

As you learned in intro. stats, this likelihood is maximized whenp= p̂= n−1�n
i=1

yi .
If each trial had its own success probabilitypi , this likelihood becomes

n�
i=1

pyi

i
(1− pi )

1−yi (12.3)

Without some constraints, estimating the Òinhomogeneous BernoulliÓ model by max-
imum likelihood doesnÕt work; weÕd getp̂i = 1 whenyi = 1, p̂i = 0 whenyi = 0, and
learn nothing. If on the other hand we assume that thepi arenÕt just arbitrary num-
bers but are linked together, those constraints give non-trivial parameter estimates,
and let us generalize. In the kind of model we are talking about, the constraint,
pi = p(xi ;θ), tells us thatpi must be the same wheneverxi is the same, and ifp is a
continuous function, then similar values ofxi must lead to similar values ofpi . As-
suming p is known (up to parameters), the likelihood is a function ofθ, and we can
estimateθ by maximizing the likelihood. This lecture will be about this approach.

12.2 Logistic Regression

To sum up: we have a binary output variableY , and we want to model the condi-
tional probability Pr (Y = 1|X = x) as a function ofx; any unknown parameters in
the function are to be estimated by maximum likelihood. By now, it will not surprise
you to learn that statisticians have approach this problem by asking themselves Òhow
can we use linear regression to solve this?Ó
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1. The most obvious idea is to letp(x) be a linear function ofx. Every increment
of a component ofx would add or subtract so much to the probability. The
conceptual problem here is thatp must be between 0 and 1, and linear func-
tions are unbounded. Moreover, in many situations we empirically see Òdimin-
ishing returnsÓ Ñ changingp by the same amount requires a bigger change in
x when p is already large (or small) than whenp is close to 1/2. Linear models
canÕt do this.

2. The next most obvious idea is to let logp(x) be a linear function ofx, so that
changing an input variablemultipliesthe probability by a Þxed amount. The
problem is that logarithms are unbounded in only one direction, and linear
functions are not.

3. Finally, the easiest modiÞcation of logp which has an unbounded range is the
logistic (or logit ) transformation , log p

1−p . We can makethis a linear func-

tion of x without fear of nonsensical results. (Of course the results could still
happen to bewrong, but theyÕre notguaranteedto be wrong.)

This last alternative islogistic regression.
Formally, the model logistic regression model is that

log
p(x)

1− p(x)
=β0+ x ·β (12.4)

Solving for p, this gives

p(x; b,w) =
eβ0+x·β

1+ eβ0+x·β =
1

1+ e−(β0+x·β) (12.5)

Notice that the over-all speciÞcation is a lot easier to grasp in terms of the transformed
probability that in terms of the untransformed probability.1

To minimize the mis-classiÞcation rate, we should predictY = 1 when p ≥ 0.5
andY = 0 when p< 0.5. This means guessing 1 wheneverβ0+ x ·β is non-negative,
and 0 otherwise. So logistic regression gives us alinear classiÞer. The decision
boundary separating the two predicted classes is the solution ofβ0 + x · β = 0,
which is a point if x is one dimensional, a line if it is two dimensional, etc. One can
show (exercise!) that the distance from the decision boundary isβ0/�β�+x ·β/�β�.
Logistic regression not only says where the boundary between the classes is, but also
says (via Eq. 12.5) that the class probabilities depend on distance from the boundary,
in a particular way, and that they go towards the extremes (0 and 1) more rapidly
when �β� is larger. ItÕs these statements about probabilities which make logistic
regression more than just a classiÞer. It makes stronger, more detailed predictions,
and can be Þt in a different way; but those strong predictions could be wrong.

Using logistic regression to predict class probabilities is amodeling choice, just
like itÕs a modeling choice to predict quantitative variables with linear regression.

1Unless youÕve taken statistical mechanics, in which case you recognize that this is the Boltzmann
distribution for a system with two states, which differ in energy byβ0+ x ·β.



