Simple Regression Example

Male black wheatear birds carry stones to the nest as a form of sexual display. Soler et al. wanted to find out whether there is a relationship between the mass (in g) of the stones carried and the immunologic health of the birds as measured by a test of T cell function (in mm).

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS</td>
<td>21</td>
<td>3.33</td>
<td>9.95</td>
<td>7.2043</td>
<td>1.70244</td>
</tr>
<tr>
<td>TCELL</td>
<td>21</td>
<td>.18</td>
<td>.51</td>
<td>.3240</td>
<td>.09674</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing the relationship between MASS and TCELL with a regression line fitting the data points.](image-url)
Example, cont.

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>t</td>
<td>Sig.</td>
<td>95% Confidence Interval for B</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>.087</td>
<td>.079</td>
<td>1.112</td>
<td>.280</td>
<td>-.077</td>
</tr>
<tr>
<td></td>
<td>MASS</td>
<td>.033</td>
<td>.011</td>
<td>3.084</td>
<td>.006</td>
<td>.011</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Regression</td>
<td>.062</td>
<td>1</td>
<td>.062</td>
<td>9.513</td>
<td>.006</td>
</tr>
<tr>
<td>1 Residual</td>
<td>.125</td>
<td>19</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Total</td>
<td>.187</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- a. Predictors: (Constant), MASS
- b. Dependent Variable: TCELL
Regression: Main Ideas

- **Setting**: Quantitative outcome with a quantitative explanatory variable

- **Model**: (§9.1)
 - Structural (means) model: \(E(Y \mid x) = \beta_0 + \beta_1 x \) (parameters are called “betas” or “coefficients”)
 - This defines a linear relationship, on average (linearity assumption).
 - The intercept, \(\beta_0 \), is the (population) mean of \(Y \) when \(x = 0 \).
 - The slope, \(\beta_1 \), is the (population) **mean change** in \(Y \) when \(x \) increases by 1.
Model, cont.

- Fixed-x assumption: x’s are measured with no (little) error
- Error model
 - “Errors” (deviations of Y from $\beta_0 + \beta_1 x$) are **Gaussian** ...
 - ... with **constant** variance, σ^2, called “error variance”
 - ... and the errors are **independent** of each other.

- Alternate model form: $Y_i | x_i = \beta_0 + \beta_1 x_i + \varepsilon_i \quad \varepsilon \sim N(0, \sigma^2)$ iid
Main Ideas, cont.

- **Simple vs. multiple** regression

- **Null hypothesis**: $H_0: \beta_1 = 0$ vs. $H_1: \beta_1 \neq 0$.
 (Sometimes: $H_0: \beta_0 = 0$ vs. $H_1: \beta_0 \neq 0$
 or $H_0: \beta_1 = 1$ vs. $H_1: \beta_1 \neq 1$) (§9.2)

- **Interpolation**: good / **extrapolation**: bad
Main Ideas, cont.

- The "least squares principle" finds the best-fit line by minimizing the sum of squared residuals. (§9.4)
Main Ideas, cont.

- **Estimates**: “best” estimates of β_0 and β_1 are called b_0 and b_1 or $\hat{\beta}_0$ and $\hat{\beta}_1$ (read “beta 0 hat” and “beta 1 hat”). (§9.4, 9.5)

 - Technical & optional: The estimates of the coefficients are statistics that are unbiased, minimum variance estimates. For linear regression, “least squares” is the same as “maximum likelihood”.
Main Ideas, cont.

- **Fitted (predicted) values:** $\hat{Y}_i = Y_i' = \text{fit}_i = \text{pred}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i = b_0 + b_1 x_i$. (§9.4)

- **Residual:** $\text{res}_i = r_i = Y_i - \text{fit}_i = Y_i - \hat{Y}_i$

 This is an estimate of the true “error”. (§9.4, 9.6)
Main Ideas, cont.

Optional estimation formulas:

\[b_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}, \quad b_0 = \bar{y} - b_1 \bar{x}, \quad s^2 = \frac{\sum_{i=1}^{n} r_i^2}{n-2} \]

- \(Ms_{\text{within}} = Ms_{\text{resid}} = Ms_{\text{error}} = SS_{\text{resid}}/df \) are exactly the same estimate of error variance, \(\sigma^2 \). (§9.8)
 - In general, the df equals \(N - \#\text{betas} \).
Main ideas, cont.

- The Normality assumption leads to a Normal **sampling distribution** of $\hat{\beta}_1$ with mean β_1 and a variance that is a complicated combination of σ^2 and the x values. When we substitute in the estimate of σ^2 and take the square root, we get a standard error (SE) of $\hat{\beta}_1$ that can be used in a t-test (§9.4) of $H_0: \beta_1 = 0$:

- **95% confidence interval** on β_1:
 $$ [b_1 - m \text{ SE}(b_1), b_1 + m \text{ SE}(b_1)] $$
 where m is approximately 2 and the exact value comes from finding the value of the appropriate t distribution that holds 95% of the distribution. (§9.4)
Main ideas, cont.

- **Goodness of fit /model comparison: (§9.8)**
 - R^2 (0 to 1) measures the fraction of the variability in the outcome “accounted for” by the explanatory variable(s). It is also r^2 in simple (one x) regression where r is the correlation of x and Y. (See slide 23 below for the formula.)

 - Adjusted R^2 corrects for the “more IVs *always* gives a higher R^2” problem.

