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Notation Index

The following summarizes the most common recurring notation and indicates

where each symbol is defined.

Symbol Description Section Page

m Total number of tests performed 2.1 5

Pm Vector of p-values (P1, . . . , Pm) 2.2 6

Hm Vector of hypothesis indicators (H1, . . . , Hm) 2.2 6

P(i) The ith smallest p-value; P(0) ≡ 0

M0 Number of true null hypotheses 2.2 7

M1 Number of false null hypotheses 2.2 7

a Probability of a false null (Mixture Model) 2.2 6

F, f Alternative p-value distribution (cdf,pdf) 2.2 6

F̂m Projection estimator of F 3.3 17

F class of alternative p-value distributions 2.2 7

FS,FC ,FΘ specific classes 2.2 7

G, g Marginal distribution (cdf, pdf) of the Pis 2.2 6

Ĝ Generic Estimator of G 3 12

Gm Empirical cdf of Pm 3 12

ĜEDF, ĜLCM Estimators of G 3,3 12,12

U Uniform cdf 2.2 6

Γ FDP process 2.5 10

Ξ FNP process 2.5 10

γ, ξ FDR, FNR functions 2.5 10

εm Dvoretzky-Kiefer-Wolfowitz nghd. radius 3 12

Q Asymptotic mean of Γ 2.5 10

Q̃ Asymptotic mean of Ξ 2.5 10

We use 1{. . .} and P{. . .} to denote respectively the indicator and proba-

bility of the event {. . .}; subscripts on P specify the underlying distributions

when necessary. We also use E to denote expectation, and Xm Ã X to de-

note that Xm converges in distribution to X. We use zα to denote the upper

α-quantile of a standard normal.
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1 Introduction

Among the many challenges raised by the analysis of large data sets is the

problem of multiple testing. In some settings, it is not unusual to test thou-

sands or even millions of hypotheses. Examples include function magnetic

resonance imaging, microarray analysis in genetics, and source detection in

astronomy. Traditional methods that provide strong control of familywise

error often have low power and can be unduly conservative in some applica-

tions.

Benjamini and Hochberg (BH 1995) pioneered an alternative: controlling

the False Discovery Rate (FDR), the expected proportion of false rejections

among all rejections. BH (1995) provided a distribution-free, finite sample

method for choosing a p-value threshold that guarantees that the FDR is less

than a target level α. The same paper demonstrated that the BH procedure is

often more powerful than traditional methods that control familywise error.

Recently, there has been much further work on FDR. We shall not at-

tempt a complete review here but mention the following. Benjamini and

Yekutieli (2001) extended the BH method to a class of dependent tests.

Efron, Tibshirani and Storey (2001) developed an empirical Bayes approach

to multiple testing and made interesting connections with FDR. They also

showed how these methods are useful Storey (2001a,b) connected the FDR

concept with a certain Bayesian quantity and proposed a new FDR method,

positive FDR, which has higher power than the original BH method. Gen-

ovese and Wasserman (2001) showed that, asymptotically, the BH method

corresponds to a fixed threshold method that rejects all p-values less than

a threshold u∗, and they characterized u∗. They also introduced the False

Nondiscovery Rate (FNR) and found the optimal threshold t∗ in the sense of

minimizing FNR subject to a bound on FDR. The two thresholds are related

by u∗ < t∗, implying that BH is (asymptotically) conservative. Abramovich,

Benjamini, Donoho and Johnstone (2000) established a connection between

FDR and minimax point estimation. An interesting open question is whether

the asymptotic results obtained in this paper can be extended to the sparse

regime in the aforementioned paper where the fraction of alternatives tends

to zero.
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In this paper, we develop some large-sample theory for false discovery

rates and present new methods for controlling quantiles of the false discov-

ery distribution. An essential idea is to view the proportion of false discov-

eries as a stochastic process indexed by the p-value threshold. The problem

of choosing a threshold then becomes a problem of controlling a stochastic

process.

The main contributions of the paper include the following:

1. Definition and asymptotics for the FDP and FNP processes;

2. Estimators of the p-value distribution, even in the non-identifiable case;

3. Verification of the asymptotic validity of a class of methods for FDR

control;

4. New methods, which we call confidence thresholds, for controlling quan-

tiles of the false discovery distribution

2 Preliminaries

2.1 Notation

Consider a multiple testing situation in which m tests are being performed.

Suppose M0 of the null hypotheses are true and M1 = m−M0 null hypotheses

are false. We can categorize the m tests in the following 2×2 table on whether

each null hypothesis is rejected and whether each null hypothesis is true:

H0 Not Rejected H0 Rejected Total

H0 True M0|0 M1|0 M0

H0 False M0|1 M1|1 M1

Total m − R R m

We define the False Discovery Proportion (FDP) and the False Nondiscovery

Proportion (FNP) by

FDP =


M1|0
R

if R > 0

0, if R = 0,

(1)
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and

FNP =


M0|1

m − R
if R < m

0 if R = m.

(2)

The first is the proportion of rejections that are incorrect, and the second

– the dual quantity – is the proportion of non-rejections that are incorrect.

Notice that FDR = E (FDP), and following Genovese and Wasserman (2001),

we define FNR = E (FNP). Storey (2002) considers a different definition of

FDR, called pFDR for positive FDR, by conditioning on the event that R > 0

and discusses the advantages and disadvantages of this definition.

ATTN: Comment on rFDR mentioned by referee

2.2 Models

Let Hi = 0 (or 1) if the ith null hypothesis is true (false) and Let Pi denote

the ith p-value. Define vectors Pm = (P1, . . . , Pm) and Hm = (H1, . . . , Hm).

Let P(1) < · · · < P(m) denote the ordered p-values, and define P(0) ≡ 0.

In this paper, we use a random effects (or hierarchical) model as in Efron

et al (2001). Specifically, we assume the following for 0 ≤ a ≤ 1:

H1, . . . , Hm ∼ Bernoulli(a)

Ξ1, . . . , Ξm ∼ LF
Pi|Hi = 0, Ξi = ξi ∼ Uniform(0, 1)

Pi|Hi = 1, Ξi = ξi ∼ ξi

where Ξ1, . . . ,Ξm denote distribution functions and LF is an arbitrary prob-

ability measure over a class of distribution functions F . It follows that the

marginal distribution of the p-values is

G = (1 − a)U + aF (3)

where U(t) denotes the Uniform(0,1) cdf and F (t) =
∫

ξ(t)dLF(ξ). Except

where noted, we assume that G is strictly concave.

Remark 2.1. A more common approach in multiple testing is to use

a conditional model in which H1, . . . , Hm are fixed, unknown binary values.
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The results in this paper can be cast in a conditional framework but we find

the random effects framework to be more convenient.

The distribution F is assumed to belong to some set of distributions F .

Examples of choices for F include the following:

FS = {cdf F : F ≥ U and F absolutely continuous}
FC = {F ∈ FS : F is concave}
FΘ = {Fθ : θ ∈ Θ},

where Θ is a finite-dimensional parameter space. Here, FS is the set of p-

value distributions that are stochastically smaller than the Uniform(0,1).