226 CHAPTER 12. LOGISTIC REGRESSION

-

+

-

+ +

+

- +

-

+

+

+

+

-
-

-

-

+

+

-

+
+

+

-

+

-

+

+

-

-
+

+

- +

+

-

-

+

+

-

+

+ -

+-
+

-

+

-+

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0
.5

1
.0

Logistic regression with b=-0.1, w=(-.2,.2)

x[,1]

x
[,
2
]

-

+

+
+ +

+

+ -

+

+

-

-

-

-
-

+

-

-

-

+

-
-

-

-

-

-

+

-

-

+

+

+

-
-

+

+

-

+

-
-

+

+ -

-+
-

+

+

--

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0
.5

1.
0

Logistic regression with b=-0.5, w=(-1,1)

x[,1]
x
[,
2
]

-

-

-
- -

+

- -

+

+

-

-

-

+
-

-

+

+

-

+

-
-

-

-

-

-

+

+

-

-

-

-

- -

+

+

-

-

-
-

+

+ +

-+
-

+

+

--

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0
.5

1.
0

Logistic regression with b=-2.5, w=(-5,5)

x[,1]

x
[,
2
]

-

-

-
- -

+

- -

+

+

-

-

-

+
-

-

+

+

-

-

+

--

-

-

-

+

+

-

-

-

+

-
-

+

+

-

-

-
-

-

+ +

-
+

-

+

+

--

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0
.5

1
.0

Linear classifier with b=
1

2 2
,w=

!

!
!
!1

2
, 
1

2

!

!
!

x[,1]

x[
,2

]

Figure 12.1: Effects of scaling logistic regression parameters. Values ofx1 and x2 are
the same in all plots (∼ Unif (−1,1) for both coordinates), but labels were generated
randomly from logistic regressions withβ0 = −0.1,β = (−0.2,0.2) (top left); from
β0 = −0.5,β = (−1,1) (top right); from β0 = −2.5,β = (−5,5) (bottom left); and
from a perfect linear classiÞer with the same boundary. The large black dot is the
origin.
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In neither case is the appropriateness of the model guaranteed by the gods, nature,
mathematical necessity, etc. We begin by positing the model, to get something to
work with, and we end (if we know what weÕre doing) by checking whether it really
does match the data, or whether it has systematic ßaws.

Logistic regression is one of the most commonly used tools for applied statistics
and discrete data analysis. There are basically four reasons for this.

1. Tradition.

2. In addition to the heuristic approach above, the quantity logp/(1− p) plays
an important role in the analysis of contingency tables (the Òlog oddsÓ). Classi-
Þcation is a bit like having a contingency table with two columns (classes) and
inÞnitely many rows (values ofx). With a Þnite contingency table, we can es-
timate the log-odds for each row empirically, by just taking counts in the table.
With inÞnitely many rows, we need some sort of interpolation scheme; logistic
regression is linear interpolation for the log-odds.

3. ItÕs closely related to Òexponential familyÓ distributions, where the probabil-
ity of some vectorv is proportional to expβ0+

�m
j=1

f j (v)β j . If one of the

components ofv is binary, and the functionsf j are all the identity function,
then we get a logistic regression. Exponential families arise in many contexts
in statistical theory (and in physics!), so there are lots of problems which can
be turned into logistic regression.

4. It often works surprisingly well as a classiÞer. But, many simple techniques of-
ten work surprisingly well as classiÞers, and this doesnÕt really testify to logistic
regression getting the probabilities right.

