
Chapter 3

Review of Probability
A review of the portions of probability useful for understanding experimental design
and analysis.

The material in this section is intended as a review of the topic of probability
as covered in the prerequisite course (36-201 at CMU). The material in gray boxes
is beyond what you may have previously learned, but may help the more math-
ematically minded reader to get a deeper understanding of the topic. You need
not memorize any formulas or even have a firm understanding of this material at
the start of the class. But I do recommend that you at least skim through the
material early in the semester. Later, you can use this chapter to review concepts
that arise as the class progresses.

For the earliest course material, you should have a basic idea of what a random
variable and a probability distribution are, and how a probability distribution
defines event probabilities. You also need to have an understanding of the concepts
of parameter, population, mean, variance, standard deviation, and correlation.

3.1 Definition(s) of probability

We could choose one of several technical definitions for probability, but for our
purposes it refers to an assessment of the likelihood of the various possible outcomes
in an experiment or some other situation with a “random” outcome.

Note that in probability theory the term “outcome” is used in a more general
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sense than the outcome vs. explanatory variable terminology that is used in the
rest of this book. In probability theory the term “outcome” applies not only
to the “outcome variables” of experiments but also to “explanatory variables”
if their values are not fixed. For example, the dose of a drug is normally fixed
by the experimenter, so it is not an outcome in probability theory, but the age
of a randomly chosen subject, even if it serves as an explanatory variable in an
experiment, is not “fixed” by the experimenter, and thus can be an “outcome”
under probability theory.

The collection of all possible outcomes of a particular random experiment (or
other well defined random situation) is called the sample space, usually abbrevi-
ated as S or Ω (omega). The outcomes in this set (list) must be exhaustive (cover
all possible outcomes) and mutually exclusive (non-overlapping), and should be as
simple as possible.

For a simple example consider an experiment consisting of the tossing of a six
sided die. One possible outcome is that the die lands with the side with one dot
facing up. I will abbreviate this outcome as 1du (one dot up), and use similar
abbreviations for the other five possible outcomes (assuming it can’t land on an
edge or corner). Now the sample space is the set {1du, 2du, 3du, 4du, 5du, 6du}.
We use the term event to represent any subset of the sample space. For example
{1du}, {1du, 5du}, and {1du, 3du, 5du}, are three possible events, and most
people would call the third event “odd side up”. One way to think about events
is that they can be defined before the experiment is carried out, and they either
occur or do not occur when the experiment is carried out. In probability theory
we learn to compute the chance that events like “odd side up” will occur based on
assumptions about things like the probabilities of the elementary outcomes in the
sample space.

Note that the “true” outcome of most experiments is not a number, but a physi-
cal situation, e.g., “3 dots up” or “the subject chose the blue toy”. For convenience
sake, we often “map” the physical outcomes of an experiment to integers or real
numbers, e.g., instead of referring to the outcomes 1du to 6du, we can refer to the
numbers 1 to 6. Technically, this mapping is called a random variable, but more
commonly and informally we refer to the unknown numeric outcome itself (before
the experiment is run) as a “random variable”. Random variables commonly are
represented as upper case English letters towards the end of the alphabet, such as
Z, Y or X. Sometimes the lower case equivalents are used to represent the actual
outcomes after the experiment is run.
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Random variables are maps from the sample space to the real numbers, but
they need not be one-to-one maps. For example, in the die experiment we could
map all of the outcomes in the set {1du, 3du, 5du} to the number 0 and all of
the outcomes in the set {2du, 4du, 6du} to the number 1, and call this random
variable Y. If we call the random variable that maps to 1 through 6 as X, then
random variable Y could also be thought of as a map from X to Y where the
odd numbers of X map to 0 in Y and the even numbers to 1. Often the term
transformation is used when we create a new random variable out of an old one
in this way. It should now be obvious that many, many different random variables
can be defined/invented for a given experiment.

A few more basic definitions are worth learning at this point. A random variable
that takes on only the numbers 0 and 1 is commonly referred to as an indicator
(random) variable. It is usually named to match the set that corresponds to the
number 1. So in the previous example, random variable Y is an indicator for even
outcomes. For any random variable, the term support is used to refer to the set
of possible real numbers defined by the mapping from the physical experimental
outcomes to the numbers. Therefore, for random variables we use the term “event”
to represent any subset of the support.

Ignoring certain technical issues, probability theory is used to take a basic
set of assigned (or assumed) probabilities and use those probabilities (possibly
with additional assumptions about something called independence) to compute
the probabilities of various more complex events.

The core of probability theory is making predictions about the chances
of occurrence of events based on a set of assumptions about the un-
derlying probability processes.

One way to think about probability is that it quantifies how much we can
know when we cannot know something exactly. Probability theory is deductive,
in the sense that it involves making assumptions about a random (not completely
predictable) process, and then deriving valid statements about what is likely to
happen based on mathematical principles. For this course a fairly small number
of probability definitions, concepts, and skills will suffice.
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For those students who are unsatisfied with the loose definition of prob-
ability above, here is a brief descriptions of three different approaches to
probability, although it is not necessary to understand this material to
continue through the chapter. If you want even more detail, I recommend
Comparative Statistical Inference by Vic Barnett.

Valid probability statements do not claim what events will happen, but
rather which are likely to happen. The starting point is sometimes a judg-
ment that certain events are a priori equally likely. Then using only the
additional assumption that the occurrence of one event has no bearing on
the occurrence of another separate event (called the assumption of inde-
pendence), the likelihood of various complex combinations of events can
be worked out through logic and mathematics. This approach has logical
consistency, but cannot be applied to situations where it is unreasonable
to assume equally likely outcomes and independence.

A second approach to probability is to define the probability of an
outcome as the limit of the long-term fraction of times that outcome occurs
in an ever-larger number of independent trials. This allows us to work
with basic events that are not equally likely, but has a disadvantage that
probabilities are assigned through observation. Nevertheless this approach
is sufficient for our purposes, which are mostly to figure out what would
happen if certain probabilities are assigned to some events.

A third approach is subjective probability, where the probabilities of
various events are our subjective (but consistent) assignments of proba-
bility. This has the advantage that events that only occur once, such as
the next presidential election, can be studied probabilistically. Despite
the seemingly bizarre premise, this is a valid and useful approach which
may give different answers for different people who have different beliefs,
but still helps calculate your rational but personal probability of future
uncertain events, given your prior beliefs.

Regardless of which definition of probability you use, the calculations we need
are basically the same. First we need to note that probability applies to some
well-defined unknown or future situation in which some outcome will occur, the
list of possible outcomes is well defined, and the exact outcome is unknown. If the
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outcome is categorical or discrete quantitative (see section 2.3), then each possible
outcome gets a probability in the form of a number between 0 and 1 such that
the sum of all of the probabilities is 1. This indicates that impossible outcomes
are assigned probability zero, but assigning a probability zero to an event does
not necessarily mean that that outcome is impossible (see below). (Note that a
probability is technically written as a number from 0 to 1, but is often converted
to a percent from 0% to 100%. In case you have forgotten, to convert to a percent
multiply by 100, e.g., 0.25 is 25% and 0.5 is 50% and 0.975 is 97.5%.)

Every valid probability must be a number between 0 and 1 (or a
percent between 0% and 100%).

We will need to distinguish two types of random variables. Discrete random
variables correspond to the categorical variables plus the discrete quantitative vari-
ables of chapter 2. Their support is a (finite or infinite) list of numeric outcomes,
each of which has a non-zero probability. (Here we will loosely use the term “sup-
port” not only for the numeric outcomes of the random variable mapping, but also
for the sample space when we do not explicitly map an outcome to a number.) Ex-
amples of discrete random variables include the result of a coin toss (the support
using curly brace set notation is {H,T}), the number of tosses out of 5 that are
heads ({0, 1, 2, 3, 4, 5}), the color of a random person’s eyes ({blue, brown, green,
other}), and the number of coin tosses until a head is obtained ({1, 2, 3, 4, 5, . . .}).
Note that the last example has an infinite sized support.

Continuous random variables correspond to the continuous quantitative vari-
ables of chapter 2. Their support is a continuous range of real numbers (or rarely
several disconnected ranges) with no gaps. When working with continuous random
variables in probability theory we think as if there is no rounding, and each value
has an infinite number of decimal places. In practice we can only measure things to
a certain number of decimal places, actual measurement of the continuous variable
“length” might be 3.14, 3.15, etc., which does have gaps. But we approximate this
with a continuous random variable rather than a discrete random variable because
more precise measurement is possible in theory.

