Plan Countable-State Markov Chains

1. Transition Probabilities
2. Irreducibility and Recurrence
3. Classification of States and Chains

Next Time: Limit Theorems, General-state analogues

Reading: G&S 6.4, 6.5, 6.6
Homework 4 on-line today, due next week; Comments: typos, G&S terminology, hw

Definition 1. Let \((S, \mathcal{B})\) be a measurable space. Let \(P(x, A)\) be a function on \(S \times \mathcal{B}\) such that

1. For each \(A \in \mathcal{B}\), \(x \mapsto P(x, A)\) is a measurable function on \(S\).
2. For each \(x \in S\), \(A \mapsto P(x, A)\) is a probability measure on \(\mathcal{B}\).

We call such a \(P\) a transition probability kernel.

For a given \(x \in S\), let \(Y\) be a random variable with distribution \(P(x, \cdot)\). Then, for a function \(g\) on \(S\), we can also write

\[
P(x, g) \equiv E g(Y) \equiv \int g(y) P(x, [y, y + dy)) \equiv \int g(y) P(x, dy),
\]

where by slight abuse of notation we use \(dy\) to represent an infinitesimal interval around \(y\). This mimics the relation between probabilities \(P\) and expected values \(E\).

Reminder 2. We can view a probability measure \(\nu\) on \((S, \mathcal{B})\) in two equivalent ways:

1. As a set function that maps \(A \in \mathcal{B}\) to \(0 \leq \nu(A) \leq 1\) such that \(\nu(S) = 1\), \(\nu(\emptyset) = 0\), \(\nu(U_i A_i) = \sum_i \nu(A_i)\) when the \(A_i\) are disjoint.
2. As an operator that maps measurable functions on \(S\) \(g\) to \(0 \leq \nu(g) \leq \infty\) such that \(\nu(\cdot)\) obeys all the rules of expected values.

Thus, the probability and expected value operators, \(P\) and \(E\), are actually the same object.

Recall 3. If \(P(s, A)\) is a transition probability kernel and \(S\) is countable, then we can write

\[
P(s, A) = \sum_{s' \in A} P\{X_n = s' \mid X_{n-1} = s\} = \sum_{s' \in A} P(s, \{s'\})
\]

for any \(A \subset S\). In this case, we define \(P_{ss'} \equiv P(s, s') \equiv P(s, \{s'\})\) and call it the transition probability matrix. A transition probability matrix must satisfy \(P_{ss'} \equiv P(s, s') \geq 0\) and \(P(s, S) = 1 = \sum_{s' \in S} P(s, s') \equiv \sum_{s' \in S} P_{ss'}\).

Definition 4. A time-homogeneous, countable-state Markov chain with state space \(S\) with initial distribution \(\mu\) and transition probability kernel \(P(\cdot, \cdot)\) is an \(S^\mathbb{Z}_{\geq 0}\)-valued stochastic process \(X = (X_n)_{n \geq 0}\) such that

\[
P_{\mu}\{X_0 = s_0, \ldots, X_n = s_n\} = \mu(s_0) P(s_0, \{s_1\}) \cdots P(s_{n-1}, \{s_n\}),
\]

for all \(n \geq 0\) and all \(s_0, \ldots, s_n \in S\). We write \(P_{\mu}\) to denote the chain has initial distribution \(\mu\).
Definition 5. A time-homogeneous, general-state Markov chain with state space S with initial distribution μ and transition probability kernel $P(\cdot, \cdot)$ is an $S^{\mathbb{Z}_+}$-valued stochastic process $X = (X_n)_{n \geq 0}$ such that

$$P_\mu\{X_0 \text{ near } s_0, \ldots, X_n \text{ near } s_n\} = \mu(s_0)P(s_0, ds_1) \cdots P(s_{n-1}, ds_n), \quad (4)$$

for all $n \geq 0$ and all $s_0, \ldots, s_n \in S$, where by slight abuse of notation we use ds_i to represent an infinitesimal interval around s_i. Again, we write P_μ to denote the chain has initial distribution μ.

A more formal (but less clear) expression of (4) is

$$P_\mu(X_0 \in A_0, X_1 \in A_1, \ldots, X_n \in A_n) = \int_{A_0} \cdots \int_{A_{n-1}} \mu(ds_0)P(s_0, ds_1) \cdots P(s_{n-2}, ds_{n-1})P(s_{n-1}, A_n). \quad (5)$$

Reminder 6. If X is a random function $T \to S$, then the finite-dimensional distributions of X are collectively the distributions of random vectors $(X_{t_1}, \ldots, X_{t_n})$ for any $n \geq 1$ and $t_1, \ldots, t_n \in T$. The rigorous construction of a σ-field on S^T yields a consistent distribution over this space that is characterized by these finite-dimensional distributions.