12.2.1 Likelihood Function for Logistic Regression

Because logistic regression predicts probabilities, rather than just classes, we can Þt it
using likelihood. For each training data-point, we have a vector of features,xi , and
an observed class,yi . The probability of that class was eitherp, if yi = 1, or 1− p, if
yi = 0. The likelihood is then

L(β0,β) =
n�

i=1

p(xi )
yi (1− p(xi )

1−yi (12.6)
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(I could substitute in the actual equation forp, but things will be clearer in a moment
if I donÕt.) The log-likelihood turns products into sums:

�(β0,β) =
n�

i=1

yi log p(xi )+ (1− yi ) log1− p(xi ) (12.7)

=
n�

i=1

log1− p(xi )+
n�

i=1

yi log
p(xi )

1− p(xi )
(12.8)

=
n�

i=1

log1− p(xi )+
n�

i=1

yi (β0+ xi ·β) (12.9)

=
n�

i=1

− log1+ eβ0+xi ·β+
n�

i=1

yi (β0+ xi ·β) (12.10)

where in the next-to-last step we Þnally use equation 12.4.
Typically, to Þnd the maximum likelihood estimates weÕd differentiate the log

likelihood with respect to the parameters, set the derivatives equal to zero, and solve.
To start that, take the derivative with respect to one component ofβ, sayβ j .

∂ �

∂ β j

= −
n�

i=1

1

1+ eβ0+xi ·β
eβ0+xi ·βxi j +

n�
i=1

yi xi j (12.11)

=
n�

i=1

�
yi − p(xi ;β0,β)

�
xi j (12.12)

We are not going to be able to set this to zero and solve exactly. (ThatÕs a transcenden-
tal equation, and there is no closed-form solution.) We can however approximately
solve it numerically.

12.2.2 Logistic Regression with More Than Two Classes

If Y can take on more than two values, sayk of them, we can still use logistic regres-
sion. Instead of having one set of parametersβ0,β, each classc in 0 : (k−1)will have
its own offsetβ(c)0 and vectorβ(c), and the predicted conditional probabilities will be

Pr
�
Y = c|�X = x
�
=

eβ
(c)
0 +x·β(c)

�
c eβ

(c)
0 +x·β(c)

(12.13)

You can check that when there are only two classes (say, 0 and 1), equation 12.13
reduces to equation 12.5, withβ0=β

(1)
0 −β

(0)
0 andβ=β(1)−β(0). In fact, no matter

how many classes there are, we can always pick one of them, sayc = 0, and Þx its
parameters at exactly zero, without any loss of generality2.

2Since we can arbitrarily chose which classÕs parameters to Òzero outÓ without affecting the predicted
probabilities, strictly speaking the model in Eq. 12.13 isunidentiÞed. That is, different parameter settings
lead toexactlythe same outcome, so we canÕt use the data to tell which one is right. The usual response
here is to deal with this by a convention: wedecideto zero out the parameters of the Þrst class, and then
estimate the contrasting parameters for the others.
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Calculation of the likelihood now proceeds as before (only with more book-
keeping), and so does maximum likelihood estimation.

12.3 NewtonÕs Method for Numerical Optimization

There are a huge number of methods for numerical optimization; we canÕt cover all
bases, and there is no magical method which will always work better than anything
else. However, there are some methods which work very well on an awful lot of the
problems which keep coming up, and itÕs worth spending a moment to sketch how
they work. One of the most ancient yet important of them is NewtonÕs method (alias
ÒNewton-RaphsonÓ).

LetÕs start with the simplest case of minimizing a function of one scalar variable,
sayf (β). We want to Þnd the location of the global minimum,β∗. We suppose that
f is smooth, and thatβ∗ is a regular interior minimum, meaning that the derivative
atβ∗ is zero and the second derivative is positive. Near the minimum we could make
a Taylor expansion:

f (β)≈ f (β∗)+
1

2
(β−β∗)2 d2 f

dβ2

�����
β=β∗

(12.14)

(We can see here that the second derivative has to be positive to ensure thatf (β) >
f (β∗).) In words, f (β) is close to quadratic near the minimum.