A strange aspect of working with continuous random variables is that each
particular outcome in the support has probability zero, while none is actually
impossible. The reason each outcome value has probability zero is that otherwise
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the probabilities of all of the events would add up to more than 1. So for continuous
random variables we usually work with intervals of outcomes to say, e.g, that the
probability that an outcome is between 3.14 and 3.15 might be 0.02 while each
real number in that range, e.g., π (exactly), has zero probability. Examples of
continuous random variables include ages, times, weights, lengths, etc. All of
these can theoretically be measured to an infinite number of decimal places.

It is also possible for a random variable to be a mixture of discrete
and continuous random variables, e.g., if an experiment is to flip a coin
and report 0 if it is heads and the time it was in the air if it is tails, then
this variable is a mixture of the discrete and continuous types because
the outcome “0” has a non-zero (positive) probability, while all positive
numbers have a zero probability (though intervals between two positive
numbers would have probability greater than zero.)

3.2 Probability mass functions and density func-

tions

.

A probability mass function (pmf) is just a full description of the possi-
ble outcomes and their probabilities for some discrete random variable. In some
situations it is written in simple list form, e.g.,

f(x) =


0.25 if x = 1
0.35 if x = 2
0.40 if x = 3

where f(x) is the probability that random variable X takes on value x, with f(x)=0
implied for all other x values. We can see that this is a valid probability distribution
because each probability is between 0 and 1 and the sum of all of the probabilities
is 1.00. In other cases we can use a formula for f(x), e.g.
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f(x) =

(
4!

(4− x)! x!

)
px(1− p)4−x for x = 0, 1, 2, 3, 4

which is the so-called binomial distribution with parameters 4 and p.

It is not necessary to understand the mathematics of this formula for this
course, but if you want to try you will need to know that the exclamation mark
symbol is pronounced “factorial” and r! represents the product of all the integers
from 1 to r. As an exception, 0! = 1.

This particular pmf represents the probability distribution for getting x “suc-
cesses” out of 4 “trials” when each trial has a success probability of p independently.
This formula is a shortcut for the five different possible outcome values. If you
prefer you can calculate out the five different probabilities and use the first form
for the pmf. Another example is the so-called geometric distribution, which repre-
sents the outcome for an experiment in which we count the number of independent
trials until the first success is seen. The pmf is:

f(x) = p(1− p)x−1 for x = 1, 2, 3, . . .

and it can be shown that this is a valid distribution with the sum of this infinitely
long series equal to 1.00 for any value of p between 0 and 1. This pmf cannot be
written in the list form. (Again the mathematical details are optional.)

By definition a random variable takes on numeric values (i.e., it maps real
experimental outcomes to numbers). Therefore it is easy and natural to think
about the pmf of any discrete continuous experimental variable, whether it is
explanatory or outcome. For categorical experimental variables, we do not need to
assign numbers to the categories, but we always can do that, and then it is easy
to consider that variable as a random variable with a finite pmf. Of course, for
nominal categorical variables the order of the assigned numbers is meaningless, and
for ordinal categorical variables it is most convenient to use consecutive integers
for the assigned numeric values.

Probability mass functions apply to discrete outcomes. A pmf is just
a list of all possible outcomes for a given experiment and the proba-
bilities for each outcome.
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For continuous random variables, we use a somewhat different method for sum-
marizing all of the information in a probability distribution. This is the proba-
bility density function (pdf), usually represented as “f(x)”, which does not
represent probabilities directly but from which the probability that the outcome
falls in a certain range can be calculated using integration from calculus. (If you
don’t remember integration from calculus, don’t worry, it is OK to skip over the
details.)

One of the simplest pdf’s is that of the uniform distribution, where all
real numbers between a and b are equally likely and numbers less than a
or greater than b are impossible. The pdf is:

f(x) = 1/(b− a) for a ≤ x ≤ b

The general probability formula for any continuous random variable is

Pr(t ≤ X ≤ u) =
∫ u

t
f(x)dx.

In this formula
∫
· dx means that we must use calculus to carry out inte-

gration.

Note that we use capital X for the random variable in the probability
statement because this refers to the potential outcome of an experiment
that has not yet been conducted, while the formulas for pdf and pmf use
lower case x because they represent calculations done for each of several
possible outcomes of the experiment. Also note that, in the pdf but not
the pmf, we could replace either or both ≤ signs with < signs because
the probability that the outcome is exactly equal to t or u (to an infinite
number of decimal places) is zero.

So for the continuous uniform distribution, for any a ≤ t ≤ u ≤ b,

Pr(t ≤ X ≤ u) =
∫ u

t

1

b− a
dx =

u− t
b− a

.

You can check that this always gives a number between 0 and 1, and
the probability of any individual outcome (where u=t) is zero, while the
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probability that the outcome is some number between a and b is 1 (u=a,
t=b). You can also see that, e.g., the probability that X is in the middle
third of the interval from a to b is 1

3
, etc.

Of course, there are many interesting and useful continuous distribu-
tions other than the continuous uniform distribution. Some other examples
are given below. Each is fully characterized by its probability density func-
tion.

3.2.1 Reading a pdf

In general, we often look at a plot of the probability density function, f(x), vs. the
possible outcome values, x. This plot is high in the regions of likely outcomes and
low in less likely regions. The well-known standard Gaussian distribution (see 3.2)
has a bell-shaped graph centered at zero with about two thirds of its area between
x = -1 and x = +1 and about 95% between x = -2 and x = +2. But a pdf can
have many different shapes.

It is worth understanding that many pdf’s come in “families” of similarly
shaped curves. These various curves are named or “indexed” by one or more num-
bers called parameters (but there are other uses of the term parameter; see section
3.5). For example that family of Gaussian (also called Normal) distributions is
indexed by the mean and variance (or standard deviation) of the distribution. The
t-distributions, which are all centered at 0, are indexed by a single parameter called
the degrees of freedom. The chi-square family of distributions is also indexed by a
single degree of freedom value. The F distributions are indexed by two degrees of
freedom numbers designated numerator and denominator degrees of freedom.

In this course we will not do any integration. We will use tables or a computer
program to calculate probabilities for continuous random variables. We don’t even
need to know the formula of the pdf because the most commonly used formulas
are known to the computer by name. Sometimes we will need to specify degrees of
freedom or other parameters so that the computer will know which pdf of a family
of pdf’s to use.

Despite our heavy reliance on the computer, getting a feel for the idea of a
probability density function is critical to the level of understanding of data analysis
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and interpretation required in this course. At a minimum you should realize that a
pdf is a curve with outcome values on the horizontal axis and the vertical height of
the curve tells which values are likely and which are not. The total area under the
curve is 1.0, and the under the curve between any two “x” values is the probability
that the outcome will fall between those values.

For continuous random variables, we calculate the probability that the
outcome falls in some interval, not that the outcome exactly equals
some value. This calculation is normally done by a computer program
which uses integral calculus on a “probability density function.”

3.3 Probability calculations

This section reviews the most basic probability calculations. It is worthwhile,
but not essential to become familiar with these calculations. For many readers,
the boxed material may be sufficient. You won’t need to memorize any of these
formulas for this course.

Remember that in probability theory we don’t worry about where probability
assignments (a pmf or pdf) come from. Instead we are concerned with how to
calculate other probabilities given the assigned probabilities. Let’s start with cal-
culation of the probability of a “complex” or “compound” event that is constructed
from the simple events of a discrete random variable.