 - Many consider AIC / BIC, which are “penalized likelihoods”, even better for comparing models, e.g., deciding if some additional “x” should be included.
Robustness of the t-test in regression (§9.7)

- moderately severe non-normality is OK (CLT)
- mild to moderate unequal spread are OK (ratio<2)
- only minimal correlation of errors is OK
- non-fixed X is OK only if its variability is much less that the variability of Y
- non-linearity is bad
SPSS has some mechanisms for trying different sets of explanatory variables (model selection) in multiple (>1 x) regression. The default is to include all specified x variables.

<table>
<thead>
<tr>
<th>Variables Entered/Removed</th>
<th>Model</th>
<th>Variables Entered</th>
<th>Variables Removed</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>MASSa</td>
<td>.</td>
<td>Enter</td>
</tr>
</tbody>
</table>

a All requested variables entered.

b. Dependent Variable: TCELL
There is a statistically significant positive association between the mass of stones collected and the T cell activity (reject H_0: $\beta_1 = 0$ or equivalently $\beta_{\text{MASS}} = 0$; $p = 0.006$). If the levels of the explanatory variable were randomly assigned, we could say that a rise in stone mass causes a rise in T cell function.

Concluding only that “stone mass is statistically significant” is stupid!!!
The three major causes of an association between variables X and Y are that changes in X cause changes in Y, changes in Y cause changes in X, and that changes in a third variable causes changes in both X and Y. In addition, type 1 error can result in an apparent association between X and Y when there really is none (a type-1 error).

Interpretation of slope coefficient: A rise of 1 gram of mass is associated with an estimated mean rise of 0.033 mm in T cell function. It is also OK (better) to say that, e.g., a rise of 10 gram of mass is associated with an estimated 0.33 mm mean rise in T cell function.
SPSS Output and Interp., cont.

➢ The intercept is *the mean of Y when x is 0.*

- In this example, since x=0 is far from the rest of the data, an interpretation of the intercept would be an *unwarranted extrapolation.* If we were to make that extrapolation we would express it as “the *predicted (estimated) mean* of T cell function for wheatears that carry *no* stones is 0.087 mm”. Here, the non-significant p-value (and the CI) tell us that we cannot rule out that the mean T cell response for 0 g of stones is 0 mm (cannot reject $H_0: \beta_0 = 0$).

- Only interpret the intercept p-value when x=0 makes sense and when we have data at or near x=0 and when we care if $E(Y|x=0)$ equals zero or not, i.e. was originally unknown.
The “CI for B_{MASS}” has the interpretation that “we are 95% confident that the mean rise in T cell function associated with a one gm increase in stone mass is between 0.011 and 0.055.”

- Technically, when the assumptions of the model are met, CI’s constructed by the standard recipe used here will include the true coefficient value 95% of the time (over repeated experiments, whether or not the null hypothesis is true, but only when the assumptions are true).
The **mean squared error (MSE)** is 0.007 which is the best estimate of σ^2. Our model predicts that for any given x value, the distribution of the outcome for many subjects with that same x value will be normally distributed with mean $\beta_0 + \beta_1 x$ and variance 0.007 and $sd=\sqrt{0.007}=0.081$ and $2sd=0.162$.

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>.062</td>
<td>1</td>
<td>.062</td>
<td>9.513</td>
<td>.006a</td>
</tr>
<tr>
<td>Residual</td>
<td>.125</td>
<td>19</td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>.187</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), MASS
b. Dependent Variable: TCELL
SPSS Output and Interp., cont.

- The “case-wise diagnostics” tries to detect possible outliers. Here it tells us that the subject farthest (vertically) from the best fit line is subject 19, who has actual outcome 0.21 mm, predicted outcome 0.39 mm, and residual −0.18. So this bird had a T cell measurement 0.18 lower than “expected” by the model. The standardized residual divides by the standard deviation of the residuals; −2.24 is not highly unlikely.

<table>
<thead>
<tr>
<th>Case Number</th>
<th>Std. Residual</th>
<th>TCELL</th>
<th>Predicted Value</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>-2.239</td>
<td>.21</td>
<td>.3944</td>
<td>-.1814</td>
</tr>
</tbody>
</table>

a. Dependent Variable: TCELL
The “Normal P-P” (similar to the quantile-quantile or quantile-normal) plot of the residuals helps test the assumption of a normal distribution of the Y values at each x by combining the residuals from all x values.
SPSS Output and Interp., cont.

- The **residual vs. fit plot** of “Standardized Residual” vs “Standardized Predicted Value” helps **test the assumptions of linearity and equal spread**. (Alternatively un-standardized values are used, but they are a bit harder to get in SPSS.) Use the “vertical band” method of interpretation.
The “R-Squared” value of 0.334 indicates that 33.4% of the overall variation in the outcome has been “explained” by the explanatory variable(s).

- $SS_{Total} = \Sigma(y_i - \bar{y})^2$, $SS_{Error} = \Sigma(y_i - \hat{y})^2$, $SS_{explained} = SS_{Total} - SS_{Error}$
- $R^2 = (SS_{Total} - SS_{Error}) / SS_{T}$: fraction of the total deviations that is explained by the explanatory variable(s)
- R^2 values range from 0 to 1 (high in physics, low in psychology)
- Adjusted-R^2 corrects for “more is always better” and is more realistic
- AIC/BIC are even better for model comparison/selection

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.578(^a)</td>
<td>.334</td>
<td>.299</td>
<td>.08102</td>
</tr>
</tbody>
</table>

\(^a\) Predictors: (Constant), MASS

\(^b\) Dependent Variable: TCELL
Conclusion

There are lots of useful regression results beyond just a p-value!