NewtonÕs method uses this fact, and minimizes a quadraticapproximationto the
function we are really interested in. (In other words, NewtonÕs method is to replace
the problem we want to solve, with a problem which wecansolve.) Guessan ini-
tial point β(0). If this is close to the minimum, we can take a second order Taylor
expansion aroundβ(0) and it will still be accurate:

f (β)≈ f (β(0)) + (β−β(0)) d f

dw

�����
β=β(0)

+
1

2

�
β−β(0)
�2 d2 f

dw2

�����
β=β(0)

(12.15)

Now itÕs easy to minimize the right-hand side of equation 12.15. LetÕs abbreviate

the derivatives, because they get tiresome to keep writing out:d f
dw

���
β=β(0)

= f �(β(0)),
d2 f
dw2

���
β=β(0)

= f ��(β(0)). We just take the derivative with respect toβ, and set it equal

to zero at a point weÕll callβ(1):

0 = f �(β(0)) +
1

2
f ��(β(0))2(β(1)−β(0)) (12.16)

β(1) = β(0)− f �(β(0))

f ��(β(0))
(12.17)

The valueβ(1) should be a better guess at the minimumβ∗ than the initial oneβ(0)

was. So if we useit to make a quadratic approximation tof , weÕll get a better ap-
proximation, and so we caniteratethis procedure, minimizing one approximation
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and then using that to get a new approximation:

β(n+1) =β(n)− f �(β(n))

f ��(β(n))
(12.18)

Notice that the true minimumβ∗ is aÞxed point of equation 12.18: if we happen to
land on it, weÕll stay there (sincef �(β∗) = 0). We wonÕt show it, but it can be proved
that if β(0) is close enough toβ∗, thenβ(n)→ β∗, and that in general|β(n) −β∗| =
O(n−2), a very rapid rate of convergence. (Doubling the number of iterations we use
doesnÕt reduce the error by a factor of two, but by a factor of four.)

LetÕs put this together in an algorithm.

my.newton = function(f,f.prime,f.prime2,beta0,tolerance=1e-3,max.iter=50) {
beta = beta0
old.f = f(beta)
iterations = 0
made.changes = TRUE
while(made.changes & (iterations < max.iter)) {

iterations <- iterations +1
made.changes <- FALSE
new.beta = beta - f.prime(beta)/f.prime2(beta)
new.f = f(new.beta)
relative.change = abs(new.f - old.f)/old.f -1
made.changes = (relative.changes > tolerance)
beta = new.beta
old.f = new.f

}
if (made.changes) {

warning("NewtonÕs method terminated before convergence")
}
return(list(minimum=beta,value=f(beta),deriv=f.prime(beta),

deriv2=f.prime2(beta),iterations=iterations,
converged=!made.changes))

}

The Þrst three arguments here have to all befunctions. The fourth argument is our
initial guess for the minimum,β(0). The last arguments keep NewtonÕs method from
cycling forever: tolerance tells it to stop when the function stops changing very
much (the relative difference betweenf (β(n)) and f (β(n+1)) is small), andmax.iter
tells it to never do more than a certain number of steps no matter what. The return
value includes the estmated minimum, the value of the function there, and some
diagnostics Ñ the derivative should be very small, the second derivative should be
positive, etc.

You may have noticed some potential problems Ñ what if we land on a point
where f �� is zero? What iff (β(n+1)) > f (β(n))? Etc. There are ways of handling
these issues, and more, which are incorporated into real optimization algorithms
from numerical analysis Ñ such as theoptim function in R; I strongly recommend
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you use that, or something like that, rather than trying to roll your own optimization
code.3

12.3.1 NewtonÕs Method in More than One Dimension

Suppose that the objectivef is a function of multiple arguments,f (β1,β2, . . .βp).
LetÕs bundle the parameters into a single vector,w. Then the Newton update is

β(n+1) =β(n)−H −1(β(n))∇ f (β(n)) (12.19)

where∇ f is thegradient of f , its vector of partial derivatives[∂ f /∂ β1,∂ f /∂ β2, . . .∂ f /∂ βp],
andH is theHessianof f , its matrix of second partial derivatives,Hi j = ∂ 2 f /∂ βi ∂ β j .