For example, if we have a discrete random variable that is the number of cor-
rect answers that a student gets on a test of 5 questions, i.e. integers in the set
{0, 1, 2, 3, 4, 5}, then we could be interested in the probability that the student gets
an even number of questions correct, or less than 2, or more than 3, or between
3 and 4, etc. All of these probabilities are for outcomes that are subsets of the
sample space of all 6 possible “elementary” outcomes, and all of these are the union
(joining together) of some of the 6 possible “elementary” outcomes. In the case
of any complex outcome that can be written as the union of some other disjoint
(non-overlapping) outcomes, the probability of the complex outcome is the sum of
the probabilities of the disjoint outcomes. To complete this example look at Table
3.1 which shows assigned probabilities for the elementary outcomes of the random
variable we will call T (the test outcome) and for several complex events.
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Event Probability Calculation
T=0 0.10 Assigned
T=1 0.26 Assigned
T=2 0.14 Assigned
T=3 0.21 Assigned
T=4 0.24 Assigned
T=5 0.05 Assigned
T∈ {0, 2, 4} 0.48 0.10+0.14+0.24
T<2 0.36 0.10+0.26
T≤2 0.50 0.10+0.26+0.14
T≤4 0.29 0.24+0.05
T≥0 1.00 0.10+0.26+0.14+0.21+0.24+0.05

Table 3.1: Disjoint Addition Rule

You should think of the probability of a complex event such as T<2, usually
written as Pr(T<2) or P(T<2), as being the chance that, when we carry out a
random experiment (e.g., test a student), the outcome will be any one of the out-
comes in the defined set (0 or 1 in this case). Note that (implicitly) outcomes
not mentioned are impossible, e.g., Pr(T=17) = 0. Also something must happen:
Pr(T≥0) = 1.00 or Pr(T ∈ {0, 1, 2, 3, 4, 5}) = 1.00. It is also true that the prob-
ability that nothing happens is zero: Pr(T ∈ φ) = 0, where φ means the “empty
set”.

Calculate the probability that any of several non-overlapping events
occur in a single experiment by adding the probabilities of the indi-
vidual events.

The addition rule for disjoint unions is really a special case of the general rule
for the probability that the outcome of an experiment will fall in a set that is the
union of two other sets. Using the above 5-question test example, we can define
event E as the set {T : 1 ≤ T ≤ 3} read as all values of outcome T such that 1 is
less than or equal to T and T is less than or equal to 3. Of course E = {1, 2, 3}.
Now define F = {T : 2 ≤ T ≤ 4} or F = {2, 3, 4}. The union of these sets, written
E ∪ F is equal to the set of outcomes {1, 2, 3, 4}. To find Pr(E ∪ F ) we could try
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adding Pr(E) + Pr(F), but we would be double counting the elementary events in
common to the two sets, namely {2} and {3}, so the correct solution is to add first,
and then subtract for the double counting. We define the intersection of two sets
as the elements that they have in common, and use notation like E ∩ F = {2, 3}
or, in situations where there is no chance of confusion, just EF = {2, 3}. Then
the rule for the probability of the union of two sets is:

Pr(E ∪ F ) = Pr(E) + Pr(F )− Pr(E ∩ F ).

For our example, Pr(E F) = 0.61 + 0.59 - 0.35 = 0.85, which matches the direct
calculation Pr({1, 2, 3, 4}) = 0.26 + 0.14 + 0.21 + 0.24. It is worth pointing out
again that if we get a result for a probability that is not between 0 and 1, we are
sure that we have made a mistake!

Note that it is fairly obvious that PrA ∩B = PrB ∩ A because A∩B = B∩A,
i.e., the two events are equivalent sets. Also note that there is a complicated general
formula for the probability of the union of three or more events, but you can just
apply the two event formula, above, multiple times to get the same answer.

If two events overlap, calculate the probability that either event occurs
as the sum of the individual event probabilities minus the probability
of the overlap.

Another useful rule is based on the idea that something in the sample space
must happen and on the definition of the complement of a set. The complement
of a set, say E, is written Ec and is a set made of all of the elements of the sample
space that are not in set E. Using the set E above, Ec = {0, 4, 5}. The rule is:

Pr(Ec) = 1− Pr(E).

In our example, Pr {0, 4, 5} = 1− Pr {1, 2, 3} = 1− 0.61 = 0.39.

Calculate the probability that an event will not occur as 1 minus the
probability that it will occur.
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Another important concept is conditional probability. At its core, con-
ditional probability means reducing the pertinent sample space. For instance we
might want to calculate the probability that a random student gets an odd number
of questions correct while ignoring those students who score over 4 points. This is
usually described as finding the probability of an odd number given T ≤ 4. The
notation is Pr(T is odd|T ≤ 4) , where the vertical bar is pronounced “given”.
(The word “given” in a probability statement is usually a clue that conditional
probability is being used.) For this example we are excluding the 5% of students
who score a perfect 5 on the test. Our new sample space must be “renormalized”
so that its probabilities add up to 100%. We can do this by replacing each prob-
ability by the old probability divided by the probability of the reduced sample
space, which in this case is (1-0.05)=0.95. Because the old probabilities of the
elementary outcomes in the new set of interest, {0, 1, 2, 3, 4}, add up to 0.95, if
we divide each by 0.95 (making it bigger), we get a new set of 5 (instead of 6)
probabilities that add up to 1.00. We can then use these new probabilities to find
that the probability of interest is 0.26/0.95 + 0.21/0.95 = 0.495.

Or we can use a new probability rule:

Pr(E|F ) =
Pr(E ∩ F )

Pr(F )
.

In our current example, we have

Pr (T ∈ {1, 3, 5}|T ≤ 4) =
Pr(T ∈ {1, 3, 5} ∩ T ≤ 4)

Pr(T ≤ 4)

=
Pr(T ) ∈ {1, 3}
1− Pr(T = 5)

=
0.26 + 0.21

0.95
= 0.495

If we have partial knowledge of an outcome or are only interested in
some selected outcomes, the appropriate calculations require use of
the conditional probability formulas, which are based on using a new,
smaller sample space.

The next set of probability concepts relates to independence of events. (Some-
times students confuse disjoint and independent; be sure to keep these concepts
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separate.) Two events, say E and F, are independent if the probability that event
E happens, Pr(E), is the same whether or not we condition on event F happening.
That is Pr(E) = Pr(E|F ). If this is true then it is also true that Pr(F ) = Pr(F |E).
We use the term marginal probability to distinguish a probability like Pr(E)
that is not conditional on some other probability. The marginal probability of E
is the probability of E ignoring the outcome of F (or any other event). The main
idea behind independence and its definition is that knowledge of whether or not F
occurred does not change what we know about whether or not E will occur. It is
in this sense that they are independent of each other.

Note that independence of E and F also means that Pr(E∩F) = Pr(E)Pr(F),
i.e., the probability that two independent events both occur is the product of the
individual (marginal) probabilities.

Continuing with our five-question test example, let event A be the event that
the test score, T, is greater than or equal to 3, i.e., A={3, 4, 5}, and let B be the
event that T is even. Using the union rule (for disjoint elements or sets) Pr(A)
= 0.21 + 0.24 + 0.05 = 0.50, and Pr(B) = 0.10 + 0.14 + 0.24 = 0.48. From the
conditional probability formula

Pr(A|B) =
Pr(A ∩B)

Pr(B)
=

Pr(T = 4)

Pr(B)
=

0.24

0.48
= 0.50

and

Pr(B|A) =
Pr(B ∩ A)

Pr(A)
=

Pr(T = 4)

Pr(A)
=

0.24

0.50
= 0.48.

Since Pr(A|B) = Pr(A) and Pr(B|A) = Pr(B), events A and B are indepen-
dent. We therefore can calculate that Pr(AB) = Pr(T=4) = Pr(A) Pr(B) = 0.50
(0.48) = 0.24 (which we happened to already know in this example).

If A and B are independent events, then we can calculate the probability of
their intersection as the product of the marginal probabilities. If they are not
independent, then we can calculate the probability of the intersection from an
equation that is a rearrangement of the conditional probability formula:

Pr(A ∩B) = Pr(A|B)Pr(B) or Pr(A ∩B) = Pr(B|A)Pr(A).

For our example, one calculation we can make is
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Pr(T is even ∩ T < 2) = Pr(T is even|T < 2)Pr(T < 2)

= [0.10/(0.10 + 0.26)] · (0.10 + 0.26) = 0.10.

Although this is not the easiest way to calculate Pr(T is even|T < 2) for this prob-
lem, the small bag of tricks described in the chapter come in very handy for making
certain calculations when only certain pieces of information are conveniently ob-
tained.

A contrasting example is to define event G={0, 2, 4}, and let H={2, 3, 4}. Then
G∩H={2, 4}. We can see that Pr(G)=0.48 and Pr(H)=0.59 and Pr(G∩H)=0.38.
From the conditional probability formula

Pr(G|H) =
Pr(G ∩H)

Pr(H)
=

0.38

0.59
= 0.644.

So, if we have no knowledge of the random outcome, we should say there is a
48% chance that T is even. But if we have the partial outcome that T is between 2
and 4 inclusive, then we revise our probability estimate to a 64.4% chance that T is
even. Because these probabilities differ, we can say that event G is not independent
of event H. We can “check” our conclusion by verifying that the probability of G∩H
(0.38) is not the product of the marginal probabilities, 0.48 · 0.59 = 0.2832.