Except where otherwise stated, we take F = FC , although many of the

results directly generalize to FS. In all cases, we assume that F is absolutely

continuous, and we denote its density by f . It follows that G is absolutely

continuous, and we denote its density by g.

Define M0 =
∑

i(1 − Hi) and M1 =
∑

i Hi. Under the mixture model,

M0 ∼ Binomial(m, 1 − a) and M1 = m − M0.

2.3 The Benjamini-Hochberg and Plug-in Methods

The Benjamini-Hochberg (BH) procedure is a distribution free method for

choosing which null hypotheses to reject while guaranteeing that FDR ≤ α

for some pre-selected level α. The procedure rejects all null hypotheses for

which Pi ≤ P(RBH), where

RBH = max

{
0 ≤ i ≤ m : P(i) ≤ α

i

m

}
. (4)

BH (1995) proved that this procedure guarantees

FDR ≤ M0

m
α ≤ α, (5)

regardless of how many nulls are true and regardless of the distribution of the

p-values under the alternatives. (Under the mixture model, the guarantee is

that FDR ≤ (1 − a)α.)
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Genovese and Wasserman (2001) showed that, asymptotically, the BH

procedure corresponds to rejecting the null when the p-value is less than

u∗ where u∗ is the solution to the equation F (u) = βu and β = (1 − α +

αM1/m)/(αM1/m). Here, F is the (common) distribution of the p-values un-

der the alternative. This u∗ satisfies α/m ≤ u∗ ≤ α for large m, which shows

that the BH method is intermediate between Bonferroni (corresponding to

α/m) and uncorrected testing (corresponding to α). They also showed that

u∗ is strictly less than the optimal p-value cutoff.

Storey (2002) found an estimator F̂DR(t) of FDR for fixed t. One can then

define a threshold T by finding the largest t such that F̂DR(t) ≤ α. Indeed,

this is suggested in equation (13) of Storey (2002), although he does not

explicitly advocate this as a formal procedure. It remains an open question

whether FDR(T ) ≤ α. We address this question asymptotically in Section

xxxx.

The threshold T chosen this way can also be viewed as a plug-in estimator.

Let Gm be the empirical cdf of Pm. Since ties occur with probability zero,

Storey (2002) showed that the BH threshold is equivalent to

TBH(Pm) = sup

{
t : Gm(t) =

t

α

}
(6)

This can be viewed as a plug-in estimator of u∗, where

u∗(a,G) = sup

{
t : G(t) =

t

α

}
. (7)

The BH method guarantees that FDR = (1− a)α in the continuous case,

which is conservative because FDR is controlled at below the target level α.

This suggests replacing α in u∗ by α/(1 − a) and suggests therefore that a

better threshold would be

t∗(a,G) = sup

{
t : G(t) =

(1 − a)t

α

}
(8)

where β − 1/α simplifies to (1− a)(1−α)/aα. The plug-in estimator for this

threshold is of the form

TPI(P
m) = sup

{
t : Gm(t) =

(1 − â)t

α

}
(9)

= sup

{
t :

(1 − â)t

Gm(t)
= α

}
. (10)
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The last expression can also be motivated by the observation that, up to

an exponentially small term in m, FDR at a fixed threshold t equals (1 −
a)t/G(t). (See Lemma 2.1.) The plug-in procedure is mathematically equiv-

alent to the proposal in Storey (2002): estimate FDR at each threshold t

and choose the biggest t for which this estimate is less than or equal to α.

Storey (2002) suggested estimating a by max(0, (Ĝ(t0) − t0)/(1 − t0)) for a

fixed 0 < t0 < 1. We describe alternate estimators of a in Section 3.2. Storey

(2002) provided simulations to show that the plug-in procedure has good

power but did not provide a proof that it controls FDR at level α. We settle

this question in Section 5 where we show that under weak conditions on â

the procedure asymptotically controls FDR at level α.

2.4 Multiple Testing Procedures

A multiple testing procedure T is a mapping taking [0, 1]m into [0, 1], where

it is understood that the null hypotheses corresponding to all p-values less

than T (Pm) are rejected. We often call T the threshold.

Let α, t ∈ [0, 1] and 0 ≤ r ≤ m, and recall that P(0) ≡ 0. Let Ĝ and ĝ be

generic estimates of G and g = G′, respectively.

Examples of multiple testing procedures include the following:

Uncorrected testing TU(Pm) = α

Bonferroni TB(Pm) = α/m

Fixed threshold at t Tt(P
m) = t

Benjamini-Hochberg TBH(Pm) = sup{t : Gm(t) = t/α} = P(RBH)

Oracle TO(Pm) = sup{t : G(t) = (1 − a)t/α}
Plug In TPI(P

m) = sup{t : Ĝ(t) = (1 − â)t/α}
First r T(r)(P

m) = P(r)

Bayes’ Classifier TBC(Pm) = sup{t : ĝ(t) > 1}
Regression Classifier TReg(P

m) = sup{t : P̂{H1 = 1 | P1 = t} > 1/2}

2.5 FDP and FNP as Stochastic Processes

An important idea that we use throughout the paper is that the FDP, re-

garded as a function of the threshold t, is a stochastic process. This observa-

tion is crucial for studying the properties of procedures.
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Define the FDP process

Γ(t) ≡ Γ(t, Pm, Hm) =

∑
i 1{Pi ≤ t} (1 − Hi)∑

i 1{Pi ≤ t} + 1{all Pi > t} , (11)

where the last term in the denominator makes Γ = 0 when no p-values are

below threshold. Also define the FNP process

Ξ(t) ≡ Ξ(t, Pm, Hm) =

∑
i 1{Pi > t} Hi∑

i 1{Pi > t} + 1{all Pi ≤ t} . (12)

The FDP and FNP of a procedure T are Γ(T ) ≡ Γ(T (Pm), Pm, Hm) and

Ξ(T ) ≡ Ξ(T (Pm), Pm, Hm). For brevity, we sometimes write Γ and Ξ for

Γ(T ) and Ξ(T ). Define γ(t) = E Γ(t) and ξ(t) = E Ξ(t) to be the FDR and

FNR at the fixed threshold t. For convenience, we also define

Q(t) = (1 − a)
t

G(t)
(13)

Q̃(t) = a
1 − F (t)

1 − G(t)
. (14)

The following lemma is a corollary of Theorem 1 in Storey (2002). We

provide a proof to make this connection explicit.

Lemma 2.1. Under the mixture model, for t > 0,

γ(t) = Q(t) (1 − (1 − G(t))m)

ξ(t) = Q̃(t) (1 − G(t)m)

The second terms on the right-hand side of both equations differ from 1 by

an exponentially small quantity.

Proof. Let Im = (I1, . . . , Im) where Ii = 1{Pi ≤ t}. Note that if i 6= j,

then Hi is independent of Ij given Im. From Bayes’ theorem,

P{1 − Hi = 1 | Im} = P{Hi = 0 | Im}
=

P{Hi = 0}P{Pi ≤ t | Hi = 0}
P{Pi ≤ t} Ii +
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P{Hi = 0}P{Pi > t | Hi = 0}
P{Pi > t} (1 − Ii)

=
(1 − a)t

G(t)
Ii +

(1 − a)(1 − t)

1 − G(t)
(1 − Ii)

= Q(t)Ii +
(
1 − Q̃(t)

)
(1 − Ii).