CalculatingH and∇ f isnÕt usually very time-consuming, but taking the inverse
of H is, unless it happens to be a diagonal matrix. This leads to variousquasi-Newton
methods, which either approximateH by a diagonal matrix, or take a proper inverse
of H only rarely (maybe just once), and then try to update an estimate ofH −1(β(n))
asβ(n) changes.

12.3.2 Iteratively Re-Weighted Least Squares

This discussion of NewtonÕs method is quite general, and therefore abstract. In the
particular case of logistic regression, we can make everything look much more Òsta-
tisticalÓ.

Logistic regression, after all, is a linear model for a transformation of the proba-
bility. LetÕs call this transformationg:

g(p)≡ log
p

1− p
(12.20)

So the model is
g(p) =β0+ x ·β (12.21)

andY |X = x ∼ Binom(1,g−1(β0+ x ·β)). It seems that what we should want to
do is takeg(y) and regress it linearly onx. Of course, the variance ofY , according
to the model, is going to chance depending onx Ñ it will be (g−1(β0+ x ·β))(1−
g−1(β0+x ·β))Ñ so we really ought to do a weighted linear regression, with weights
inversely proportional to that variance. Since writingβ0+ x ·β is getting annoying,
letÕs abbreviate it byµ (for ÒmeanÓ), and letÕs abbreviate that variance asV (µ).

The problem is thaty is either 0 or 1, sog(y) is either−∞ or +∞. We will evade
this by using Taylor expansion.

g(y)≈ g(µ)+ (y−µ)g�(µ)≡ z (12.22)

The right hand side,z will be our effectiveresponse variable. To regress it, we need
its variance, which by propagation of error will be(g�(µ))2V (µ).

3optim actually is a wrapper for several different optimization methods;method=BFGS selects a
Newtonian method; BFGS is an acronym for the names of the algorithmÕs inventors.
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Notice that both the weightsand z depend on the parameters of our logistic
regression, throughµ. So having done this once, we should really use the new pa-
rameters to updatez and the weights, and do it again. Eventually, we come to a Þxed
point, where the parameter estimates no longer change.

The treatment above is rather heuristic4, but it turns out to be equivalent to using
NewtonÕs method, with the expected second derivative of the log likelihood, instead
of its actual value.5 Since, with a large number of observations, the observed sec-
ond derivative should be close to the expected second derivative, this is only a small
approximation.

12.4 Generalized Linear Models and Generalized Ad-
ditive Models

Logistic regression is part of a broader family ofgeneralized linear models(GLMs),
where the conditional distribution of the response falls in some parametric family,
and the parameters are set by the linear predictor. Ordinary, least-squares regression
is the case where response is Gaussian, with mean equal to the linear predictor, and
constant variance. Logistic regression is the case where the response is binomial, with
n equal to the number of data-points with the givenx (often but not always 1), andp
is given by Equation 12.5. Changing the relationship between the parameters and the
linear predictor is called changing thelink function . For computational reasons, the
link function is actually the function you apply to the mean response to get back the
linear predictor, rather than the other way around Ñ (12.4) rather than (12.5). There
are thus other forms of binomial regression besides logistic regression.6 There is also
Poisson regression (appropriate when the data are counts without any upper limit),
gamma regression, etc.; we will say more about these in Chapter 13.

In R, any standard GLM can be Þt using the (base)glm function, whose syn-
tax is very similar to that of lm . The major wrinkle is that, of course, you need
to specify the family of probability distributions to use, by thefamily option Ñ
family=binomial defaults to logistic regression. (Seehelp(glm) for the gory
details on how to do, say, probit regression.) All of these are Þt by the same sort of
numerical likelihood maximization.

