New Approaches to False Discovery Control

Christopher R. Genovese
Department of Statistics
Carnegie Mellon University
http://www.stat.cmu.edu/~genovese/

Larry Wasserman
Department of Statistics
Carnegie Mellon University

This work partially supported by NSF Grants SES 9866147 and ITR 0104016.
Motivating Example #1: fMRI

- fMRI Data: Time series of 3-d images acquired while subject performs specified tasks.

- Goal: Characterize task-related signal changes caused (indirectly) by neural activity. [See, for example, Genovese (2000), JASA 95, 691.]
fMRI (cont’d)

Perform hypothesis tests at many thousands of volume elements to identify loci of activation.
Motivating Example #2: Source Detection

- Interferometric radio telescope observations processed into digital image of the sky in radio frequencies.
- Signal at each pixel is a mixture of source and background signals.
Motivating Example #3: DNA Microarrays

- New technologies allow measurement of gene expression for thousands of genes simultaneously.

<table>
<thead>
<tr>
<th>Gene</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X_{111}</td>
<td>X_{121}</td>
<td>X_{131}</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>X_{211}</td>
<td>X_{221}</td>
<td>X_{231}</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- Goal: Identify genes associated with differences among conditions.
- Typical analysis: hypothesis test at each gene.
Road Map

1. The Multiple Testing Problem
 – The Basic Problem
 – Error Criteria

2. Controlling FDR
 – Benjamini-Hochberg and Beyond
 – Outstanding Issues
 – Data Example

3. Confidence Envelopes and Thresholds
 – Exact Confidence Envelopes for the False Discovery Proportion
 – Choice of Tests

4. False Discovery Control for Random Fields
 – Confidence Supersets and Thresholds
 – Controlling the Proportion of False Clusters
1. The Multiple Testing Problem
 – The Basic Problem
 – Error Criteria

2. Controlling FDR
 – Benjamini-Hochberg and Beyond
 – Outstanding Issues
 – Data Example

3. Confidence Envelopes and Thresholds
 – Exact Confidence Envelopes for the False Discovery Proportion
 – Choice of Tests

4. False Discovery Control for Random Fields
 – Confidence Supersets and Thresholds
 – Controlling the Proportion of False Clusters
The Multiple Testing Problem

- Perform m simultaneous hypothesis tests with a common procedure.
- For any given threshold, classify the results as follows:

<table>
<thead>
<tr>
<th></th>
<th>H_0 Retained</th>
<th>H_0 Rejected</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 True</td>
<td>TN</td>
<td>FD</td>
<td>T_0</td>
</tr>
<tr>
<td>H_0 False</td>
<td>FN</td>
<td>TD</td>
<td>T_1</td>
</tr>
<tr>
<td>Total</td>
<td>N</td>
<td>D</td>
<td>m</td>
</tr>
</tbody>
</table>

Mnemonics: $T/F = \text{True}/\text{False}$, $D/N = \text{Discovery}/\text{Nondiscovery}$

All quantities except m, D, and N are unobserved.
- The problem is to choose a threshold that balances the competing demands of sensitivity and specificity.
How to Choose a Threshold?

• Control Per-Comparison Type I Error
 – a.k.a. “uncorrected testing,” many type I errors
 – Gives \(P_0 \{ F_{D_i} > 0 \} \leq \alpha \) marginally for all \(1 \leq i \leq m \)

• Strong Control of Familywise Type I Error
 – e.g.: Bonferroni: use per-comparison significance level \(\alpha / m \)
 – Guarantees \(P_0 \{ F_{D} > 0 \} \leq \alpha \)

• False Discovery Control
 – e.g.: Benjamini & Hochberg (BH, 1995, 2000): False Discovery Rate (FDR)
 – Guarantees \(\text{FDR} \equiv \mathbb{E} \left(\frac{FD}{D} \right) \leq \alpha \)
Road Map

