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Case Study 

How difficult is it to maintain your balance while 
concentrating? It is more difficult when you are older? Nine 
elderly people (6 men and 3 women) and eight young men 
were subjects in a quasi-experiment.  Each subject stood 
barefoot on a "force platform" and was asked to maintain a 
stable upright position and to react as quickly as possible to 
an unpredictable noise by pressing a hand held button.  The 
noise came randomly and the subject concentrated on 
reacting as quickly as possible.  The platform automatically 
measured how much each subject swayed in millimeters in 
the forward/backward directions. (slightly fudged) 
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Descriptives 

  Age Statistic Std. Error 

FBSway Elderly Mean 25.22 2.296 

95% Confidence Interval for Mean Lower Bound 19.93   
Upper Bound 30.52   

Median 24.00   
Std. Deviation 6.888   

Young Mean 18.13 1.445 

95% Confidence Interval for Mean Lower Bound 14.71   
Upper Bound 21.54   

Median 17.00   
Std. Deviation 4.086   
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Group Statistics

9 25.222 6.8880 2.2960

8 18.125 4.0861 1.4447
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N Mean Std.  Dev iat ion

Std.  Error

Mean

SPSS Compare Means / Independent Sample t-test: 
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Independent Samples Test 

  

Levene's Test for 

Equality of 

Variances t-test for Equality of Means 

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Differen

ce 

Std. 

Error 

Differen

ce 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

FB Sway Equal variances 

assumed 
1.244 .282 2.54 15 .023 7.10 2.80 1.14 13.06 

Equal variances 

not assumed     2.62 13.2 .021 7.10 2.71 1.25 12.95 



Review of Probability and Statistics: Principles and Definitions 
  
A. Random variable (§3.1) 

 Usually represented by a capital letter near the end of the alphabet, 
e.g., X or X1, X2, ….  Represents something specific, e.g., a height. 

 Value is unknown (before the experiment is run).  
 Has a probability distribution, rather than a particular value.  (§3.2) 

• Characteristics of distributions: central location, spread, shape 
(§3.5) 

• Discrete or categorical: probability mass function (pmf) 

 
  
  

• Continuous: probability density function (pdf) 

 
  
  
  
  

 Mathematical combinations  new random variables, e.g. R=X2, 
S=X+Y, T=X/Y+3Z, U=T-3, 𝑌 = 𝑌1 + 𝑌2 + 𝑌3 /3 
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B. Population vs. Sample (§3.4) 
All possible …  vs. the ones we are studying 

  
 
  
C. Parameter refers to fixed, unknown quantities in the population (§3.5) 

 “secrets of nature” with scientific meaning 
 Usually represented by Greek letters. 

D. Statistic: a quantity unknown before an experiment is run and fully calculable 
from sample data afterwards  
 
E. Mean: one measure of central location 

 Population mean (expected value):  (§3.5.1) 
 Sample mean:  (§4.2.3) 𝑌 =   𝑌𝑖

𝑛
𝑖=1 /𝑛 

 Big idea: One , many possible 𝑌 ’s 
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F. Variance: one measure of spread 
 Average of the squares of the deviations (values minus mean) 
 Population: 𝜎2 
 Sample: 𝑠2 = SS/df 

• SS is the “sum of squares” which is really the sum of squared 
deviations of the values from their sample mean 

• df is “degrees of freedom” which is the number of 
independent pieces of information in a calculation  (§4.6) 

• 𝑠2 = Var 𝑌1,…, 𝑌𝑛 = Var 𝒀 =  
 [                                 ]𝑛
𝑖=1  

  
 Standard deviation: square root of variance (back to the natural scale) 

 
G. Conditional distribution, e.g, of sway or mean sway given (only for) an age 
group  
 
H. Sampling distribution of a statistic: the distribution of a statistic over 
(theoretical or actual) repeats of an experiment (§3.6).  This is the most 
important concept in (non-Bayesian) statistical analyses!  The standard deviation 
of any statistic is called its standard error (SE). 
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I. Key example: sample mean statistic, 𝒀 𝒏 
a) Setup: Y1, Y2, … are iid (independent and identically distributed) 

measurements from a population with mean  and variance s2 and any 
shape of distribution. 