Thus, E (Ii(1 − Hi) | Im) = Q(t)Ii and E ((1 − Ii)Hi | Im) = Q̃(t)(1 − Ii). It

follows that

E (Γ(t) | Im) = Q(t)

∑
i

Ii∑
i

Ii +
∏

i

(1 − Ii)
= Q(t) 1{some Pi ≤ t}

E (Ξ(t) | Im) = Q̃(t)

∑
i

1 − Ii∑
i

1 − Ii +
∏

i

Ii

= Q̃(t) 1{some Pi > t} .

Hence, taking expectations,

E Γ(t) = Q(t) (1 − (1 − G(t))m)

E Ξ(t) = Q̃(t) (1 − G(t)m) ,

which proves the claim. ¤

Remark 2.2. Storey (2001) shows that Q(t) equals the conditional ex-

pected value of Γ(t) given that at least one null is rejected, that is, the

expected pFDR. He also discusses interesting implications of this condition-

ing.

One of the essential difficulties in studying a procedure T is that Γ(T ) is

the evaluation of the stochastic process Γ(·) at a random variable T . Both

depend on the observed data, and in general they are correlated. In particular,

if Q̂(t) estimates FDR at a each fixed t and T = sup{t : Q̂(t) ≤ α}, it does

not follow that E Γ(T ) ≤ α. Indeed, one might say that we have replaced

the original simultaneous inference problem involving many p-values with

a new simultaneous inference problem resulting from choosing among all

possible thresholds. The stochastic process point of view provides a suitable

framework for addressing this problem.
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3 Estimating the P-value Distribution

Recall that, under the mixture model, P1, . . . , Pm have cdf G(t) = (1−a) t+

a F (t). Let Gm denote the empirical cdf of Pm. When G is assumed to be

concave, a better estimate of G is the least concave majorant (lcm) GLCM,m

defined to be the infimum of the set of all concave cdf’s lying above Gm. Most

p-value densities in practical problems are decreasing in p which implies that

G is concave. We will use the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality:

for any x > 0,

P{||Gm(t) − G(t)||∞ > x} ≤ 2e−2mx2

where ||F −G||∞ = sup0≤t≤1 |F (t)−G(t)|. Since G ≥ U , we replace the em-

pirical cdf with ĜEDF,m(t) = max{Gm(t), t}. The DKW inequality still holds

for this estimator. In the concave case, we define ĜLCM,m analogously using

GLCM,m. We typically drop the subscript m when denoting these estimators

and use ĜEDF and ĜLCM. We use Ĝ to denote the chosen estimator of G.

Unless otherwise specified, Ĝ = ĜEDF if F = FS and Ĝ = ĜLCM if F = FC .

Once we obtain estimates â and Ĝ, we define Q̂(t) = (1 − â)/Ĝ(t).

Define εk(β) to be the DKW bound on the quantile of ||Gk(t) − G(t)||∞:

εk(β) =

√
1

2k
log

(
2

β

)
.

The leading special case is when k = m and β = α; in this case, we let εm

denote εm(α).

3.1 Identifiability and Purity

Before discussing the estimation of a and F , it is helpful to first discuss their

identifiability. For example, if a is not identifiable, there is no guarantee that

the estimate used in the plug-in method will give good performance. The

results in the ensuing subsections show that despite not being completely

identified, it is possible to make sensible inferences about a and F .

Say that F is pure if ess inft f(t) = 0 where f is the density of F . Let OF

be the set of pairs (b,H) such that b ∈ [0, 1], H ∈ F and F = (1− b)U + bH.

F is identifiable if OF = {(1, F )}.
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Define

ζF = inf{b : (b,H) ∈ OF},
F =

F − (1 − ζF )U

ζF

,

aF = a ζF .

We will often drop the subscript F on aF and ζF . Note that G can be de-

composed as

G = (1 − a)U + a F

= (1 − a)U + a[(1 − ζ)U + ζF ]

= (1 − aζ)U + a ζF

= (1 − a)U + a F .

Purity implies identifiability but not vice versa. Consider the following ex-

ample. Let F be the Normal (θ,1) family and consider testing H0 : θ = 0

versus H1 : θ 6= 0. The density of the p-value is

fθ(p) =
1

2
e−nθ2/2

[
e−

√
nθΦ−1(1−p/2) + e

√
nθΦ−1(1−p/2)

]
.

Now, fθ(1) = ae−nθ2/2 > 0 so this test is impure. However, the parametric

assumption makes a and θ identifiable when the null is false. It is worth

noting that fθ(1) is exponentially small in n. Hence, the difference between a

and a is small. Even when X has a t-distribution with ν degrees of freedom

fθ(1) = (1+nθ2/ν)−(ν+1)/2. Thus, in practical cases, a−a will be quite small.

On the other hand, one sided tests for continuous exponential families are

pure and identifiable.

The problem of estimating a and F has been considered by Efron et

al (2001) and Storey (2001b) who also discuss the identifiability issue. In

particular, Storey notes that G(t) = (1− a)t + aF (t) ≤ (1− a)t + a for all t.

It then follows that

a ≥ a ≥ max
t

G(t) − t

1 − t
.

Thus a lower bound on a is G(t0)−t0
1−t0

for any t0 and this lower bound is es-

timable. The following result gives precise information about the best bounds

that are possible.
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Proposition 3.1. If F ∈ FS then

ζ ≥ 1 − inf
t

F ′(t) and a ≥ 1 − inf
t

G′(t).

If F = FS then these inequalities become equalities. If F is concave then

the infima are achieved at t = 1. For any b ∈ [ζ, 1] we can write G =

(1 − ab)U + abFb where Fb = (F − (1 − b)U)/b is a cdf and F ≤ Fb.

3.2 Estimating a

We begin with a uniform confidence interval for a.

Theorem 3.1. Let

a∗ = max
t

Ĝ(t) − t − εm

1 − t
.

Then [a∗, 1] is a 1 − α confidence interval for a. In fact,

inf
a,F

Pa,F{a ∈ [a∗, 1]} ≥ 1 − α,

and for each (a, F ) pair

Pa,F{a ∈ [a∗, 1]} ≤ 1 − α +
∞∑

j=2

(−1)j αj2

2j2−1
+ O

(
(log m)2

√
m

)
,

where the remainder term may depend on a and F . Because a ≥ a, [a∗, 1] is

a valid, finite-sample 1 − α confidence interval for a as well.