Definition 7. We thus have three forms of the Markov Property.

1. The first is given in (3) and (4) and indicates that the finite-dimensional distributions of the process are determined solely by the initial distribution and the transition probabilities.

2. A conditional form of the first: for any $n \geq 1$ and $s_0, \ldots, s_n \in S$,

$$P_\mu\{X_n = s_n \mid X_{n-1} = s_{n-1}, \ldots, X_0 = s_0\} = P(s_{n-1}, s_n) \quad (6)$$

for countable state spaces and

$$P_\mu\{X_n \text{ near } s_n \mid X_{n-1} \text{ near } s_{n-1}, \ldots, X_0 \text{ near } s_0\} = P(s_{n-1}, ds_n) \quad (7)$$

for general state spaces.

3. Let h be a bounded and measurable function on $S^{\mathbb{Z}_+}$. Then, for any $n \geq 1$,

$$E(h(X_n, X_{n+1}, \ldots) \mid X_n \text{ near } s, X_{n-1}, \ldots, X_0) = E_s h(X_1, X_2, \ldots). \quad (8)$$

Definition 8. Given a Markov chain with transition probability kernel $P(x, A)$, we can define the n-step transition probabilities $P^n(x, A)$ by induction as follows. For a transition probability matrix:

$$P^n(s, s') = \sum_{u \in S} P(s, u)P^{n-1}(u, s') \implies P^n = P \cdot P^{n-1} = (P)^n \text{ as matrices}. \quad (9)$$

For general transition kernels:

$$P^n(s, A) = \int_{S} P(s, du)P^{n-1}(u, A). \quad (12)$$
Let $n, m \geq 0$. For a transition probability matrix P, we have:

$$P^{n+m} = P^n \cdot P^m,$$

(that is, $P^{n+m}(s, s') = \sum_{u \in S} P^n(s, u)P^m(u, s')$). \hfill (11)

For general transition kernels:

$$P^{n+m}(s, A) = \int_S P^n(s, du)P^m(u, A).$$ \hfill (12)

Examples 10.
1. Simple Random Walk
2. Random Walk on a Pentagon
3. Embedded MC for $G/M/1$ queue
 $S = \mathbb{Z}_{\geq 0}$. Exponential(λ) service time. G is the service time F.

 $$P(j, j+1 - k) = \int_0^\infty e^{-\lambda t}(\lambda t)^k k! dG(t), \quad k \leq j,$$

 $$P(j, 0) = \int_0^\infty \sum_{k=j+1}^\infty e^{-\lambda t}(\lambda t)^k k! dG(t).$$ \hfill (13)

4. The Flip-Flop and the d-adic Spin
5. The Finite, Infinite, and Isolated Black Hole
6. Given a countable-state Markov chain with initial distribution μ and transition probability
 matrix P, what is the distribution of X_n?

Definition 11. Given two states $s, s' \in S$, we say that s' is accessible from s if $P^n(s, s') > 0$ for
some $n \geq 0$. We say that s and s' communicate if each is accessible from the other. Denote this
by $s \leftrightarrow s'$.

Claim: \leftrightarrow is an equivalence class.

Proof: Reflexivity, Symmetry, Transitivity.

Definition 12. If there is only one equivalence class of communicating states, the Markov Chain
is said to be irreducible.

Definition 13. A set $A \subseteq S$ is said to be absorbing if $P(x, A) = 1$ for all $x \in A$.

Decomposition 14. If X is not irreducible, then we can write

$$S = D \cup \bigcup_i C_i,$$ \hfill (15)

where the sets are disjoint and each C_i is an absorbing, communicating class.

Question 15. What can happen if the chain is in D?

Proposition 16. If $C \subseteq S$ is an absorbing, communicating class for a Markov chain X, then
there exists an irreducible Markov Chain X^C with state-space C and whose transition probability
kernel is given by $P_C(x, A) \equiv P(x, A)$ for $x \in C$.
Definition 17. For any state $s \in \mathcal{S}$, define the **period** of s by

$$d(s) = \gcd\{n \geq 1 \text{ such that } P^n(s, s) > 0\}. \quad (16)$$

This implies that $P^n(s, s) = 0$ unless $n = md(s)$ for some $m \in \mathbb{Z}_+$.