b) Consider repeatedly sampling n random values of Y and computing and 
recording 𝑌 𝑛. 

c) Mean of sample means: For randomly sampled iid data, the sampling 
distribution of 𝑌 𝑛 has mean . 

d) Variance of sample means: For randomly sampled iid data, the sampling 
distribution 𝑌 𝑛 has a variance of s2/n (and standard deviation (SE) equal to 
𝜎/ 𝑛). 
Example: US adult non-diabetic fasting glucose has population mean =85 
mg/dL and population variance s2=49 mg2/dL2.  What are the mean, 
variance, and standard error of the sampling distribution of the mean of 
samples of 100 randomly chosen non-diabetic US adults? 
 

e) Shape: If the distribution of Y is Gaussian then the sampling distribution of 
𝑌 𝑛 is Gaussian (regardless of sample size, n). 
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f) Shape: Key result for “non-bizarre” distributions: (§3.8) 
Even if the distribution of Y is non-Gaussian, the sampling distribution of 
𝑌 𝑛tends towards a Gaussian shape as n gets large.  This is the central limit 
theorem (CLT).    And then we can say, e.g., 68% falls inside mean +/- 1s.d. 
and 95% falls inside +/-2 s.d. 

I. Sampling Distribution of 𝒀 𝒏, cont.  

J. Overall Goal of Statistical Inference: Sampling distribution of a statistic  
inference about populations 
 

g) Summary: With a reasonable sample size 𝑌 𝑛 is approximately 
distributed as Gaussian with mean  and variance 𝜎2/n. 



Standard Approach of “Classical” Statistics 

  Our goal is to learn about populations from samples.   

 The basic approach of standard statistical hypothesis testing is 
as follows (§6.2.1):  

1) Frame a (tentative) model describing the relationship between the 
explanatory variables (IVs) and the outcome variable (DV) in the 
population and the nature of the variability in the DV at any fixed 
combination of IVs.  Define the parameters of the model.  State all 
of your model assumptions.  (§6.2.2) 

2) Specify the null and alternative hypotheses in terms of the 
parameters of the model.  (§6.2.3) 

3) Choose your acceptable type 1 error rate (), i.e., the probability 
of falsely rejecting the null hypothesis when it is actually true. 

4) Choose (or invent) a statistic that will tend to be different under 
the null and alternative hypotheses.  (§6.2.4) 

 



Steps of hypothesis testing, cont. 
5) Using the assumptions of step 1), find the theoretical sampling 

distribution of the statistic under the null hypothesis.  (§6.2.5) 
Ideally the form of the sampling distribution will be one of the 
“standard distributions”.  Usually there is a “family” of 
distributions, and constants such as sample size and number of 
treatment conditions are used to choose which member of the 
family is applicable.  

6) Calculate a p-value as the area under the null sampling 
distribution more extreme (un-null-like) than your observed 
statistic.  (§6.2.6)  

7) Apply the decision rule: reject the null hypothesis if the p-value is 
less than alpha; otherwise do not reject.  Eschew the word 
“accept”!  (§6.2.6)  

 



Interpretation of p-values 

 All interpretation is meaningless if the model assumptions are not reasonably well 
met. 

 A p-value cannot be used to make any probabilistic statements about the chance that 
H0 is true or false because it comes from a calculation that assumes the null hypothesis 
is true.  Also the size of the p-value does not tell us if the effect of treatment is large or 
small. 

 A small p-value, e.g., ≤0.05, indirectly adds support to the claim that HA is likely. If 
model assumptions are not violated, the other main possibility is the “bad luck” of a 
randomly unusual value of the test statistic (a type 1-error).  But, a small or even tiny p-
value does not tell us that a meaningfully large alternative (e.g., a treatment effect) is 
likely, especially when the sample size is large.  [Concern for a future class: multiple 
testing] 

 A large p-value indicates either that H0 is true or that we have made a type-2 error due 
to bad luck.  When coupled with an appropriate power analysis, a large p-value is good 
evidence that a meaningfully large alternative is unlikely.  Without a power analysis, 
even a quite large p-value could be consistent with a meaningfully large treatment 
effect! 