Proof. The left-hand inequality follows immediately from DKW be-

cause G(t) ≥ Ĝ(t)− εm for all t with probability at least 1− α. The sum on

the right-hand side follows from the closed-form limiting distribution of the

Kolmogorov-Smirnov statistic, and the order of the error follows from the

Hungarian embedding. To see this, note that

a < a∗ =⇒ a
√

m < max
t

√
m

Gm(t) − G(t)

1 − t
+
√

m
G(t) − t

1 − t
− εm

√
m

1 − t

14



=⇒ a
√

m < max
t

√
m

Gm(t) − G(t)

1 − t
+
√

ma − εm

√
m

1 − t

=⇒ 0 < max
t

√
m

Gm(t) − G(t)

1 − t
− εm

√
m

1 − t

=⇒ 0 < max
t

√
m (Gm(t) − G(t)) − εm

√
m

=⇒ ‖√m (Gm(t) − G(t)) ‖∞ > εm

√
m.

Hence,

P{a < a∗} ≤ P
{‖√m (G(t) − G(t)) ‖∞ > εm

√
m

}
. (15)

Next, apply the Hungarian embedding (van der Vaart 1998, p. 269)

lim sup
n→∞

√
n

(log n)2
‖√m (Gm − G) − G̃m‖∞ < ∞ a.s.,

for a sequence of Brownian bridges G̃m. Then, using the large-sample distri-

bution of the Kolmogorov-Smirnov statistic,

P
{
‖G̃‖∞ > x

}
= 2

∞∑
j=1

(−1)j+1e−2j2x2

,

for a generic Brownian bridge G̃. Taking x = εm, the probability of the

complement of this event gives the formula stated in the theorem.

In the concave case, the lcm can be substituted for Ĝ and the result still

holds since, by Marshall’s lemma, ‖ĜLCM,m − G‖∞ ≤ ‖Ĝm − G‖∞. ¤

Proposition 3.2 (Storey’s Estimator). Fix t0 ∈ (0, 1) and let

â =

(
Gm(t0) − t0

1 − t0

)
+

.

If G(t0) > t0,

â
P→ G(t0) − t0

1 − t0
≤ a,

and √
m

(
â − G(t0) − t0

1 − t0

)
Ã N

(
0,

G(t0)(1 − G(t0))

(1 − t0)2

)
.
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If G(t0) = t0, √
mâ Ã 1

2
δ0 +

1

2
N+

(
0,

t0
1 − t0

)
,

where δ0 is a point-mass at zero and N+ is a positive-truncated Normal.

A consistent estimate of a is available if we assume weak smoothness

conditions on g. We use the spacings estimator of Swanepoel (1999) which

is of the form 2rm/(mVm) where rm = m4/5(log m)−2δ and Vm is a selected

spacing in the order statistics of the p-values.

Theorem 3.2. Assume that g′′ is bounded away from 0 and ∞ and is

Lipschitz of order λ > 0 at the value t where g achieves its minimum. For

every δ > 0, there exists an estimator â such that

m(2/5)

(log m)δ
(â − a) Ã N(0, (1 − a)2).

Proof. Let â be the estimator defined in Swanepoel (1999) with rm =

m4/5(log m)−2δ and sm = m4/5(log m)4δ. The result follows from Swanepoel

(1999, Theorem 1.3). ¤

Remark 3.1. An alternative estimator is â = 1− mint ĝ(t) where ĝ is a

kernel estimator.

Under the assumption that G is concave, a consistent estimator that does

not require as much smoothness, âHS, is derived from the Hengartner and

Stark (1995) finite-sample confidence envelope [γ−(·), γ+(·)] for a monotone

density. We define

âHS = 1 − min
{
h(1) : γ− ≤ h ≤ γ+

}
.

Theorem 3.3. If G is concave and g = G′ is Lipschitz of order 1,(
n

log n

)1/3

(âHS − a)
P→ 0,

and [1 − γ+(1), 1 − γ−(1)] is a 1 − α confidence interval for a for 0 ≤ α ≤ 1

and all m. Extending the right endpoint to 1 yields [1 − γ+(1), 1], which is a

1 − α confidence interval for a.
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Proof. Follows from Hengartner and Stark (1995). ¤

If a is non-identifiable, then the best we can hope is to consistently esti-

mate a. The estimators of Theorems 3.2 and 3.3 achieve this. We say that an

estimator â is conservatively consistent under (a, F ) if â
P→ b < aF . Storey’s

estimator is conservatively consistent. With our approach to estimating F in

the next section, it is not sufficient to use a conservatively consistent estima-

tor of a.

3.3 Estimating F

In the bootstrap methods that we introduce in section 6, we will need to

estimate F . There are many possible methods; we consider here projection

estimators defined by

F̂m = arg min
H∈F

||Ĝ − (1 − â)U − âH||∞, (16)

where â is an estimate of a. The appendix gives an algorithm to find F̂m.

It is helpful to consider first the case where a is known, and here we

substitute a for â in the definition of F̂m.

Theorem 3.4. Let

F̂m = arg min
H∈F

||Ĝ − (1 − a)U − aH||∞.

Then,

||F − F̂m||∞ ≤ 2||G − Ĝ||∞
a

a.s.→ 0.

Proof.

a||F − F̂m||∞ = ||aF − aF̂m||∞
= ||(1 − a)U + aF − (1 − a)U − aF̂m||∞
= ||G − (1 − a)U − aF̂m||∞
= ||G − Ĝ + Ĝ − (1 − a)U − aF̂m||∞
≤ ||Ĝ − G||∞ + ||Ĝ − (1 − a)U − aF̂m||∞
≤ ||Ĝ − G||∞ + ||Ĝ − (1 − a)U − aF ||∞
= ||Ĝ − G||∞ + ||Ĝ − G||∞.
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The last statement follows from the uniform consistency of Ĝ. ¤

When a is unknown, the projection estimator F̂ is consistent whenever

we have a consistent estimator of a. Recall that in the identifiable case, a = a

and F = F .

Theorem 3.5. Let â be a consistent estimator of a. Then,

||F̂m − F ||∞ ≤ ||Ĝ − G||∞ + |â − a|
a

P→ 0.

Proof. Let δm = ||Ĝ − (1 − â)U − âF̂ ||∞. Since F̂ is the minimizer,

δm ≤ ||Ĝ − (1 − â)U − âF ||∞
= ||Ĝ − G + (â − a)U − (â − a)F ||∞
≤ ||Ĝ − G||∞ + |â − a|
P→ 0.

We also have that

δm ≥
∣∣∣||Ĝ − (1 − â)U − âF ||∞ − â||F − F̂ ||∞

∣∣∣ .

Since δm and ||Ĝ− (1− â)U − âF ||∞ P→ 0 by the above and â
P→ a, it follows

that ||F − F̂ ||∞ P→ 0. Moreover,

||F − F̂ ||∞ ≤ ||Ĝ − G||∞ + |â − a|
a

.

¤

4 Limiting Distributions

In this section we discuss the limiting distribution of Γ and Q̂. Let

Λ0(t) =
1

m

m∑
i=1

(1 − Hi)1{Pi ≤ t} and Λ1(t) =
1

m

m∑
i=1

Hi1{Pi ≤ t} .
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and, for each c ∈ (0, 1) define

Ωc(t) = (1 − c)Λ0(t) − cΛ1(t) =
1

m

∑
i

Di(t)

where Di(t) = 1{Pi ≤ t} (1 − Hi − c). Let

µc(t) = E D1(t) = (1 − a)t − cG(t).