1. The Multiple Testing Problem
 - The Basic Problem
 - Error Criteria

2. Controlling FDR
 - Benjamini-Hochberg and Beyond
 - Outstanding Issues
 - Data Example

3. Confidence Envelopes and Thresholds
 - Exact Confidence Envelopes for the False Discovery Proportion
 - Choice of Tests

4. False Discovery Control for Random Fields
 - Confidence Supersets and Thresholds
 - Controlling the Proportion of False Clusters
The Benjamini-Hochberg Procedure

• Given \(m \) p-values ordered \(0 \equiv P(0) < P(1) < \cdots < P(m) \), BH rejects any null hypothesis with \(P_j \leq T_{BH} \), where

\[
T_{BH} = \max \left\{ P(i) : P(i) \leq \alpha \frac{i}{m} \right\}.
\]

• BH procedure guarantees that

\[
\text{FDR} \equiv E \left(\frac{FD}{D} \right) \leq \frac{T_0}{m} \alpha.
\]

• This bound holds at least under “positive dependence”.

• Gives more power than Bonferroni, fewer Type I errors than uncorrected testing.

• Replacing \(\alpha \) by \(\alpha / \sum_{i=1}^{m} 1/i \) extends FDR bound to any distribution, but this is typically very conservative.
The Benjamini-Hochberg Procedure (cont’d)

$m = 50, \alpha = 0.1$
Astronomical Examples (PiCA Group)

- Baryon wiggles (Miller, Nichol, Batuski 2001)
- Radio Source Detection (Hopkins et al. 2002)
- Dark Energy (Scranton et al. 2003)
Mixture Model for Multiple Testing

• Let \(P^m = (P_1, \ldots, P_m) \) be the p-values for the \(m \) tests.

• Let \(H^m = (H_1, \ldots, H_m) \) where \(H_i = 0 \) (or 1) if the \(i^{\text{th}} \) null hypothesis is true (or false).

• We assume the following model:

\[
H_1, \ldots, H_m \text{ iid Bernoulli}\langle a \rangle \\
\Xi_1, \ldots, \Xi_m \text{ iid } \mathcal{L}_{\mathcal{F}}
\]

\[
P_i \mid H_i = 0, \Xi_i = \xi_i \sim \text{Uniform}\langle 0, 1 \rangle
\]

\[
P_i \mid H_i = 1, \Xi_i = \xi_i \sim \xi_i.
\]

where \(\mathcal{L}_{\mathcal{F}} \) denotes a probability distribution on a class \(\mathcal{F} \) of distributions on \([0, 1]\).
Marginally, P_1, \ldots, P_m are drawn iid from

$$G = (1 - a)U + aF,$$

where U is the Uniform\langle 0, 1\rangle cdf and

$$F = \int \xi d\mathcal{L}_F(\xi).$$

Typical examples:

- Parametric family: $\mathcal{F}_\Theta = \{F_\theta: \theta \in \Theta\}$
- Concave, continuous distributions

$$\mathcal{F}_C = \{F: F \text{ concave, continuous cdf with } F \geq U\}.$$

Can also work under what we call the conditional model where H_1, \ldots, H_m are fixed, unknown.
Multiple Testing Procedures

• A multiple testing procedure T is a map $[0, 1]^m \rightarrow [0, 1]$, where the null hypotheses are rejected in all those tests for which $P_i \leq T(P^m)$. We call T a threshold.