One caution about using maximum likelihood to Þt logistic regression is that it
can seem to work badly when the training datacanbe linearly separated. The reason
is that, to make the likelihood large,p(xi ) should be large whenyi = 1, andp should
be small whenyi = 0. If β0,β0 is a set of parameters which perfectly classiÞes the
training data, thencβ0, cβ is too, for anyc> 1, but in a logistic regression the second

4That is, mathematically incorrect.
5This takes a reasonable amount of algebra to show, so weÕll skip it. The key point however is the

following. Take a single Bernoulli observation with success probabilityp. The log-likelihood isY log p+
(1−Y ) log1− p. The Þrst derivative with respect top isY /p− (1−Y )/(1− p), and the second derivative
is −Y /p2− (1− Y )/(1− p)2. Taking expectations of the second derivative gives−1/p− 1/(1− p) =
−1/p(1− p). In other words,V (p) = −1/E

�
���
�

. Using weights inversely proportional to the variance
thus turns out to be equivalent to dividing by the expected second derivative.

6My experience is that these tend to give similar error rates as classiÞers, but have rather different
guesses about the underlying probabilities.
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set of parameters will have more extreme probabilities, and so a higher likelihood.
For linearly separable data, then, there is no parameter vector whichmaximizesthe
likelihood, since� can always be increased by making the vector larger but keeping
it pointed in the same direction.

You should, of course, be so lucky as to have this problem.

12.4.1 Generalized Additive Models

A natural step beyond generalized linear models isgeneralized additive models
(GAMs), where instead of making the transformed mean response alinear function
of the inputs, we make it anadditivefunction of the inputs. This means combining
a function for Þtting additive models with likelihood maximization. The R function
here isgam, from the CRAN package of the same name. (Alternately, use the func-
tion gam in the packagemgcv, which is part of the default R installation.) We will
look at how this works in some detail in Chapter 13.

GAMs can be used to check GLMs in much the same way that smoothers can be
used to check parametric regressions: Þt a GAM and a GLM to the same data, then
simulate from the GLM, and re-Þt both models to the simulated data. Repeated many
times, this gives a distribution for how much better the GAM will seem to Þt than
the GLM does,even when the GLM is true. You can then read ap-value off of this
distribution.

12.4.2 An Example (Including Model Checking)

HereÕs a worked R example, using the data from the upper right panel of Figure 12.1.
The 50×2 matrix x holds the input variables (the coordinates are independently and
uniformly distributed on [−1,1]), andy.1 the corresponding class labels, themselves
generated from a logistic regression withβ0=−0.5,β= (−1,1).

> logr = glm(y.1 ~ x[,1] + x[,2], family=binomial)
> logr

Call: glm(formula = y.1 ~ x[, 1] + x[, 2], family = binomial)

Coefficients:
(Intercept) x[, 1] x[, 2]

-0.410 -1.050 1.366

Degrees of Freedom: 49 Total (i.e. Null); 47 Residual
Null Deviance: 68.59
Residual Deviance: 58.81 AIC: 64.81
> sum(ifelse(logr$fitted.values<0.5,0,1) != y.1)/length(y.1)
[1] 0.32

The devianceof a model Þtted by maximum likelihood is (twice) the difference
between its log likelihood and the maximum log likelihood for asaturated model,
i.e., a model with one parameter per observation. Hopefully, the saturated model
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can give a perfect Þt.7 Here the saturated model would assign probability 1 to the

observed outcomes8, and the logarithm of 1 is zero, soD = 2�(�β0,
�β). The null

deviance is whatÕs achievable by using just a constant biasb and settingw = 0. The
Þtted model deÞnitely improves on that.9

The Þtted values of the logistic regression are the class probabilities; this shows
that the error rate of the logistic regression, if you force it to predict actual classes, is
32%. This sounds bad, but notice from the contour lines in the Þgure that lots of the
probabilities are near 0.5, meaning that the classes are just genuinely hard to predict.