Let H∗
1 . . . , H∗

m ∼ Bernoulli(a) and let P ∗
i | H∗

i ∼ F̂m where F̂ is the projec-

tion estimator of F defined in 3.3. Let Λ∗
0 and Λ∗

1 analogously to Λ0 and Λ1

but replacing Hi and Pi by H∗
i and P ∗

i . Define Ω∗
c(t) = (1− c)Λ∗

0(t)− cΛ∗
1(t).

Let (W0,W1) be a continuous, two-dimensional, mean zero Gaussian pro-

cess with covariance kernel Rij(s, t) = Cov(Wi(s),Wj(t)) given by

R(s, t) =

[
(1 − a)(s ∧ t) − (1 − a)2st −(1 − a)s aF (t)

−(1 − a)t aF (s) aF (s ∧ t) − a2F (s)F (t)

]
. (17)

Theorem 4.1. Let W be a continuous, mean zero Gaussian process with

covariance

KΩ(s, t) = (1 − a)(1 − c) [(1 − c)(s ∧ t − (1 − a)st) + ac(tF (s) + sF (t))] +

ac [cF (s ∧ t) − acF (s)F (t)] . (18)

Then √
m(Ωc − µc) Ã W.

Also, √
m(Ω∗

c − µ̂c) Ã W

conditionally, along almost all sequences P1, P2, . . .. Furthermore,

sup
0≤t≤1

sup
u

∣∣PG

{√
m(Ωc(t) − µc(t)) ≤ u

} − PĜ

{√
m(Ω∗

c(t) − µ̂c(t)) ≤ u
}∣∣ = O(m−1/2)

almost surely.

Proof. Let

Zm(t) =
√

m(Ωc(t) − µc(t)) and Z∗
m(t) =

√
m(Ω∗

c(t) − µ̂c(t))
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for t ∈ [0, 1]. Let

(Wm,0(t),Wm,1(t)) ≡ (
√

m(Λ0(t) − (1 − a)t),
√

m(Λ1(t) − aF (t))).

By standard empirical process theory, (Wm,0(t),Wm,1(t)) converges to (W0,W1).

The covariance kernel R stated in equation (17) follows by direct calculation.

The result for Ωc is immediate since Ωc is a linear combination of Λ0 and Λ1.

The argument for Z∗
m(t) with Ĝ, µ̂c and F̂m replacing G, µ and F and

the last statement in the theorem follow from van der Vaart (1998) Theorem

23.7. This leads to the conclusion that

√
m(Ω∗

c − µ̂c) Ã W

where W is a mean zero, Gaussian process with covariance KΩ(s, t). ¤

Theorem 4.2 (Limiting Distribution of FDP Process).

For t ∈ [δ, 1] for any δ > 0, let

Zm(t) =
√

m (Γm(t) − Q(t)) .

Let Z be a Gaussian process on (0, 1] with mean 0 and covariance kernel

KΓ(s, t) = a(1 − a)
(1 − a)stF (s ∧ t) + aF (s)F (t)(s ∧ t)

G2(s) G2(t)
.

Then Zm Ã Z on [δ, 1].

Remark 4.1. The reason for restricting the theorem to [δ, 1] is that the

variance of the process is infinite at zero.

Proof. Note that Γm(t) = Λ0(t)/(Λ0(t) + Λ1(t)) ≡ r(Λ0, Λ1) where Λ0

and Λ1 are defined as before, r(·, ·) maps `∞ × `∞ → `∞ where `∞ is the

set of bounded functions on (δ, 1] endowed with the sup norm. Note that

r((1− a)U, aF ) = Q. It can be verified that r(·, ·) is Fréchet differentiable at

((1 − a)U, aF ) with derivative

r′((1−a)U,aF )(V ) =
aFV0 − (1 − a)UV1

G2
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where U(t) = t, V = (V0, V1). Hence, by the functional delta method (van

der Vaart 1998, Theorem 20.8),

Zm Ã r′((1−a)U,aF )(W ) =
aFW0 − (1 − a)UW1

G2
,

where (W0,W1) is the process defined just before equation (17). The covari-

ance kernel of the latter expression is KΓ(s, t). ¤

Remark 4.2. A Gaussian limiting process can be obtained for FNP (i.e.,

Ξ(t)) along similar lines.

The next two theorems follow from the previous results with an applica-

tion of the functional delta method.

Theorem 4.3. For any δ > 0,

√
m(Q̂(t) − Q(t)) Ã W

on [δ, 1], where W is a mean 0 Gaussian process on (0, 1] with covariance

kernel

KQ(s, t) = Q(s) Q(t)
G(s ∧ t) − G(s)G(t)

G(s) G(t)
.

Theorem 4.4. We have

√
m(Q̂−1(v) − Q−1(v)) Ã W

where W is a mean 0 Gaussian process with covariance kernel

KQ−1(u, v) =
KQ(s, t)

Q′(s)Q′(t)

= (1 − a)2 u v
G(s ∧ t) − G(s)G(t)

[1 − a − ug(s)] [1 − a − vg(t)]

with s = Q−1(u) and t = Q−1(v).
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5 Asymptotic Validity of Plug-in Procedures

Let Q̂−1(c) = sup{0 ≤ t ≤ 1 : Q̂(t) ≤ c}. Then, the plug-in threshold

TPI defined earlier can be written TPI(P
m) = Q̂−1(α). Here we establish the

asymptotic validity of TPI in the sense that E Γ(T ) = α + O(m−1/2).

We first tackle the case where a is known. Define Q̂a(t) = (1 − a)t/Ĝ(t)

to be the estimator of Q when a is known.

Theorem 5.1. Assume that a is known and let Q̂ = Q̂a. Let t0 = Q−1(α)

and assume G 6= U . Then,

√
m(TPI − t0) Ã N(0, KQ−1(t0, t0))√

m(Q(TPI) − α) Ã N(0, (Q
′
(t0))

2KQ−1(t0, t0)),

and

E Γ(TPI) = α + o(1).

Proof.

The first two statements follow from Theorem 4.4 and the delta method.

For the last claim, let 0 < δ < t0 and note the following.

|Γm(T ) − α| ≤ |Γm(T ) − Q(T )| + |Q(T ) − α|
≤ sup

t
|Γm(t) − Q(t)|1{T < δ} +

sup
t

|Γm(t) − Q(t)|1{T ≥ δ} + |Q(T ) − α|
≤ 1{T < δ} + sup

t≥δ
|Γm(t) − Q(t)| + |Q(T ) − α|

= 1{T < δ} +
1√
m

sup
t≥δ

|√m(Γm(t) − Q(t))| + |Q(T ) − α|

= OP (m−1/2).

Because 0 ≤ Γm ≤ 1, the sequence is uniformly integrable, and the result

follows. ¤

Next, we consider the case where a is unknown and possibly non-identifiable.
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Theorem 5.2 (Asymptotic Validity of Plug-in Method).

Let â be a consistent estimator of a. Then,

E Γ(TPI) ≤ α + o(1).