• Examples:
 - Uncorrected testing $T_U(P^m) = \alpha$
 - Bonferroni $T_B(P^m) = \alpha/m$
 - Fixed threshold at t $T_t(P^m) = t$
 - First r $T_{(r)}(P^m) = P_{(r)}$
 - Benjamini-Hochberg $T_{BH}(P^m) = \sup\{t: \hat{G}(t) = t/\alpha\}$
 - Oracle $T_O(P^m) = \sup\{t: G(t) = (1 - a)t/\alpha\}$
 - Plug In $T_{PI}(P^m) = \sup\{t: \hat{G}(t) = (1 - \hat{a})t/\alpha\}$
 - Regression Classifier $T_{Reg}(P^m) = \sup\{t: \hat{P}\{H_1=1|P_1=t\} > 1/2\}$
The False Discovery Process

- Define two stochastic processes as a function of threshold t: the False Discovery Proportion $\text{FDP}(t)$ and False Nondiscovery Proportion $\text{FNP}(t)$.

\[
\text{FDP}(t; P^m, H^m) = \frac{\sum_i 1\{P_i \leq t\} (1 - H_i)}{\sum_i 1\{P_i \leq t\} + 1\{\text{all } P_i > t\}} = \frac{\#\text{False Discoveries}}{\#\text{Discoveries}}
\]

\[
\text{FNP}(t; P^m, H^m) = \frac{\sum_i 1\{P_i > t\} H_i}{\sum_i 1\{P_i > t\} + 1\{\text{all } P_i \leq t\}} = \frac{\#\text{False Nondiscoveries}}{\#\text{Nondiscoveries}}
\]

- These converge to Gaussian processes away from $t = 0$.
The False Discovery Rate

● For a given procedure T, let FDP and FNP denote the value of these processes at $T(P^m)$.

● Then, the False Discovery Rate (FDR) and the False Nondiscovery Rate (FNR) are given by

$$FDR = \mathbb{E}(FDP) \quad FNR = \mathbb{E}(FNP).$$

● The BH guarantee becomes

$$FDR \leq (1 - a)\alpha \leq \alpha,$$

where the first inequality is an equality in the continuous case.
The BH Procedure Revisited

• If \(\hat{G} \) is the empirical cdf of the \(m \) p-values, \(\hat{G}(P_i) = i/m \), so

\[
T_{BH} = \max \left\{ t : \frac{t}{\alpha} \right\} = \max \left\{ t : \frac{t}{\hat{G}(t)} \leq \alpha \right\}.
\]

Note that \(\text{FDR}(t) \approx \frac{(1-a)t}{G(t)} \), so BH bounds \(\hat{\text{FDR}} \) taking \(a = 0 \).

• BH performs best in very sparse cases (\(T_0 \approx m \)); power can be improved in non-sparse cases by more complicated procedures.

• One can think of BH as a plug-in procedure for estimating

\[
u^*(a, G) = \max \left\{ t : G(t) = \frac{t}{\alpha} \right\}.
\]

• Genovese and Wasserman (2002) showed that \(T_{BH} \) converges to a fixed-threshold at \(u^* \).
In the continuous case, Benjamini and Hochberg’s argument shows that
\[
E[FDP(T_{BH}(P^m))] = (1 - a)\alpha.
\]

The BH procedure overcontrols FDR and thus will not in general minimize FNR.

This suggests using \(T_{PI} \), the plug-in estimator for
\[
t^*(a, G) = \max \left\{ t : G(t) = \frac{(1 - a)t}{\alpha} \right\}.
\]

Note that \(t^* \geq u^* \). If we knew \(a \), this would correspond to using the BH procedure with \(\alpha/(1 - a) \) in place of \(\alpha \).
Optimal Thresholds (cont’d)

- For each $0 \leq t \leq 1$,

$$E(\text{FDP}(t)) = \frac{(1-a)t}{G(t)} + O\left((1-t)^m\right)$$

$$E(\text{FNP}(t)) = a \frac{1-F(t)}{1-G(t)} + O\left((a+(1-a)t)^m\right).$$

- Ignoring $O()$ terms and choosing t to minimize $E(\text{FNP}(t))$ subject to $E(\text{FDP}(t)) \leq \alpha$, yields $t^*(a, G)$ as the optimal threshold.