Independence also applies to random variables. Two random variables are
independent if knowledge of the outcome of one does not change the (conditional)
probability of the other. In technical terms, if Pr (X|Y = y) = Pr (X) for all
values of y, then X and Y are independent random variables. If two random
variables are independent, and if you consider any event that is a subset of the X
outcomes and any other event that is a subset of the Y outcomes, these events will
be independent.
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At an intuitive level, events are independent if knowledge that one
event has or has not occurred does not provide new information about
the probability of the other event. Random variables are independent
if knowledge of the outcome of one does not provide new information
about the probabilities of the various outcomes of the other. In most
experiments it is reasonable to assume that the outcome for any one
subject is independent of the outcome of any other subject. If two
events are independent, the probability that both occur is the product
of the individual probabilities.

3.4 Populations and samples

In the context of experiments, observational studies, and surveys, we make our
actual measurements on individual observational units . These are commonly
people (subjects, participants, etc.) in the social sciences, but can also be schools,
social groups, economic entities, archaeological sites, etc. (In some complicated
situations we may make measurements at multiple levels, e.g., school size and stu-
dents’ test scores, which makes the definition of experimental units more complex.)

We use the term population to refer to the entire set of actual or potential
observational units. So for a study of working memory, we might define the pop-
ulation as all U.S. adults, as all past present and future human adults, or we can
use some other definition. In the case of, say, the U.S. census, the population is
reasonably well defined (although there are problems, referred to in the census
literature as “undercount”) and is large, but finite. For experiments, the definition
of population is often not clearly defined, although such a definition can be very
important. See section 8.3 for more details. Often we consider such a population to
be theoretically infinite, with no practical upper limit on the number of potential
subjects we could test.

For most studies (other than a census), only a subset of all of the possible
experimental units of the population are actually selected for study, and this is
called the sample (not to be confused with sample space). An important part
of the understanding of the idea of a sample is to realize that each experiment
is conducted on a particular sample, but might have been conducted on many
other different samples. For theoretically correct inference, the sample should be
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randomly selected from the population. If this is not true, we call the sample a
convenience sample, and we lose many of the theoretical properties required for
correct inference.

Even though we must use samples in science, it is very important to remember
that we are interested in learning about populations, not samples. Inference from
samples to populations is the goal of statistical analysis.

3.5 Parameters describing distributions

As mentioned above, the probability distribution of a random variable (pmf for
a discrete random variable or pdf for a continuous random variable) completely
describes its behavior in terms of the chances that various events will occur. It
is also useful to work with certain fixed quantities that either completely char-
acterize a distribution within a family of distributions or otherwise convey useful
information about a distribution. These are called parameters. Parameters are
fixed quantities that characterize theoretical probability distributions. (I am using
the term “theoretical distribution” to focus on the fact that we are assuming a
particular mathematical form for the pmf or pdf.)

The term parameter may be somewhat confusing because it is used in several
slightly different ways. Parameters may refer to the fixed constants that appear
in a pdf or pmf. Note that these are somewhat arbitrary because the pdf or pmf
may often be rewritten (technically, re-parameterized) in several equivalent forms.
For example, the binomial distribution is most commonly written in terms of a
probability, but can just as well be written in terms of odds.

Another related use of the term parameter is for a summary measure of a
particular (theoretical) probability distribution. These are most commonly in the
form of expected values. Expected values can be thought of as long-run averages
of a random variable or some computed quantity that includes the random variable.
For discrete random variables, the expected value is just a probability weighted
average, i.e., the population mean. For example, if a random variable takes on
(only) the values 2 and 10 with probabilities 5/6 and 1/6 respectively, then the
expected value of that random variable is 2(5/6)+10(1/6)=20/6. To be a bit more
concrete, if someone throws a die each day and gives you $10 if 5 comes up and $2
otherwise, then over n days, where n is a large number, you will end up with very
close to $20·n

6
, or about $3.67(n).
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The notation for expected value is E[·] or E(·) where, e.g., E[X] is read as
“expected value of X” and represents the population mean of X. Other parameters
such as variance, skewness and kurtosis are also expected values, but of expressions
involving X rather than of X itself.

The more general formula for expected value is

E[g(X)] =
k∑
i=1

g(xi)pi =
k∑
i=1

g(xi)f(xi)

where E[·] or E(·) represents “expected value”, g(X) is any function of the
random variable X, k (which may be infinity) is the number of values of X
with non-zero probability, the xi values are the different values of X, and
the pi values (or equivalently, f(xi)) are the corresponding probabilities.
Note that it is possible to define g(X) = X, i.e., g(xi) = xi, to find E(X)
itself.

The corresponding formula for expected value of a continuous random
variable is

E[g(X)] =
∫ ∞
−∞

g(x)f(x)dx.

Of course if the support is smaller than the entire real line, the pdf is zero
outside of the support, and it is equivalent to write the integration limits
as only over the support.

To help you think about this concept, consider a discrete random vari-
able, say W , with values -2, -1, and 3 with probabilities 0.5, 0.3, 0.2 re-
spectively. E(W ) = −2(0.5) − 1(0.3) + 3(0.2) = −0.7. What is E(W 2)?
This is equivalent to letting g(W ) = W 2 and finding E(g(W )) = E(W 2).
Just calculate W 2 for each W and take the weighted average: E(W 2) =
4(0.5) + 1(0.3) + 9(0.2) = 4.1. It is also equivalent to define, say, U = W 2.
Then we can express f(U) as U has values 4, 1, and 9 with probabilities
0.5, 0.3, and 0.2 respectively. Then E(U) = 4(0.5) + 1(0.3) + 9(0.2) = 4.1,
which is the same answer.

Different parameters are generated by using different forms of g(x).
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Name Definition Symbol

mean E[X] µ

variance E[(X − µ)2] σ2

standard deviation
√
σ2 σ

skewness E[(X − µ)3]/σ3 γ1

kurtosis E[(X − µ)4]/σ4 − 3 γ2

Table 3.2: Common parameters and their definitions as expected values.

You will need to become familiar with several parameters that are used to
characterize theoretical population distributions. Technically, many of these are
defined using the expected value formula (optional material) with the expressions
shown in table 3.2. You only need to become familiar with the names and symbols
and their general meanings, not the “Definition” column. Note that the symbols
shown are the most commonly used ones, but you should not assume that these
symbol always represents the corresponding parameters or vice versa.

3.5.1 Central tendency: mean and median

The central tendency refers to ways of specifying where the “middle” of a prob-
ability distribution lies. Examples include the mean and median parameters. The
mean (expected value) of a random variable can be thought of as the “balance
point” of the distribution if the pdf is cut out of cardboard. Or if the outcome is
some monetary payout, the mean is the appropriate amount to bet to come out
even in the long term. Another interpretation of mean is the “fair distribution of
outcome” in the sense that if we sample many values and think of them as one
outcome per subject, the mean is result of a fair redistribution of whatever the
outcome represents among all of the subjects. On the other hand, the median is
the value that splits the distribution in half so that there is a 50/50 chance of a
random value from the distribution occurring above or below the median.
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The median has a more technical definition that applies even in some
less common situations such as when a distribution does not have a single
unique median. The median is any m such that P(X ≤ m) ≥ 1

2
and P(X ≥

m) ≥ 1
2
.

3.5.2 Spread: variance and standard deviation

The spread of a distribution most commonly refers to the variance or standard
deviation parameter, although other quantities such as interquartile range are also
measures of spread.

The population variance is the mean squared distance of any value from
the mean of the distribution, but you only need to think of it as a measure of
spread on a different scale from standard deviation. The standard deviation
is defined as the square root of the variance. It is not as useful in statistical
formulas and derivations as the variance, but it has several other useful properties,
so both variance and standard deviation are commonly calculated in practice. The
standard deviation is in the same units as the original measurement from which it
is derived. For each theoretical distribution, the intervals [µ−σ, µ+σ], [µ−2σ, µ+
2σ], and [µ−3σ, µ+3σ] include fixed known amounts of the probability. It is worth
memorizing that for Gaussian distributions only these fractions are 0.683, 0.954,
and 0.997 respectively. (I usually think of this as approximately 2/3, 95% and
99.7%.) Also exactly 95% of the Gaussian distribution is in [µ−1.96σ, µ+1.96σ]

When the standard deviation of repeated measurements is proportional
to the mean, then instead of using standard deviation, it often makes more
sense to measure variability in terms of the coefficient of variation,
which is the s.d. divided by the mean.
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There is a special statistical theorem (called Chebyshev’s inequality)
that applies to any shaped distribution and that states that at least(
1− 1

k2

)
× 100% of the values are within k standard deviations from the

mean. For example, the interval [µ−1.41σ, µ+1.41σ] holds at least 50% of
the values, [µ−2σ, µ+2σ] holds at least 75% of the values, and [µ−3σ, µ+3σ]
holds at least 89% of the values.