Proof. Let Ĝ = ĜLCM. By assumption, â
P→ a. Then,

Q̂(t) =
1 − â

1 − a

1 − a

1 − a
Q̂a(t).

Let 1 + δ = (1 − a)/(1 − a).

By Slutzky’s Lemma, Q̂(t) has the same limiting distribution, when prop-

erly centered and scaled, as (1 + δ)Q̂a(t). Hence,

Q̂−1(α) = Q̂−1
a

(
α

1 + δ
+ oP (1)

)
≤ Q̂−1

a (α + oP (1)) ,

by the concavity of ĜLCM.

Because Q̂−1 a.s.→ Q−1
a and because Q−1

a (α) ≤ Q−1
a (α), the result follows

from the previous theorem. ¤

Recall that the oracle procedure is defined by TO(Pm) = Q−1(α). This

procedure has the smallest FNR for all procedures that attain FDR ≤ α up to

sets of exponentially small probability. To see this, note that Q is increasing

and Q̃ is decreasing.

In the non-identifiable case, no data-based method can distinguish a and

a, so the performance of this oracle cannot be attained. We thus define the

achievable oracle procedure TA0 to be analogous to TO with (1 − a)t/G(t)

replacing Q. In the identifiable case, TAO = TO.

The plug-in procedure that uses the estimator â described in Theorem 3.2

asymptotically attains the performance of TAO in the sense that E Γ(TPI) =

α + oP (1) and E Ξ(TPI) = E Ξ(TAO) + oP (1).
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6 Confidence Thresholds

The distribution of the FDP need not be concentrated around its expected

value. In practice, controlling the FDR does not offer high confidence that the

FDP will be small. As an alternative, we develop methods in this section for

controlling the probability of large values for FDP. Given c and α, a (1−α, c)

confidence threshold is a procedure T such that PG{Γ(T ) ≤ c} ≥ 1 − α.

The remainder of this section shows three approaches to finding confidence

thresholds.

6.1 Bootstrap Asymptotic Confidence Thresholds

In this section, we show how to construct a confidence threshold using a

bias-corrected bootstrap. As a first guess, one might think of choosing T

such that

PĜ {Γ∗(T ) ≤ c} = 1 − α

where Γ∗ is constructed from a bootstrap sample (described below). Un-

fortunately this fails. To see why, note that, for any t, standard bootstrap

asymptotics yield

PĜ

{√
m(Γ∗(t) − Q̂(t)) ≤ u

}
≈ PG

{√
m(Γ(t) − Q(t)) ≤ u

}
for all u. So, if PĜ {Γ∗(t) ≤ c} = 1 − α, then, with u =

√
m(c − Q̂(T )), we

have

1 − α = PĜ{Γ∗(t) ≤ c}
= PĜ

{√
m(Γ∗(t) − Q̂(t)) ≤ u

}
≈ PG

{√
m(Γ(t) − Q(t)) ≤ u

}
= PG

{
Γ(t) ≤ c + (Q(t) − Q̂(t))

}
6= PG{Γ(t) ≤ c}

because of the bias term Q(t)− Q̂(t). Thus we will need to correct this bias.

Moreover, we must be careful to account for the fact that the actual selected

threshold T is a random variable.
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6.1.1 Case I: a is Known.

It will be convenient to first solve the problem when a is known as the estima-

tion of a introduces extra complexities. Let F̂m be the projection estimator

of F defined in Section 3.3.

Bootstrap Confidence Threshold Algorithm Version I.

(Step 1) Draw

H∗
1 . . . , H∗

m ∼ Bernoulli(a)

and

P ∗
i | H∗

i ∼ (1 − H∗
i )U + H∗

i F̂m.

(Step 2) Define Ω∗
c(t) = m−1

∑
i 1{P ∗

i ≤ t} (1 − H∗
i − c) and let

T = max
{
t : PĜ{Ω∗

c(t) ≤ −c εm(β)} ≥ 1 − β
}

where β = α/2.

Theorem 6.1. Let T be defined as above. Then

PG{Γ(T ) ≤ c} ≥ 1 − α + O

(
1√
m

)
.

Proof. Define the following events:

A∗
m = {√m (Ω∗

c(T ) − µ̂c(T )) ≤ −√
m µc(T )}

Am = {√m (Ωc(T ) − µc(T )) ≤ −√
m µc(T )}

Bm = {√m sup
t

|µc(t) − µ̂c(t)| ≤
√

m cεm(β)} = {√mc sup
t

|G(t) − Ĝ(t)| ≤ √
m cεm(β)}

E∗
m = {√m(Ω∗

c(T ) − µ̂c(T )) ≤ −√
mµ(T ) +

√
m(µ(T ) − µ̂c(T )) −√

m cεm(β)}
= {√m(Ω∗

c(T ) − µ̂c(T )) ≤ −√
m cεm(β) −√

mµ̂c(T ))}
= {Ω∗

c(T ) ≤ −cεm(β)}.

First, note that E∗
m ∩ Bm ⊂ A∗

m ∩ Bm. Hence,

PG(A∗
m) ≥ PG(A∗

m ∩ Bm) ≥ PG(E∗
m ∩ Bm) = PG(E∗

m) + PG(Bm) − PG(E∗
m ∪ Bm)

≥ PG(E∗
m) + PG(Bm) − 1.
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The threshold T was chosen so that PĜ(E∗
m) ≥ 1 − β. By Theorem 4.1,

PG(Em) ≥ 1−β +O(m−1/2), PG(A∗
m) = PĜ(A∗

m)+O(m−1/2), and PĜ(A∗
m) =

PG(Am) + O(m−1/2) almost surely. By, the DKW inequality,

P{sup
t

|Ĝ(t) − G(t)| > εm(β)} ≤ β

which implies that PG(Bm) ≥ 1 − β. Hence, PG(A∗
m) ≥ 1 − 2β = 1 − α.

left off here

It follows that P(Am) ≥ 1 − 2β + O(m−1/2) = 1 − α + O(m−1/2). ¤

6.1.2 Case II: a Unknown but Identifiable

We now modify the bootstrap procedure to incorporate an estimate of a.

Bootstrap Confidence Threshold Algorithm Version II.

(Step 0) Compute â, a consistent estimate of a.

(Step 1) Draw H∗
1 . . . , H∗

m ∼ Bernoulli(â) and P ∗
i | H∗

i ∼ (1−H∗
i )U+H∗

i F̂m.

(Step 2) Define Ω∗
c(t) =

∑
i 1{P ∗

i ≤ t} (1 − H∗
i − c) and let

T = max
{
t : PĜ{Ω∗

c(t) ≤ −δm} ≥ 1 − β
}

where δm = cεm(β) + ρm, β = α/3, and ρm is defined by

P{|a − â| > ρm} ≤ β.

The quantity ρm can, for instance, be obtained from Theorem 3.3.

Theorem 6.2. Let T be defined as above. Then

PG{Γ(T ) ≤ c} ≥ 1 − α + O

(
1√
m

)
.