- T_{PI} considered in some form by Benjamini & Hochberg (2000), Storey (2003), and Genovese and Wasserman (2003).
Selected Recent Work on FDR

Abromovich, Benjamini, Donoho, & Johnstone (2000)

Benjamini & Yekutieli (2001)

Efron, Tibshirani, & Storey, J. (2001)

Hochberg & Benjamini (1999)

Sarkar (2002)

Seigmund, Taylor, & Storey (2003)

Storey & Tibshirani (2001)

Tusher, Tibshirani, Chu (2001)

Yekutieli & Benjamini (2001)
Outstanding Issues

• Interpretation
 – How to choose α?
 – How to interpret the FDR bound?

• Dependence
 – Is positive regression dependence enough? How do we test for it?
 – BH method appears to be very hard to “break;” plug-in more sensitive to dependence.
 – Extensions of new methods to handle dependence structure.

• Spatial Structure
 – Standard multiple-testing methods ignore location information.
 – Focal regions are easier to identify than arbitrarily placed voxels.
 – Regions rather than voxels are the units of interest.
 – This is the key to much improved inference in applications like fMRI.
Monkeys exhibit visual remapping in parietal cortex. When the eyes move so that the receptive field of a neuron lands on a previously stimulated location, the neuron fires even though no stimulus is present. Implies transformation in neural representation with eye movements. (Duhamel et al. 1992)

Seek evidence for remapping in human cortex.

EPI-RT acquisition, TR 2s, TE 30ms, 20 oblique slices, 3.125mm × 3.125mm × 3mm voxels.
Road Map

1. The Multiple Testing Problem
 – The Basic Problem
 – Error Criteria

2. Controlling FDR
 – Benjamini-Hochberg and Beyond
 – Outstanding Issues
 – Data Example

3. Confidence Envelopes and Thresholds
 – Exact Confidence Envelopes for the False Discovery Proportion
 – Choice of Tests

4. False Discovery Control for Random Fields
 – Confidence Supersets and Thresholds
 – Controlling the Proportion of False Clusters
Confidence Envelopes and Thresholds

• In practice, it would be useful to be able to control quantiles of the FDP process.

• We want a procedure T that for specified A and γ guarantees

$$P_G\{\text{FDP}(T) > A\} \leq \gamma$$

We call this an $(A, 1 - \gamma)$ confidence-threshold procedure.

• Three methods: (i) asymptotic closed-form threshold, (ii) asymptotic confidence envelope, and (iii) exact small-sample confidence envelope. (See Genovese & Wasserman 2003, to appear Annals of Statistics.)

I’ll focus here on (iii).
• A $1 - \gamma$ confidence envelope for FDP is a random function $\overline{\text{FDP}}(t)$ on $[0, 1]$ such that

$$\Pr\{\text{FDP}(t) \leq \overline{\text{FDP}}(t) \text{ for all } t\} \geq 1 - \gamma.$$

• Given such an envelope, we can construct confidence thresholds. Two special cases have proven useful.

 – *Fixed-ceiling:* $T = \sup\{t: \overline{\text{FDP}}(t) \leq \alpha\}$.
 – *Minimum-envelope:* $T = \sup\{t: \overline{\text{FDP}}(t) = \min_t \overline{\text{FDP}}(t)\}$.
Exact Confidence Envelopes

• Given V_1, \ldots, V_j, let $\varphi_j(v_1, \ldots, v_j)$ be a level γ test of the null hypothesis that V_1, \ldots, V_j are IID Uniform(0, 1).

• Define $p^m_0(h^m) = (p_i: h_i = 0, \ 1 \leq i \leq m)$

$$m_0(h^m) = \sum_{i=1}^{m} (1 - h_i)$$

and $\mathcal{U}_\gamma(p^m) = \left\{ h^m \in \{0,1\}^m: \varphi_{m_0(h^m)}(p^m_0(h^m)) = 0 \right\}$. Note that as defined, \mathcal{U}_γ always contains the vector $(1,1,\ldots,1)$.