 Never claim that any p-value proves anything! 



Confidence intervals (§6.2.7) for parameters 

 Statistical hypothesis testing is only one way to achieve the 
goal of learning about populations from samples.  Another 
equally important approach is calculation of CIs. 

 Technically, a 95% CI is a random interval which over repeat 
experiments holds the one true parameter value 95% of the 
time, if the model assumptions are true. 

 For example, if the parameter of interest is the (population) 
mean sway for elderly minus that for young people, a 95% CI 
for that parameter of [1.1,13.0] mm tells us that there 
probably is a real difference, but using the available data we 
are rather unsure of the size of the different. 

 CIs that are wide (by human judgment) tell us that the 
experiment was not powerful enough to provide strong 
information, e.g., about treatment effects. 

 Narrow CIs let us make scientifically useful conclusions (null 
or non-null). 



Applying the principles to the independent-samples t-test 

 Statistical model: k=2 “treatment” conditions.  Assume the two samples 
come from a population where the DV has a Normal distribution for both 
conditions with common variance s2 and with means  and +.  Assume 
independent errors. (§6.2.2) 

 Hypotheses: H0: =0, H1: 0     (or H0: 1=2, H1: 12) (§6.2.3) 

 T-statistic  (§6.2.4)  

General form:   T =  
statistic − hypothesized parameter value

estimated SE(statistic)
 

For the independent samples t-test, under H0: =0, use 

𝑡 =  
𝑌 1 − 𝑌 2  −  0

𝑠𝑝
1
𝑛1

+
1
𝑛2

 

where sp is a “pooled” estimate of the standard deviation of Y (not 𝑌 ). 

14 



t-test, cont. 
 Sampling distribution: The t-statistic follows the so-called “t-distribution” 

with n1+n2-2 df under the assumptions of this model and when the null 
hypothesis is true.  (§6.2.5) 

 Calculate p: For our sway quasi-experiment, t-statistics more extreme (un-
null-like) than 2.539 are those that are bigger than 2.539 or smaller than   
–2.539.  These ranges correspond to 2.3% of the area under the null 
sampling distribution, so p=0.023. (§6.2.6) 

 With =0.05, p≤, so the decision rule says to reject the null hypothesis.  
We conclude that results like these are unusual under the null hypothesis 
(and when the assumptions are true), and this is indirect supporting 
evidence for the idea that the population means of the two groups really 
are different (0).  It is also possible that we are making a type 1 error 
(falsely rejecting the null hypothesis).  The small p-value tells us nothing 
about the effect size.  (§6.2.6) 
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t-test cont. 
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Independent Samples Test

2.539 15 .023 7.097 2.7954 1.1390 13.0554
Equal variances

assumed

FBSWAY

t df Sig. (2-tailed)

Mean

Dif f erence

Std.  Error

Dif f erence Lower Upper

95% Conf idence

Interv al of  the

Dif f erence

t-test  for Equality  of  Means

 SPSS output: 

 Confidence interval for the mean difference.  (§6.2.7)  

A rough confidence interval can, in general, be constructed as: 
     statistic +/- m . SE(of the statistic) 
where m=2 is the approximate “multiplier”. 

Use the “quantiles” of the null sampling distribution to get the exact multiplier.  For the t 
distribution with 15 df, 95% of the values are between –2.13 and +2.13.   

The 1- or 100(1-)% confidence interval (CI) for the difference  or 2-1 is obtained using 
the multiplier m=2.13 and 𝐷 = 𝑌 2 − 𝑌 1 as: 

[𝐷 − 𝑚 • 𝑆𝐸(𝐷 ),  𝐷  + m • 𝑆𝐸(𝐷 )] 
 
With 𝐷 =7.097 and SE(𝐷 )=2.7954, the 95% CI is [1.14, 13.05]. 
  