3.5.3 Skewness and kurtosis

The population skewness of a distribution is a measure of asymmetry (zero
is symmetric) and the population kurtosis is a measure of peakedness or flatness
compared to a Gaussian distribution, which has γ2 = 0. If a distribution is “pulled
out” towards higher values (to the right), then it has positive skewness. If it
is pulled out toward lower values, then it has negative skewness. A symmetric
distribution, e.g., the Gaussian distribution, has zero skewness.

The population kurtosis of a distribution measures how far away a dis-
tribution is from a Gaussian distribution in terms of peakedness vs. flatness.
Compared to a Gaussian distribution, a distribution with negative kurtosis has
“rounder shoulders” and “thin tails”, while a distribution with a positive kurtosis
has more a more sharply shaped peak and “fat tails”.

3.5.4 Miscellaneous comments on distribution parameters

Mean, variance, skewness and kurtosis are called moment estimators.
They are respectively the 1st through 4th (central) moments. Even simpler
are the non-central moments: the rth non-central moment of X is the
expected value of Xr. There are formulas for calculating central moments
from non-central moments. E.g., σ2 = E(X2)− E(X)2.

It is important to realize that for any particular distribution (but not family of
distributions) each parameter is a fixed constant. Also, you will recognize that
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these parameter names are the same as the names of statistics that can be calcu-
lated for and used as descriptions of samples rather than probability distributions
(see next chapter). The prefix “population” is sometimes used as a reminder that
we are talking about the fixed numbers for a given probability distribution rather
than the corresponding sample values.

It is worth knowing that any formula applied to one or more parameters creates
a new parameter. For example, if µ1 and µ2 are parameters for some population,
say, the mean dexterity with the subjects’ dominant and non-dominant hands,
then log(µ1), µ2

2, µ1 − µ2 and (µ1 + µ2)/2 are also parameters.

In addition to the parameters in the above table, which are the most common
descriptive parameters that can be calculated for any distribution, fixed constants
in a pmf or pdf, such as degrees of freedom (see below) or the n in the binomial
distribution are also (somewhat loosely) called parameters.

Technical note: For some distributions, parameters such as the mean
or variance may be infinite.

Parameters such as (population) mean and (population) variance are
fixed quantities that characterize a given probability distribution. The
(population) skewness characterizes symmetry, and (population) kur-
tosis characterizes symmetric deviations from Normality. Correspond-
ing sample statistics can be thought of as sample estimates of the
population quantities.

3.5.5 Examples

As a review of the concepts of theoretical population distributions (in the contin-
uous random variable case) let’s consider a few examples.

Figure 3.1 shows five different pdf’s representing the (population) probability
distributions of five different continuous random variables. By the rules of pdf’s,
the area under each of the five curves equals exactly 1.0, because that represents
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Figure 3.1: Various probability density function
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the probability that a random outcome from a distribution is between -infinity
and +infinity. (The area shown, between -2 and +5 is slightly less than 1.0 for
each distribution because there is a small chance that these variables could have an
outcome outside of the range shown.) You can see that distribution A is a unimodal
(one peak) symmetric distribution, centered around 2.0. Although you cannot see
it by eye, it has the perfect bell-shape of a Gaussian distribution. Distribution
B is also Gaussian in shape, has a different central tendency (shifted higher or
rightward), and has a smaller spread. Distribution C is bimodal (two peaks) so
it cannot be a Gaussian distribution. Distribution D has the lowest center and is
asymmetric (skewed to the right), so it cannot be Gaussian. Distribution E appears
similar to a Gaussian distribution, but while symmetric and roughly bell-shaped,
it has “tails” that are too fat to be a true bell-shaped, Gaussian distribution.

So far we have been talking about the parameters of a given, known, theoret-
ical probability distribution. A slightly different context for the use of the term
parameter is in respect to a real world population, either finite (but usually large)
or infinite. As two examples, consider the height of all people living on the earth at
3:57 AM GMT on September 10, 2007, or the birth weights of all of the Sprague-
Dawley breed of rats that could possibly be bred. The former is clearly finite,
but large. The latter is perhaps technically finite due to limited resources, but
may also be thought of as (practically) infinite. Each of these must follow some
true distribution with fixed parameters, but these are practically unknowable. The
best we can do with experimental data is to make an estimate of the fixed, true,
unknowable parameter value. For this reason, I call parameters in this context
“secrets of nature” to remind you that they are not random and they are not
practically knowable.

3.6 Multivariate distributions: joint, conditional,

and marginal

The concepts of this section are fundamentals of probability, but for the typical
user of statistical methods, only a passing knowledge is required. More detail is
given here for the interested reader.

So far we have looked at the distribution of a single random variable at a time.
Now we proceed to look at the joint distribution of two (or more) random
variables. First consider the case of two categorical random variables. As an
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example, consider the population of all cars produced in the world in 2006. (I’m
just making up the numbers here.) This is a large finite population from which we
might sample cars to do a fuel efficiency experiment. If we focus on the categorical
variable “origin” with levels “US”,”Japanese”, and “Other”, and the categorical
variable “size” with categorical variable “Small”, “Medium” and “Large”, then
table 3.3 would represent the joint distribution of origin and size in this population.

origin / size Small Medium Large Total
US 0.05 0.10 0.15
Japanese 0.20 0.10 0.05
Other 0.15 0.15 0.05

Total 1.00

Table 3.3: Joint distribution of car origin and size.

These numbers come from categorizing all cars, then dividing the total in each
combination of categories by the total cars produced in the world in 2006, so
they are “relative frequencies”. But because we are considering this the whole
population of interest, it is better to consider these numbers to be the probabilities
of a (joint) pmf. Note that the total of all of the probabilities is 1.00. Reading
this table we can see, e.g., that 20% of all 2006 cars were small Japanese cars, or
equivalently, the probability that a randomly chosen 2006 car is a small Japanese
car is 0.20.

The joint distribution of X and Y is summarized in the joint pmf, which can
be tabular or in formula form, but in either case is similar to the one variable pmf
of section 3.2 except that it defines a probability for each combination of levels of
X and Y .

This idea of a joint distribution, in which probabilities are given for the com-
bination of levels of two categorical random variables, is easily extended to three
or more categorical variables.

The joint distribution of a pair of categorical random variables repre-
sents the probabilities of combinations of levels of the two individual
random variables.
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origin / size Small Medium Large Total
US 0.05 0.10 0.15 0.30
Japanese 0.20 0.10 0.05 0.35
Other 0.15 0.15 0.05 0.35

Total 0.40 0.35 0.25 (1.00)

Table 3.4: Marginal distributions of car origin and size.

Table 3.4 adds the obvious margins to the previous table, by adding the rows
and columns and putting the sums in the margins (labeled “Total”). Note that
both the right vertical and bottom horizontal margins add to 1.00, and so they
each represent a probability distribution, in this case of origin and size respectively.
These distributions are called the marginal distributions and each represents
the pmf of one of the variable ignoring the other variable. That is, a marginal
distribution is the distribution of any particular variable when we don’t pay any
attention to the other variable(s). If we had only studied car origins, we would
have found the population distribution to be 30% US, 35% Japanese and 35%
other.

It is important to understand that every variable we measure is marginal with
respect to all of the other variables that we could measure on the same units or
subjects, and which we do not in any way control (or in other words, which we let
vary freely).

The marginal distribution of any variable with respect to any other
variable(s) is just the distribution of that variable ignoring the other
variable(s).

The third and final definition for describing distributions of multiple character-
istics of a population of units or subjects is the conditional distribution which
relates to conditional probability (see page 31). As shown in table 3.5, the condi-
tional distribution refers to fixing the level of one variable, then “re-normalizing”
to find the probability level of the other variable when we only focus on or consider
those units or subjects that meeting the condition of interest.