• Let

$$\mathcal{G}_\gamma(p^m) = \left\{ \text{FDP}(\cdot; h^m, p^m): h^m \in \mathcal{U}_\gamma(p^m) \right\}$$

$$\mathcal{M}_\gamma(p^m) = \left\{ m_0(h^m): h^m \in \mathcal{U}_\gamma(p^m) \right\}.$$
Exact Confidence Envelopes (cont’d)

• **Theorem.** For all $0 < a < 1$, F, and positive integers m,

\[
P\{H^m \in U_\gamma(P^m)\} \geq 1 - \gamma
\]

\[
P\{M_0 \in M_\gamma(P^m)\} \geq 1 - \gamma
\]

\[
P\{\text{FDP}(\cdot; H^m, P^m) \in G_\gamma\} \geq 1 - \gamma.
\]

• Define FDP to be the pointwise supremum over G_γ. This is a $1 - \gamma$ confidence envelope for FDP.

• Confidence thresholds follow directly. For example,

\[
T_\alpha = \sup \left\{ t : \text{FDP}(t) \leq \alpha \right\}
\]

is an $(\alpha, 1 - \gamma)$ confidence threshold.
Choice of Tests

- The confidence envelopes depend strongly on choice of tests.

- Two desiderata for selecting uniformity tests:
 - “Power”, such that FDP is close to FDP, and
 - Computability, given that there are 2^m subsets to test.

- Want an automatic way to choose a good test

- Traditional uniformity tests, such as the (one-sided) Kolmogorov-Smirnov (KS) test, do not usually meet both conditions.
 For example, the KS test is sensitive to deviations from uniformity equally through all the p-values.
The $P_{(k)}$ Tests

- In contrast, using the kth order statistic as a one-sided test statistic meets both desiderata.
 - For small k, these are sensitive to departures that have a large impact on FDP. Good “power.”
 - Computing the confidence envelopes is linear in m.

- We call these the $P_{(k)}$ tests.
 They form a sub-family of weighted, one-sided KS tests.
Results: $P_{(k)}$ 90% Confidence Envelopes

For $k = 1, 10, 25, 50, 100$, with 0.05 FDP level marked.
Results: $P_{(k)}$ 90% Modified Envelopes

For $k = 1, 10, 25, 50, 100$, with 0.05 FDP level marked.

[Graph showing FDP vs. p-value threshold]
Results: (0.05,0.9) Confidence Threshold
Results: (0.05,0.9) Threshold versus BH
Results: (0.05,0.9) Threshold versus Bonferroni
Choosing k

- **Direct Approach**

 Simulate from prior family, such as Normal(θ, 1), Noncentral $t(\theta)$, or mixtures of these.

 Compute the optimal k, $k^*(\theta, m)$.

- **Data-dependent approaches**

 - Estimate a and F, and simulate from corresponding mixture.

 - Parametric estimate $k^*(\hat{\theta}, m)$.

 - Solve for optimal k distribution using smoothed estimate of G.

The data-dependence only has a small effect on coverage.
Results: Direct versus Fitting Approach
Road Map

1. The Multiple Testing Problem
 – The Basic Problem
 – Error Criteria

2. Controlling FDR
 – Benjamini-Hochberg and Beyond
 – Outstanding Issues
 – Data Example

3. Confidence Envelopes and Thresholds
 – Exact Confidence Envelopes for the False Discovery Proportion
 – Choice of Tests

4. False Discovery Control for Random Fields
 – Confidence Supersets and Thresholds
 – Controlling the Proportion of False Clusters
False Discovery Control for Random Fields

• Multiple testing methods based on the excursions of random fields are widely used, especially in functional neuroimaging (e.g., Cao and Worsley, 1999) and scan clustering (Glaz, Naus, and Wallenstein, 2001).

• False Discovery Control extends to this setting as well.