Interpretation: We are “95% confident” that the true difference, , is between 1.14 and 13.05.  
This is shorthand for: 

 



One way ANOVA example 
Researchers at Purdue University conducted an experiment to compare three 
methods of teaching reading. Students were randomly assigned to one of the 
three teaching methods, and their reading comprehension was tested before 
and after they received the instruction. The change in score for a particular 
reading comprehension test from the pre- to the post-test (post minus pre) is 
recorded. 

EDA:  
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One-way ANOVA, cont. 
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Descriptives

CHANGE

22 .2727 2.58534 .55120 -.8735 1.4190

22 1.1364 2.58743 .55164 -.0108 2.2836

22 3.4091 3.21691 .68585 1.9828 4.8354

66 1.6061 3.07285 .37824 .8507 2.3615

Basal

DRTA

Strat

Total

N Mean Std.  Dev iat ion Std.  Error Lower Bound Upper Bound

95% Conf idence Interv al f or

Mean

A “formal” test of the equal variance assumption: 
Test of Homogeneity of Variances

CHANGE

.031 2 63 .970

Levene

Stat ist ic df 1 df 2 Sig.

A “formal” of H0 vs. HA: 

ANOVA

CHANGE

115.485 2 57.742 7.301 .001

498.273 63 7.909

613.758 65

Between Groups

Within Groups

Total

Sum of

Squares df Mean Square F Sig.



One-way ANOVA, cont. 
• Model: The three samples come randomly from a population where the DV has a 

Gaussian distribution in each group, with a common variance s2, and with means 
1, 2, and 3. (We use k=3 for the number of groups and n=22 for the number of 
subjects per group, and N=66 for the total sample size.)  Errors (true individual 
deviations from group population means) are independent. (§7.2.1) 

• Null Hypothesis is H0: 1=2=3.  Alternative Hypothesis is H1: at least one mean is 
different from the others.  (Definitely wrong: H1: 1≠2≠3)  (§7.2.1) 

• Statistic: F = MSbetween / MSwithin    (Also, MS = SS / df.)  (§7.2.2) 

• Null Sampling Distribution of the F-statistic under the model assumptions: F 
distribution with k-1=2 numerator df and k(n-1)=3(21)=63 denominator df.  (Or N-
k=66-3=63.) (§7.2.3) 

• p-value: In this experiment with F=7.30, p=0.001, which comes from: 

• Decision rule: Because p=0.001 < =0.05, we reject the null hypothesis and 
conclude that at least one group has a different population mean from the others. 
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Basic Theory of One Way ANOVA: 
ANOVA is a technique to detect group differences in means by 
using variance-like quantities (MS=SS/df) as a tool. 
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Statistic Average value when H0 is true Average when H0 is false 

MSwithin s2 s2 

MSbetween s2 Bigger than s2 

F = MSbetween  / MSwithin  

Expected value of F under H0: 

Expected value of F under various H1’s: 

For the reading comprehension example, the p-value (“Sig.”) is the area under 
the F2,63 distribution that is to the right of (higher than) 7.301. 



Intermediate Theory of ANOVA 
SSwithin: 
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SSbetween: 



Interpreting the ANOVA table: (§7.4)
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ANOVA

CHANGE

115.485 2 57.742 7.301 .001

498.273 63 7.909

613.758 65

Between Groups

Within Groups

Total

Sum of

Squares df Mean Square F Sig.



Class Summary 
 A statistic is chosen for making an inference about a 

hypothesis because it has different (but overlapping) “null” 
and “alternate” distributions, and because its null sampling 
distribution can be determined based on the assumptions 
of the statistical model. 

 One-way ANOVA and the independent samples t-test use 
the F and t statistics respectively to make inference for 
categorical explanatory variables and quantitative 
outcomes.  They assume independent errors and an 
underlying Gaussian distribution with equal variances. 

 The t-test only handles 2 levels of the categorical 
explanatory variable (factor), while the ANOVA handles ≥2.  
They agree completely with t2=F when there are 2 levels. 
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