To see how well the logistic regression assumption holds up, letÕs compare this to
a GAM.10

> library(gam)
> gam.1 = gam(y.1~lo(x[,1])+lo(x[,2]),family="binomial")
> gam.1
Call:
gam(formula = y.1 ~ lo(x[, 1]) + lo(x[, 2]), family = "binomial")

Degrees of Freedom: 49 total; 41.39957 Residual
Residual Deviance: 49.17522

This Þts a GAM to the same data, using lowess smoothing of both input variables.
Notice that the residual deviance is lower. That is, the GAM Þts better. We expect
this; the question is whether the difference is signiÞcant, or within the range of what
we should expect when logistic regression is valid. To test this, we need to simulate
from the logistic regression model.

simulate.from.logr = function(x, coefs) {
require(faraway) # For accessible logit and inverse-logit functions
n = nrow(x)
linear.part = coefs[1] + x % * % coefs[-1]
probs = ilogit(linear.part) # Inverse logit
y = rbinom(n,size=1,prob=probs)
return(y)

}

Now we simulate from our Þtted model, and re-Þt both the logistic regression
and the GAM.

7The factor of two is so that the deviance will have aχ 2 distribution. SpeciÞcally, if the model withp
parameters is right, the deviance will have aχ 2 distribution with n− p degrees of freedom.

8This is not possible when there are multiple observations with the same input features, but different
classes.

9AIC is of course the Akaike information criterion,−2�+2q, with q being the number of parameters
(here,q = 3). AIC has some truly devoted adherents, especially among non-statisticians, but I have been
deliberately ignoring it and will continue to do so. Basically, to the extent AIC succeeds, it works as
fast, large-sample approximation to doing leave-one-out cross-validation. Claeskens and Hjort (2008) is a
thorough, modern treatment of AIC and related model-selection criteria from a statistical viewpoint.

10Previous examples of using GAMs have mostly used themgcv package and spline smoothing. There
is no particular reason to switch to thegam library and lowess smoothing here, but thereÕs also no real
reason not to.
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delta.deviance.sim = function (x,logistic.model) {
y.new = simulate.from.logr(x,logistic.model$coefficients)
GLM.dev = glm(y.new ~ x[,1] + x[,2], family="binomial")$deviance
GAM.dev = gam(y.new ~ lo(x[,1]) + lo(x[,2]), family="binomial")$deviance
return(GLM.dev - GAM.dev)

}

Notice that in this simulation we are not generating new�X values. The logistic re-
gression and the GAM are both models for the responseconditionalon the inputs,
and are agnostic about how the inputs are distributed, or even whether itÕs meaning-
ful to talk about their distribution.

Finally, we repeat the simulation a bunch of times, and see where the observed
difference in deviances falls in the sampling distribution.

> delta.dev = replicate(1000,delta.deviance.sim(x,logr))
> delta.dev.observed = logr$deviance - gam.1$deviance # 9.64
> sum(delta.dev.observed > delta.dev)/1000
[1] 0.685

In other words, the amount by which a GAM Þts the data better than logistic regres-
sion is pretty near the middle of the null distribution. Since the example data really
did come from a logistic regression, this is a relief.
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Figure 12.2: Sampling distribution for the difference in deviance between a GAM
and a logistic regression, on data generated from a logistic regression. The observed
difference in deviances is shown by the dashed horizontal line.
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12.5 Exercises

To think through, not to hand in.

1. A multiclass logistic regression, as in Eq. 12.13, has parametersβ(c)0 andβ(c)

for each classc. Show that we can always get the same predicted probabilities
by settingβ(c)0 = 0,β(c) = 0 for any one classc, and adjusting the parameters
for the other classes appropriately.

2. Find the Þrst and second derivatives of the log-likelihood for logistic regression
with one predictor variable. Explicitly write out the formula for doing one step
of NewtonÕs method. Explain how this relates to re-weighted least squares.