Theorem 18. d is a class function with respect to \leftrightarrow; that is, d is constant on communicating classes.

Proof. Let s, s' be members of the same class. Then, there is an n and an m such that $P^n(s, s') > 0$ and $P^m(s', s) > 0$. By the Chapman-Kolmogorov equations,

$$P^{n+m}(s, s') \geq P^n(s, s')P^m(s', s) > 0, \quad (17)$$

so $n + m$ is a multiple of $d(s)$.

Suppose k is not a multiple of $d(s)$; then neither is $k + n + m$:

$$0 = P^{k+m+n}(s, s) \geq P^n(s, s')P^k(s', s')P^m(s', s). \quad (18)$$

Thus, $P^k(s', s') = 0$ which implies that $d(s') \geq d(s)$.

Reverse the roles of s and s' to get equality.

Definition 19. An irreducible Markov Chain is said to be **aperiodic** if $d(s) \equiv 1$ for $s \in \mathcal{S}$. It is called **strongly aperiodic** if $P(s, s) > 0$ for some $s \in \mathcal{S}$.

Question 20. Can you find an example where these two notions differ?

Theorem 21. Let X be an irreducible, countable-state Markov chain with common period d. Then, there are disjoint sets $U_1, \ldots, U_d \subset \mathcal{S}$ such that

$$\mathcal{S} = \bigcup_{k=1}^d U_k, \quad (19)$$

and

$$P(x, U_{k+1}) = 1 \quad \text{for } x \in U_k, \quad k = 0, \ldots, d - 1 \pmod{d}. \quad (20)$$

The sets U_1, \ldots, U_d are called **cyclic classes** of X because X cycles through them successively.

It follows that the Markov Chain $X^d = (X_d, X_{2d}, X_{3d}, \ldots)$ has transition probabilities P^d and each U_i is an absorbing, irreducible, aperiodic class.

Further, for $k = 0, \ldots, d - 1$, if $\mu(U_k) = 1$, X^d is an irreducible, aperiodic Markov chain.

Pause for Breath 22. What does all this mean for the analysis of Markov Chains? Examples, thoughts, concerns, and questions.
Useful Random Variables 23. Let $A \subset S$. Define

$$T_A = \inf \{ n \geq 1 \text{ such that } X_n \in A \} \quad (21)$$
$$S_A = \inf \{ n \geq 0 \text{ such that } X_n \in A \} \quad (22)$$
$$O_A = \sum_{n=1}^{\infty} 1\{X_n \in A\}. \quad (23)$$

These are called, respectively, the first return time, the first hitting time, and the occupation time of A. As we will see, these random variables provide a great deal of information about the behavior of the chain.

For $A, B \subset S$, define

$$R(x, A) = P_x \{ T_A < \infty \} \quad (24)$$
$$H(x, A) = P_x \{ S_A < \infty \} \quad (25)$$
$$O(x, A) = E_x O_A \quad (26)$$
$$P^n_{I_A}(x, B) = P_x \{ X_n \in B, T_A \geq n \}. \quad (27)$$

These are the return time probabilities, hitting probabilities, expected occupation times for the set A and taboo probabilities for the set B avoiding A.

Note that

$$R(x, A) = \sum_{n=1}^{\infty} P^n_{I_A}(x, A). \quad (28)$$

Definition 24. All of the random variables in the last item are stopping times, meaning that

$\{T = n\} \in \sigma(X_0, \ldots, X_n)$ for every n.

Let $\mathcal{F}_n = \sigma(X_0, \ldots, X_n)$ be the history of the chain up to time n. For a stopping time T, we can define the information in the chain up to time T – the history up to time T – as a σ-field \mathcal{F}_T defined as follows:

$$\mathcal{F}_T = \{ A \in \mathcal{F} \text{ such that } A \cap \{ T = n \} \in \mathcal{F}_n, \text{ for all } n \in \mathbb{Z}_\oplus \}. \quad (29)$$

Theorem 25. The Strong Markov Property

For a countable-state Markov chain and a bounded, measurable function h on sample paths,

$$E (h(X_{n+1}, X_{n+2}, \ldots) \mid \mathcal{F}_T) 1\{ T < \infty \} = E_{X_T} (h(X_1, X_2, \ldots) 1\{ T < \infty \}), \quad (30)$$

for all $n \geq 0$, where E_{X_T} corresponds to a chain whose initial distribution on S is the distribution of X_T. This is called the Strong Markov Property.