Proof. The proof is similar to that for version I except that the bias

term is

|µ̂c(T ) − µc(T )| ≤ |a − â| + c|Ĝ(T ) − G(T )|
instead of c|Ĝ(T ) − G(T )|. Also, the bootstrap process has asymptotic co-

variance kernel

K̂(s, t) = −(1 − â)(1 − c)[âctF̂m(s) + (1 − c)((s ∧ t) − (1 − â)st)].

Note that K̂(s, t)
P→ KΩ(s, t). The rest of the proof is similar. ¤
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6.1.3 Case III: a Unknown and Not Identifiable

Let â be a consistent estimator of a. Version III of the bootstrap is identical

to version II except we use this conservative estimator.

Theorem 6.3. Let T be defined as in version 3. Then,

PG{Γ(T ) ≤ c} ≥ 1 − α + O

(
1√
m

)
.

Lemma 6.1. For all t and any 0 < c < 1,

Pa,F{Ωc(t) ≤ 0} ≥ Pa,F{Ωc(t) ≤ 0} .

For any random T and any 0 < c < 1,

Pa,F{Ωc(T ) ≤ 0} ≥ Pa,F{Ωc(T ) ≤ 0} + O

(
1√
m

)
.

Proof. For fixed threshold t, the Dis which are the summands in Ωc can

take only three values: −c, 0, and 1− c. The distribution of Di under (a, F )

is stochastically smaller than the distribution of Di under (a, F ), using the

result of Proposition 3.1. The first statement follows.

For the second statement, note that G = (1− a)U + aF = (1− a)U + aF

with a ≤ a and F ≤ F .

The mean Ωc(t) under (a, F ) is µc(t) = (1−c)(1−a)t−caF (t). The mean

Ωc(t) under (a, F ) is µ̃c(t) = (1 − c)(1 − a)t − caF (t). Thus, µ̃c(t) − µc(t) =

(a − a)t > 0, so µ̃c(t) > µc(t) for all t.

Let (Pm, Hm) ∼ (a, F ) and (P̃m, H̃m) ∼ (a, F ). Define Ωc(·) from (Pm, Hm)

and Ω̃c(·) from (P̃m, H̃m), put both processes on a common probability space,

and make them independent. Let

∆(t) =
√

m
[
(Ω̃c(t) − µ̃c(t)) − (Ωc(t) − µc(t))

]
.
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Then,

P{Ωc(T ) ≤ 0} = P
{√

m(Ωc(T ) − µc(T )) ≤ −√
m µc(T )

}
≥ P

{√
m(Ωc(T ) − µc(T )) ≤ −√

m µ̃c(T )
}

= P
{√

m(Ω̃c(T ) − µ̃c(T )) − ∆(T ) ≤ −√
m µ̃c(T )

}
= P

{√
m(Ω̃c(T ) − µ̃c(T )) ≤ −√

m µc(T ) + ∆(T )
}

= P
{√

m Ω̃c(T ) ≤ ∆(T )
}

= P

{
Ω̃c(T ) ≤ m−1/2 sup

t
|∆(T )|

}
= P

{
Ω̃(T ) ≤ 0

}
+ O

(
1√
m

)
,

since supt |∆(t)| = OP (1). ¤

Proof of Theorem. Following the same proof as before, we conclude

that

Pa,F{Γ(T ) ≤ c} ≥ 1 − α + O(m−1/2).

From the previous Lemma, Pa,F{Ω(T ) ≤ 0} ≥ Pa,F{Ω(T ) ≤ 0}+ O(m−1/2).

It follows that

Pa,F{Γ(T ) ≤ c} ≥ Pa,F{Γ(T ) ≤ c} ≥ 1 − α + O(m−1/2),

as claimed. ¤

Remark 6.1. It is also possible to formulate a conditional bootstrap

in which the Pi’s are kept fixed at their observed values. In this one draw

H∗
i | Pi ∼ Bernoulli(1− q̂(Pi)) where q̂(Pi) = P̂{Hi = 0 | Pi} = (1− â)/ĝ(Pi).

Again, a bias correction is needed that now involves ĝ.

6.2 Closed-Form Expression for Asymptotic Confidence
Threshold

As an alternative to the bootstrap, we derive in this section a formula for

a confidence threshold that is asymptotically valid. As usual, we begin by

assuming a is known.
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Lemma 6.2. Let t0 = Q−1(c), and assume 0 < t0 < 1. If tm − t0 =

O(m−1/2), Ω(tm) − µ(tm) = Ω(t0) + oP (m−1/2). Thus, if um = vm−1/2 +

o(m−1/2) for some v,

P{Ω(tm) ≤ µ(tm) + um} − P{Ω(t0) ≤ um} = o(1).

Proof. Note that µ(t0) = 0. Note also that |Ω(tm)−Ω(t0)| ≤ max{c, 1−
c}m−1

∑
i |1{Pi ≤ tm}−1{Pi ≤ t0} | ≤ |Ĝ(tm)−Ĝ(t0)| which is Binomial(m, |G(tm)−

G(t0)|)/m and has variance of order m−3/2. The first claim follows by sub-

tracting the means and multiplying by
√

m. The second claim is immediate.

¤

Lemma 6.3. Let t0 = Q−1(c) and let KΩ(s, t) be the covariance kernel

defined in (18). Assume that F 6= U . Define

tm ≡ tm(α) = t0 −
zα√
m

√
KΩ(t0, t0)

1 − a − cg(t0)
.

Then

P{Γ(tm) ≤ c} = 1 − α + O(m−1/2).

Proof. We have

P{Γ(tm) ≤ c} = P{Ω(tm) − µ(tm) ≤ −µ(tm)}

= P

{
√

m
Ω(t0)√

KΩ(t0, t0)
≤ −

√
mµ(tm)√

KΩ(t0, t0)

}
+ o(1),

from Lemma 6.2. It suffices, in light of Theorem 4.1 and Lemma 6.2, to show

that

−√
m

µ(tm)√
KΩ(t0, t0)

→ zα.

Now, µ(t0) = 0, hence,

µ(t) = (t − t0)µ
′
(t0) + o(|t − t0|)

= (t − t0)(1 − a − cg(t0)) + o(|t − t0|).
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Hence,

µ(tm) = (tm − t0)(1 − a − cg(t0)) + o(m−1/2).

The result follows from the definition of tm. ¤

It would be tempting to substitute t̂0 = Q̂−1(c) for t0 in the definition of

tm and then use the estimate tm. Unfortunately, much like the bootstrap, this

adds an asymptotic bias which prevents the resulting threshold from having

correct asymptotic coverage. Again, a bias correction is needed.

Theorem 6.4. Let â be a consistent estimator of a. Let t0 = Q−1(c),

and t̂0 = Q̂−1(c). Assume that F 6= U . Let

T = t̂0 − Ĵ√
m

where

Ĵ =

zα/2

(√
K̂Q−1(t̂0, t̂0) + ĝ(t̂0)

)
+ 2

√
log m

1 − â − cĝ(t̂0)

and

K̂Q−1(s, t) =
K̂Q(Q̂−1(s), Q̂−1(t))

Q̂′(Q̂−1(s))Q̂′(Q̂−1(t))
,

K̂Q(s, t) =
(1 − â)2st

Ĝ2(s)Ĝ2(t)

[
Ĝ(s ∧ t) − Ĝ(s)Ĝ(t)

]
.