So if we focus on Japanese cars only (technically, we condition on cars be-
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origin / size Small Medium Large Total
US 0.167 0.333 0.400 1.000

Japanese 0.571 0.286 0.143 1.000

Other 0.429 0.429 0.142 1.000

Table 3.5: Conditional distributions of car size given its origin.

ing Japanese) we see that 57.1% of those cars are small, which is very different
from either the marginal probability of a car being small (0.40) or the joint prob-
ability of a car being small and Japanese (0.20). The formal notation here is
Pr(size=small|origin=Japanese) = 0.571, which is read “the probability of a car
being small given that the car is Japanese equals 0.571”.

It is important to realize that there is another set of conditional distributions for
this example that we have not looked at. As an exercise, try to find the conditional
distributions of “origin” given “size”, which differ from the distributions of “size”
given “origin” of table 3.5.

It is interesting and useful to note that an equivalent alternative to spec-
ifying the complete joint distribution of two categorical (or quantitative)
random variables is to specify the marginal distribution of one variable,
and the conditional distributions for the second variable at each level of
the first variable. For example, you can reconstruct the joint distribution
for the cars example from the marginal distribution of “origin” and the
three conditional distributions of “size given origin”. This leads to an-
other way to think about marginal distributions as the distribution of one
variable averaged over the distribution of the other.

The distribution of a random variable conditional on a particular level
of another random variable is the distribution of the first variable when
the second variable is fixed to the particular level.
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The concepts of joint, marginal and conditional distributions transfer directly to
two continuous distributions, or one continuous and one joint distribution, but the
details will not be given here. Suffice it to say the the joint pdf of two continuous
random variables, say X and Y is a formula with both xs and ys in it.

3.6.1 Covariance and Correlation

For two quantitative variables, the basic parameters describing the strength of their
relationship are covariance and correlation. For both, larger absolute values
indicate a stronger relationship, and positive numbers indicate a direct relationship
while negative numbers indicate an indirect relationship. For both, a value of zero
is called uncorrelated. Covariance depends on the scale of measurement, while
correlation does not. For this reason, correlation is easier to understand, and we
will focus on that here, although if you look at the gray box below, you will see
that covariance is used as in intermediate in the calculation of correlation. (Note
that here we are concerned with the “population” or “theoretical” correlation. The
sample version is covered in the EDA chapter.)

Correlation describes both the strength and direction of the (linear) relationship
between two variables. Correlations run from -1.0 to +1.0. A negative correlation
indicates an “inverse” relationship such that population units that are low for one
variable tend to be high for the other (and vice versa), while a positive correlation
indicates a “direct” relationship such that population units that are low in one
variable tend to be low in the other (also high with high). A zero correlation (also
called uncorrelated) indicates that the “best fit straight line” (see the chapter on
Regression) for a plot of X vs. Y is horizontal, suggesting no relationship between
the two random variables. Technically, independence of two variables (see above)
implies that they are uncorrelated, but the reverse is not necessarily true.

For a correlation of +1.0 or -1.0, Y can be perfectly predicted from X with no
error (and vice versa) using a linear equation. For example if X is temperature
of a rat in degrees C and Y is temperature in degrees F, then Y = 9/5 ∗ C + 32,
exactly, and the correlation is +1.0. And if X is height in feet of a person from
the floor of a room with an 8 foot ceiling and Y is distance from the top of the
head to the ceiling, then Y = 8−X, exactly, and the correlation is -1.0. For other
variables like height and weight, the correlation is positive, but less than 1.0. And
for variables like IQ and length of the index finger, the correlation is presumably
0.0.
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It should be obvious that the correlation of any variable with itself is 1.0. Let
us represent the population correlation between random variable Xi and random
variable Xj as ρi,j. Because the correlation of X with Y is the same as Y with X,
it is true that ρi,j = ρj,i. We can compactly represent the relationships between
multiple variables with a correlation matrix which shows all of the pairwise
correlations in a square table of numbers (square matrix). An example is given
in table 3.6 for the case of 4 variables. As with all correlations matrices, the
matrix is symmetric with a row of ones on the main diagonal. For some actual
population and variables, we could put numbers instead of symbols in the matrix,
and then make statements about which variables are directly vs. inversely vs. not
correlated, and something about the strengths of the correlations.

Variable X1 X2 X3 X4

X1 1 ρ1,2 ρ1,3 ρ1,4

X2 ρ2,1 1 ρ2,3 ρ2,4

X3 ρ3,1 ρ3,2 1 ρ3,4

X4 ρ4,1 ρ4,2 ρ4,3 1

Table 3.6: Population correlation matrix for four variables.

There are several ways to measure “correlation” for categorical vari-
ables and choosing among them can be a source of controversy that we
will not cover here. But for quantitative random variables covariance and
correlation are mathematically straightforward.

The population covariance of two quantitative random variables, say X
and Y , is calculated by computing the expected value (population mean)
of the quantity (X − µX)(Y − µY ) where µX is the population mean of X
and µY is the population mean of Y across all combinations of X and Y .
For continuous random variables this is the double integral

CovX,Y =
∫ ∞
−∞

∫ ∞
−∞

(x− µX)(y − µY )f(x, y)dxdy

where f(x, y) is the joint pdf of X and Y .
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For discrete random variables we have the simpler form

CovX,Y =
∑
x∈X

∑
y∈Y

(x− µX)(y − µY )f(x, y)

where f(x, y) is the joint pmf, and X and Y are the respective supports of
X and Y .

As an example consider a population consisting of all of the chickens of
a particular breed (that only lives 4 years) belonging to a large multi-farm
poultry company in January of 2007. For each chicken in this population
we have X equal to the number of eggs laid in the first week of January
and Y equal to the age of the chicken in years. The joint pmf of X and Y
is given in table 3.7. As usual, the joint pmf gives the probabilities that a
random subject will fall into each combination of categories from the two
variables.

We can calculate the (marginal) mean number of eggs from the marginal
distribution of eggs as µX = 0(0.35) + 1(0.40) + 2(0.25) = 0.90 and the
mean age as µY = 1(0.25) + 2(0.40) + 3(0.20) + 4(0.15) = 2.25 years.

The calculation steps for the covariance are shown in table 3.8. The
population covariance of X and Y is 0.075 (exactly). The (weird) units
are “egg years”.

Population correlation can be calculated from population covariance
and the two individual standard deviations using the formula

ρX,Y =
Cov(X, Y )

σxσy
.

In this case σ2
X = (0−0.9)2(0.35)+(1−0.9)2(0.40)+(2−0.9)2(0.25) = 0.59.

Using a similar calculation for σ2
Y and taking square roots to get standard

deviation from variance, we get

ρX,Y =
0.075

0.7681 · 0.9937
= 0.0983

which indicates a weak positive correlation: older hens lay more eggs.
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Y (year) / X (eggs) 0 1 2 Margin

1 0.10 0.10 0.05 0.25
2 0.15 0.15 0.10 0.40
3 0.05 0.10 0.05 0.20
4 0.05 0.05 0.05 0.15

Margin 0.35 0.40 0.25 1.00

Table 3.7: Chicken example: joint population pmf.

X Y X-0.90 Y-2.25 Pr Pr·(X-0.90)(Y-2.25)
0 1 -0.90 -1.25 0.10 0.11250
1 1 0.10 -1.25 0.10 -0.00125
2 1 1.10 -1.25 0.05 -0.06875
0 2 -0.90 -0.25 0.15 0.03375
1 2 0.10 -0.25 0.15 -0.00375
2 2 1.10 -0.25 0.10 -0.02750
0 3 -0.90 0.75 0.05 -0.03375
1 3 0.10 0.75 0.10 0.00750
2 3 1.10 0.75 0.05 0.04125
0 4 -0.90 1.75 0.05 -0.07875
1 4 0.10 1.75 0.05 0.00875
2 4 1.10 1.75 0.05 0.09625

Total 1.00 0.07500

Table 3.8: Covariance calculation for chicken example.
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In a nutshell: When dealing with two (or more) random variables
simultaneously it is helpful to think about joint vs. marginal vs. con-
ditional distributions. This has to do with what is fixed vs. what
is free to vary, and what adds up to 100%. The parameter that de-
scribes the strength of relationship between two random variables is
the correlation, which ranges from -1 to +1.

3.7 Key application: sampling distributions

In this course we will generally be concerned with analyzing a simple random
sample of size n which indicates that we randomly and independently choose n
subjects from a large or infinite population for our experiment. (For practical
issues, see section 8.3.) Then we make one or more measurements, which are the
realizations of some random variable. Often we combine these values into one or
more statistics. A statistic is defined as any formula or “recipe” that can be
explicitly calculated from observed data. Note that the formula for a statistic
must not include unknown parameters. When thinking about a statistics always
remember that this is only one of many possible values that we could have gotten
for this statistic, based on the random nature of the sampling.