• For a set \(S \) and a random field \(X = \{X(s) : s \in S\} \) with mean function \(\mu(s) \), use the realized value of \(X \) to test the collection of one-sided hypotheses

\[H_{0,s} : \mu(s) = 0 \text{ versus } H_{1,s} : \mu(s) > 0. \]

Let \(S_0 = \{ s \in S : \mu(s) = 0 \} \).
False Discovery Control for Random Fields

• Define a spatial version of FDP by

\[FDP(t) = \frac{\lambda(S_0 \cap \{ s \in S : X(s) \geq t \})}{\lambda(\{ s \in S : X(s) \geq t \})}, \]

where \(\lambda \) is usually Lebesgue measure.

• As in the cases discussed earlier, we can control FDR or quantiles of FDP.

• Our approach is again based on constructing a confidence envelope for FDP by finding a confidence superset \(U \) of \(S_0 \).
Confidence Supersets and Envelopes

1. For every $A \subset S$, test $H_0 : A \subset S_0$ versus $H_1 : A \not\subset S_0$ at level γ using the test statistic $X(A) = \sup_{s \in A} X(s)$.

 The tail area for this statistic is $p(z,A) = P\{X(A) \geq z\}$.

2. Let $C = \{A \subset S: p(x(A), A) \geq \gamma\}$.

3. Then, $U = \bigcup_{A \in C} A$ satisfies $P\{U \supset S_0\} \geq 1 - \gamma$.

4. And,

 $$\text{FDP}(t) = \frac{\lambda(U \cap \{s \in S : X(s) > t\})}{\lambda(\{s \in S : X(s) > t\})},$$

 is a confidence envelope for FDP.

Note: We need not carry out the tests for all subsets.
Gaussian Fields

• With Gaussian Fields, our procedure works under similar smoothness assumptions as familywise random-field methods.

• For our purposes, approximation based on the expected Euler characteristic of the field’s level sets will not work because the Euler characteristic is non-monotone for non-convex sets. (Note also that for non-convex sets, not all terms in the Euler approximation are accurate.)

• Instead we use a result of Piterbarg (1996) to approximate the p-values $p(z, A)$.

• Simulations over a wide variety of S_0s and covariance structures show that coverage of U rapidly converges to the target level.
Results: (0.05,0.9) Confidence Threshold

- Frontal Eye Field
- Supplementary Eye Field
- Inferior Prefrontal
- Superior Parietal
- Temporal-parietal junction
- Extrastriate Visual Cortex
Controlling the Proportion of False Regions

- Say a region R is false at tolerance ϵ if more than an ϵ proportion of its area is in S_0:
 \[
 \frac{\lambda(R \cap S_0)}{\lambda(R)} \geq \epsilon.
 \]

- Decompose the t-level set of X into its connected components C_{t1}, \ldots, C_{tk_t}.

- For each level t, let $\xi(t)$ denote the proportion of false regions (at tolerance ϵ) out of k_t regions.

- Then,
 \[
 \bar{\xi}(t) = \frac{\# \left\{ 1 \leq i \leq k_t : \frac{\lambda(C_{ti} \cap U)}{\lambda(C_{ti})} \geq \epsilon \right\}}{k_t}
 \]
gives a $1 - \gamma$ confidence envelope for ξ.
Results: False Region Control Threshold

\[P\{\text{prop’n false regions} \leq 0.1\} \geq 0.95 \text{ where false means null overlap } \geq 10\% \]
Take-Home Points

• Confidence thresholds have practical advantages for False Discovery Control.
 In particular, we gain a stronger inferential guarantee with little effective loss of power.

• Dependence complicates the analysis greatly, but confidence envelopes appear to be valid under positive dependence.

• For spatial applications, adjacency relations can be highly informative but are typically ignored by multiple-testing methods. Controlling proportion of false regions is a first step.
 Region-based false discovery control (work in progress) is the next step.