Assume also that ĝ is continuous, is a consistent estimator of g and that

ĝ(t0) − g(t0) = OP (m−δ) for some δ > 0. Then,

P{Γ(T ) ≤ c} ≥ 1 − α + o(1).

Proof. First, recall that
√

m(t̂0 − t0) Ã N(0, KQ−1(c, c)). Let

tm = t0 − J√
m

where

J =
zα/2

(√
KΩ(t0, t0) + g(t0)

)
+ 2

√
log m

1 − a − cg(t0)
.
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Now,

P{Γ(T ) ≤ c} = P{Ω(T ) ≤ 0} = P{Ω(tm) + [Ω(T ) − Ω(tm)] ≤ 0} .

Let Ii = 1{Pi ≤ T } and Ji = 1{Pi ≤ tm}. Then, with probability at lest

1 − 2/m2, for some t̃ between T and t,

|Ω(T ) − Ω(tm)| ≤ 1

m

∑
i

|1 − Hi − c| |Ii − Ji|

≤ max{c, 1 − c} 1

m

∑
i

|Ii − Ji|

≤ 1

m

∑
i

|Ii − Ji|

≤ |Ĝ(T ) − Ĝ(tm)|

≤ 2

√
log m

m
+ |G(T ) − G(tm)|

= 2

√
log m

m
+ |T − tm|g(t̃)

≤ 2

√
log m

m
+ |t0 − t̂0|g(t0) + oP (m−1/2).

Let

∆m =
g(t0)z(α/2)

√
KQ−1(c, c) + 2

√
log m√

m
.

So,

P{Γ(T ) ≤ c} = P{Ωc(T ) ≤ 0}
≥ P{Ωc(tm) ≤ −∆m, |Ω(T ) − Ω(tm)| < ∆m}
≥ P{Ωc(tm) ≤ −∆m} + P{|Ω(T ) − Ω(tm)| < ∆m} − 1.

Then,

P{|Ωc(T ) − Ωc(tm)| > ∆m} ≤ P
{√

m|t̂0 − t0| + oP (1) > zα/2

} → α

2
.

Also,

P{Ωc(tm) ≤ −∆m} = P

{
√

m
Ωc(tm) − µ(tm)√

K(t0, t0)
≤ −√

m∆m −√
mµ(tm)√

K(t0, t0)

}
.
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The right hand side tends to zα/2.

Now, if a is unknown, we use the estimate â. Let Ta be the confidence

threshold attained above, treating a as known. The method of proof given

for Theorem 5.2 – substituting Q−1(c) and Q̂−1(c) for Q−1(α) and Q̂−1(α)

respectively – yields that

Pa,F{Γ(T ) ≤ c} ≥ Pa,F{Γ(Ta) ≤ c} + o(1).

The result follows. ¤

Remark 6.2. The asymptotic approach does not require bootstrapping,

but does require density estimation. This is analogous to the choices faced

in estimating the standard error of a median.

6.3 Exact Confidence Thresholds

In this section, we will construct confidence thresholds that are valid for finite

samples.

Let 0 < α < 1. Given V1, . . . , Vk, let ϕk(v1, . . . , vk) be a non-randomized

level α test of the null hypothesis that V1, . . . , Vk are drawn iid from a

Uniform(0, 1) distribution. Define pm
0 (hm) = (pi : hi = 0, 1 ≤ i ≤ m)

and m0(h
m) =

∑m
i=1(1 − hi). and

Uα(pm) =
{
hm ∈ {0, 1}m : ϕm0(hm) (p

m
0 (hm)) = 0

}
,

Note that as defined, Uα always contains the vector (1, 1, . . . , 1).

For example, if we define the empirical cdf of the null p-values by

S(t; hm, pm) =

∑
i I {pi ≤ t} (1 − hi)∑

i(1 − hi)
,

we can use the Kolmogorov-Smirnov one-sample test against the Uniform(0, 1).

Also, let

Gα(pm) = {Γ(·, hm, pm) : hm ∈ Uα(pm)} (19)

Mα(pm) = {m0(h
m) : hm ∈ Uα(pm)} . (20)

Then, we have the following theorem which follows from standard results on

inverting hypothesis tests to construct confidence sets.
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Theorem 6.5. For all 0 < a < 1, F ∈ F , and positive integers m,

Pa,F{Hm ∈ Uα(Pm)} ≥ 1 − α (21)

Pa,F{M0 ∈ Mα(Pm)} ≥ 1 − α (22)

Pa,F{Γ(·, Hm, Pm) ∈ Gα} ≥ 1 − α (23)

Pa,F{Γ(TC) ≤ c} ≥ 1 − α, (24)

where

TC = sup {t : Γ(t; hm, Pm) ≤ c and hm ∈ Uα(Pm)} . (25)

In particular, TC is a (1 − α, c) confidence threshold procedure.

Because Uα always contains (1, 1, . . . , 1), the pointwise infimum of func-

tions in Gα will be zero. However, there is a non-trivial upperbound

Sα(t) = sup {Γ(t) : Γ ∈ Gα(Pm)} , (26)

which satisfies infa,F Pa,F{Γ(t,Hm, Pm) ≤ Sα(t), for all t} ≥ 1 − α.

Remark 6.3. If there is some substantive reason to bound M0 from

below, then Gα will have a non-trivial lower bound as well.

Remark 6.4. At first glance, computation of Uα would appear to require

an exponential-time algorithm. However, for broad classes of tests, including

the Kolmogorov-Smirnov test, it is possible construct Uα in polynomial time.

We have fast algorithms and alternative tests which we will present and

analyze in a forthcoming paper.

Appendix: Algorithm for Finding F̂m

Here, we restrict our attention to the case in which we take F̂ as piecewise

constant on the same grid as G. When F is concave, the algorithm works in

the same way with the sharper piecewise linear approximation.

Step 0. Begin by constructing an initial estimate of F that is a cdf. For

example, we can define H to be the piecewise constant function that takes

the following values on the Pis

H(P(i)) = max
j≤i

Ĝ(P(j)) − (1 − â)P(j)

â
.
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Step 1. Identify the segment with the biggest absolute difference between

Ĝ and (1 − â)U + âH.

Step 2. Determine how far and in what direction (up or down) this seg-

ment can be moved while keeping H a cdf and minimizing ||Ĝ− (1− â)U +

âH||∞.

Step 3. If the segment can be moved, move it and go to Step 1. Else go

to Step 4.

Step 4. If no segment can be moved to reduce ||Ĝ − (1 − â)U + âH||∞,

STOP.

If the current segment is part of a contiguous block of segments where one

segment in the block can be moved to reduce ||Ĝ− (1− â)U + âH||∞, move

the segment at the end of the contiguous block of segments that provides the

greatest reduction in ||Ĝ − (1 − â)U + âH||∞. Go to Step 1.
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