If we think about random variableX for a sample of size n it is useful to consider
this a multivariate situation, i.e., the outcome of the random trial is X1 through
Xn and there is a probability distribution for this multivariate outcome. If we have
simple random sampling, this n-fold pmf or pdf is calculable from the distribution
of the original random variable and the laws of probability with independence.
Technically we say that X1 through Xn are iid which stands for independent and
identically distributed, which indicates that distribution of the outcome for, say,
the third subject, is the same as for any other subject and is independent of (does
not depend on the outcome of) the outcome for every other subject.

An example should make this clear. Consider a simple random sample of size
n = 3 from a population of animals. The random variable we will observe is gender,
and we will call this X in general and X1, X2 and X3 in particular. Lets say that
we know the parameter that represent the true probability that an animal is male
is equal to 0.4. Then the probability that an animal is female is 0.6. We can work
out the multivariate pmf case by case as is shown in table 3.7. For example, the
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X1 X2 X3 Probability

F F F 0.216
M F F 0.144
F M F 0.144
F F M 0.144
F M M 0.096
M F M 0.096
M M F 0.096
M M M 0.064

Total

Table 3.9: Multivariate pmf for animal gender.

chance that the outcome is FMF in that order is (0.6)(0.4)(0.6)=0.144.

Using this multivariate pmf, we can easily calculate the pmf for derived random
variables (statistics) such as Y=the number of females in the sample: Pr(Y=0)=0.064,
Pr(Y=1)=0.288, Pr(Y=2)=0.432, and Pr(Y=3)=0.216.

Now think carefully about what we just did. We found the probability distri-
bution of random variable Y , the number of females in a sample of size three. This
is called the sampling distribution of Y , which refers to the fact that Y is a
random quantity which varies from sample to sample over many possible samples
(or experimental runs) that could be carried out if we had enough resources. We
can find the sampling distribution of various sample quantities constructed from
the data of a random sample. These quantities are sample statistics, and can
take many different forms. Among these are the sample versions of mean, variance,
standard deviation, etc. Quantities such as the sample mean or sample standard
deviation (see section 4.2) are often used as estimates of the corresponding pop-
ulation parameters. The sampling distribution of a sample statistic is then the
key way to evaluate how good of an estimate a sample statistic is. In addition, we
use various sample statistics and their sampling distributions to make probabilistic
conclusions about statistical hypotheses, usually in the form of statements about
population parameters.
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Much of the statistical analysis of experiments is grounded in calcu-
lation of a sample statistic, computation of its sampling distribution
(using a computer), and using the sampling distribution to draw in-
ferences about statistical hypotheses.

3.8 Central limit theorem

The Gaussian (also called bell-shaped or Normal) distribution is a very common
one. The central limit theorem (CLT) explains why many real-world variables
follow a Gaussian distribution.

It is worth reviewing here what “follows a particular distribution” really means.
A random variable follows a particular distribution if the observed probability of
each outcome for a discrete random variable or the the observed probabilities of a
reasonable set of intervals for a continuous random variable are well approximated
by the corresponding probabilities of some named distribution (see Common Dis-
tributions, below). Roughly, this means that a histogram of the actual random
outcomes is quite similar to the theoretical histogram of potential outcomes de-
fined by the pmf (if discrete) or pdf (if continuous). For example, for any Gaussian
distribution with mean µ and standard deviation σ, we expect 2.3% of values to
fall below µ−2σ, 13.6% to fall between µ−2σ and µ−σ, 34.1% between µ−σ and µ,
34.1% between µ and µ+σ, 13.6% between µ+σ and µ+2σ, and 2.3% above µ+2σ.
In practice we would check a finer set of divisions and/or compare the shapes of
the actual and theoretical distributions either using histograms or a special tool
called the quantile-quantile plot.

In non-mathematical language, the “CLT” says that whatever the pmf or pdf
of a variable is, if we randomly sample a “large” number (say k) of independent
values from that random variable, the sum or mean of those k values, if collected
repeatedly, will have a Normal distribution. It takes some extra thought to un-
derstand what is going on here. The process I am describing here takes a sample
of (independent) outcomes, e.g., the weights of all of the rats chosen for an ex-
periment, and calculates the mean weight (or sum of weights). Then we consider
the less practical process of repeating the whole experiment many, many times
(taking a new sample of rats each time). If we would do this, the CLT says that a
histogram of all of these mean weights across all of these experiments would show
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a Gaussian shape, even if the histogram of the individual weights of any one ex-
periment were not following a Gaussian distribution. By the way, the distribution
of the means across many experiments is usually called the “sampling distribution
of the mean”.

For practical purposes, a number as small as 20 (observations per experiment)
can be considered “large” when invoking the CLT if the original distribution is
not very bizarre in shape and if we only want a reasonable approximation to a
Gaussian curve. And for almost all original distributions, the larger k is, the closer
the distribution of the means or sums are to a Gaussian shape.

It is usually fairly easy to find the mean and variance of the sampling distri-
bution (see section 3.7) of a statistic of interest (mean or otherwise), but finding
the shape of this sampling distribution is more difficult. The Central Limit Theo-
rem lets us predict the (approximate) shape of the sampling distribution for sums
or means. And this additional shape information is usually all that is needed to
construct valid confidence intervals and/or p-values.

But wait, there’s more! The central limit theorem also applies to the sum
or mean of many different independent random variables as long as none of them
strongly dominates the others. So we can invoke the CLT as an explanation for why
many real-world variables happen to have a Gaussian distribution. It is because
they are the result of many small independent effects. For example, the weight
of 12-week-old rats varies around the mean weight of 12-week-old rats due to a
variety of genetic factors, differences in food availability, differences in exercise,
differences in health, and a variety of other environmental factors, each of which
adds or subtracts a little bit relative to the overall mean.

See one of the theoretical statistics texts listed in the bibliography for a proof
of the CLT.

The Central Limit Theorem is the explanation why many real-world
random variables tend to have a Gaussian distribution. It is also the
justification for assuming that if we could repeat an experiment many
times, any sample mean that we calculate once per experiment would
follow a Gaussian distribution over the many experiments.
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3.9 Common distributions

A brief description of several useful and commonly used probability distributions
is given here. The casual reader will want to just skim this material, then use it
as reference material as needed.

The two types of distributions are discrete and continuous (see above), which
are fully characterized by their pmf or pdf respectively. In the notation section of
each distribution we use “X ∼” to mean “X is distributed as”.

What does it mean for a random variable to follow a certain distribution? It
means that the pdf or pmf of that distribution fully describes the probabilities
of events for that random variable. Note that each of the named distributions
described below are a family of related individual distributions from which a spe-
cific distribution must be specified using an index or pointer into the family usually
called a parameter (or sometimes using 2 parameters). For a theoretical discussion,
where we assume a particular distribution and then investigate what properties fol-
low, the pdf or pmf is all we need.

For data analysis, we usually need to choose a theoretical distribution that we
think will well approximate our measurement for the population from which our
sample was drawn. This can be done using information about what assumptions
lead to each distribution, looking at the support and shape of the sample distri-
bution, and using prior knowledge of similar measurements. Usually we choose a
family of distributions, then use statistical techniques to estimate the parameter
that chooses the particular distribution that best matches our data. Also, after
carrying out a statistical test that assumes a particular family of distributions, we
use model checking, such as residual analysis, to verify that our choice was a good
one.

3.9.1 Binomial distribution

The binomial distribution is a discrete distribution that represents the number
of successes in n independent trials, each of which has success probability p. All of
the (infinite) different values of n and p define a whole family of different binomial
distributions. The outcome of a random variable that follows a binomial distribu-
tion is a whole number from 0 to n (i.e., n+1 different possible values). If n = 1,
the special name Bernoulli distribution may be used. If random variable X fol-
lows a Bernoulli distribution with parameter p, then stating that Pr(X = 1) = p
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and Pr(X = 0) = 1− p fully defines the distribution of X.

If we let X represent the random outcome of a binomial random variable with
parameters n and p, and let x represent any particular outcome (as a whole number
from 0 to n), then the pmf of a binomial distribution tells us the probability that
the outcome will be x:

Pr(X = x) = f(x) =

(
n!

(n− x)! x!

)
px(1− p)n−x.

As a reminder, the exclamation mark symbol is pronounced “factorial” and r!
represents the product of all the integers from 1 to r. As an exception, 0! = 1.

The true, theoretical mean of a binomial distribution is np and the variance is
np(1 − p). These refer to the ideal for an infinite population. For a sample, the
sample mean and variance will be similar to the theoretical values, and the larger
the sample, the more sure we are that the sample mean and variance will be very
close to the theoretical values.

As an example, if you buy a lottery ticket for a daily lottery choosing your lucky
number each of 5 different days in a lottery with a 1/500 chance of winning each
time, then knowing that these chances are independent, we could call the number
of times (out of 5) that you win Y , and state that Y is distributed according to a
binomial distribution with n = 5 and p = 0.002. We now know that if many people
each independently buy 5 lottery tickets they will each have an outcome between 0
and 5, and the mean of all of those outcomes will be (close to) np = 5(0.002) = 0.01
and the variance will be (close to) np(1 − p) = 5(0.002)(0.998) = 0.00998 (with
sd=
√

0.0098 = 0.0999.)

In this example we can calculate n! = 5 · 4 · 3 · 2 · 1 = 120, and for x=2,
(n− x)! = 3! = 3 · 2 · 1 = 6 and x! = 2! = 2 · 1 = 2. So

Pr(X = 2) =
(

120

6 · 2

)
0.0022(0.998)3 = 0.0000398.

Roughly 4 out of 100,000 people will win twice in 5 days.

It is sometimes useful to know that with large n a binomial random variable
with parameter p approximates a Normal distribution with mean np and variance
np(1 − p) (except that there are gaps in the binomial because it only takes on
whole numbers).

Common notation is X ∼ bin(n, p).
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3.9.2 Multinomial distribution

The multinomial distribution is a discrete distribution that can be used to
model situations where a subject has n trials each of which independently can
result in one of k different values which occur with probabilities (p1, p2, . . . , pk),
where p1 + p2 + . . . + pk=1. The outcome of a multinomial is a list of k numbers
adding up to n, each of which represents the number of times a particular value
was achieved.

For random variable X following the multinomial distribution, the outcome is
the list of values (x1, x2, . . . , xk) and the pmf is:

Pr(X1 = x1, X2 = x2, . . . , Xk = xk) =

(
n!

x1! · x2! · · · xk!

)
px1

1 px2
2 · · · p

xk
k .

For example, consider a kind of candy that comes in an opaque bag and has
three colors (red, blue, and green) in different amounts in each bag. If 30% of the
bags have red as the most common color, 20% have green, and 50% have blue,
then we could imagine an experiment consisting of opening n randomly chosen
bags and recording for each bag which color was most common. Here k = 3
and p1 = 0.30, p2 = 0.20, and p3 = 0.50. The outcome is three numbers, e.g.,
x1=number of times (out of 2) that red was most common, x2=number of times
blue is most common, and x3=number of times green is most common. If we
choose n=2, one calculation we can make is

Pr(x1 = 1, x2 = 1, x3 = 0) =

(
2!

1! · 1! · 0!

)
0.301 0.201 0.500 = 0.12

and the whole pmf can be represented in this tabular form (where “# of Reds”
means number of bags where red was most common, etc.):

x1 (# of Reds) x2 (# of Blues) x3 (# of Greens) Probability

2 0 0 0.09
0 2 0 0.04
0 0 2 0.25
1 1 0 0.12
1 0 1 0.30
0 1 1 0.20

Common notation is X ∼ MN(n, p1, . . . , pk).
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3.9.3 Poisson distribution

The Poisson distribution is a discrete distribution whose support is the non-
negative integers (0, 1, 2, . . .). Many measurements that represent counts which
have no theoretical upper limit, such as the number of times a subject clicks on a
moving target on a computer screen in one minute, follow a Poisson distribution.
A Poisson distribution is applicable when the chance of a countable event is pro-
portional to the time (or distance, etc.) available, when the chances of events in
non-overlapping intervals is independent, and when the chance of two events in a
very short interval is essentially zero.

A Poisson distribution has one parameter, usually represented as λ (lambda).
The pmf is:

Pr(X = x) = f(x) =
e−λλx

x!

The mean is λ and the variance is also λ. From the pmf, you can see that the
probability of no events, Pr(X = 0), equals e−λ.

If the data show a substantially larger variance than the mean, then a Poisson
distribution is not appropriate. A common alternative is the negative binomial
distribution which has the same support, but has two parameters often denoted
p and r. The negative binomial distribution can be thought of as the number of
trials until the rth success when the probability of success is p for each trial.

It is sometimes useful to know that with large λ a Poisson random variable ap-
proximates a Normal distribution with mean λ and standard deviation

√
λ (except

that there are gaps in the Poisson because it only takes on whole numbers).

Common notation is X ∼ Pois(λ).

3.9.4 Gaussian distribution

The Gaussian or Normal distribution is a continuous distribution with a sym-
metric, bell-shaped pdf curve as shown in Figure 3.2. The members of this family
are characterized by two parameters, the mean and the variance (or standard de-
viation) usually written as µ and σ2 (or σ). The support is all of the real numbers,
but the “tails” are very thin, so the probability that X is more than 4 or 5 standard
deviations from the mean is extremely small. The pdf of the Normal distribution



58 CHAPTER 3. REVIEW OF PROBABILITY

−5 0 5 10

0.
00

0.
04

0.
08

0.
12

X

de
ns

ity

Figure 3.2: Gaussian bell-shaped probability density function

is:

f(x) =
1√
2σ
e
−(x−µ)2

2σ2 .

Among the family of Normal distributions, the standard normal distribution,
the one with µ = 0 and σ2 = 1 is special. It is the one for which you will find
information about the probabilities of various intervals in textbooks. This is useful
because the probability that the outcome will fall in, say, the interval from minus
infinity to any arbitrary number x for a non-standard normal distribution, say, X,
with mean µ 6= 0 and standard deviation σ 6= 1 is the same as the probability that
the outcome of a standard normal random variable, usually called Z, will be less
than z = x−µ

σ
, where the formula for z is the “z-score” formula.

Of course, there is not really anything “normal” about the Normal distribution,
so I always capitalize “Normal” or use Gaussian to remind you that we are just
talking about a particular probability distribution, and not making any judgments
about normal vs. abnormal. The Normal distribution is a very commonly used
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distribution (see CLT, above). Also the Normal distribution is quite flexible in
that the center and spread can be set to any values independently. On the other
hand, every distribution that subjectively looks “bell-shaped” is not a Normal dis-
tribution. Some distributions are flatter than Normal, with “thin tails” (negative
kurtosis). Some distributions are more “peaked” than a true Normal distribution
and thus have “fatter tails” (called positive kurtosis). An example of this is the
t-distribution (see below).

Common notation is X ∼ N(µ, σ2).

3.9.5 t-distribution

The t-distribution is a continuous distribution with a symmetric, unimodal pdf
centered at zero that has a single parameter called the “degrees of freedom” (df).
In this context you can think of df as just an index or pointer which selects a
single distribution out of a family of related distributions. For other ways to
think about df see section 4.6. The support is all of the real numbers. The
t-distributions have fatter tails than the normal distribution, but approach the
shape of the normal distribution as the df increase. The t-distribution arises most
commonly when evaluating how far a sample mean is from a population mean
when the standard deviation of the sampling distribution is estimated from the
data rather than known. It is the fact that the standard deviation is an estimate
(i.e., a standard error) rather than the true value that causes the widening of the
distribution from Normal to t.

Common notation is X ∼ tdf .

3.9.6 Chi-square distribution

A chi-square distribution is a continuous distribution with support on the pos-
itive real numbers whose family is indexed by a single “degrees of freedom” pa-
rameter. A chi-square distribution with df equal to a, commonly arises from the
sum of squares of a independent N(0,1) random variables. The mean is equal to
the df and the variance is equal to twice the df.

Common notation is X ∼ χ2
df .
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3.9.7 F-distribution

The F-distribution is a continuous distribution with support on the positive real
numbers. The family encompasses a large range of unimodal, asymmetric shapes
determined by two parameters which are usually called numerator and denomina-
tor degrees of freedom. The F-distribution is very commonly used in analysis of
experiments. If X and Y are two independent chi-square random variables with
r and s df respectively, then X/r

Y/s
defines a new random variable that follows the

F-distribution with r and s df. The mean is s
s−2

and the variance is a complicated
function of r and s.

Common notation is X ∼ F(r, s).


