36-309/749 Experimental Design for Behavioral and Social Sciences

Sep. 29, 2015 Lecture 5: Multiple Regression

Review of ANOVA & Simple Regression

> Both

- Quantitative outcome
- Independent, Gaussian errors with equal variance
- Group assignment assumed correct (fixed-x)
- One way (between-subjects) ANOVA
 - Categorical IV (k levels) with means μ_1 through μ_k
 - Best prediction: $\widehat{Y}_i = \overline{Y}_i$ for subject *i* in group *j*
- Simple (one IV) regression
 - Quantitative IV
 - Coefficient parameters are β₀ and β₁
 - True mean outcome at each x is $E(Y|x)=\beta_0+\beta_1x$ (linearity)
 - Best prediction: $\hat{Y}_i = b_0 + b_1 x$

Example

Team Problem Solving

Multiple Regression

- > New Idea #1: extend the means model
 - IVs are x₁, x₂, ...
 - Means model: $E(Y|x_1,x_2,...) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...$
 - Prediction: $\hat{Y} = b_0 + b_1 x_1 + b_2 x_2 + ...$
 - Consequences:
 - + β_0 is the mean of the DV when all IVs equal 0
 - $\hat{\beta}_1$ is the change in the mean of the DV when x_1 goes up by one and all other x's are held constant.
 - E.g., with 2 x's and x₂ fixed at c, Y vs. x₁ is a line: $E(Y | x1,x2=c) = \beta_0 + \beta_1 x_1 + \beta_2 c = (\beta_0 + \beta_2 c) + \beta_1 x_1$ So Y vs. x₁ forms parallel lines at various fixed x₂ values

Multiple Regression: dummies

New idea #2: Dummy variables

- Multiple regression can accommodate categorical IVs but *only if* they are coded appropriately
- Indicator variable: A categorical variable (factor) with 2 levels should be named for one level and coded with: 1=named level, 0=other level, e.g., a "Female" variable "F" is coded 0=Male, 1=Female.
- E.g., x_1 =Age, x_2 =Female: E(Y)= β_0 + β_A A+ β_F F is a means model of parallel lines:
- $\begin{array}{l} \mbox{Males: E(Y) = $\beta_0 + β_AA} \\ \mbox{Females: E(Y) = $(\beta_0 + \beta_F$F) + β_AA = $(\beta_0 + \beta_F$) + β_AA} \\ \end{array}$

Multiple Regression: dummies, cont.

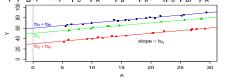
- Coding of a categorical IV with k>2 levels
 - Choose an arbitrary baseline (e.g., "control")
 - Create *indicator variables* for all *non-baseline* levels
 - Throw away the original variable
 - Example:

Examplei								
Color (code)	Color ("value")	Red	Blue					
3	Red	1	0					
1	Blue	0	1					
1	Blue	0	1					
2	Green	0	0					

• "Green" is the arbitrary "baseline". "Red" and "Blue" are the IVs used in the regression.

Multiple Regression: ANCOVA

- Generally the term ANCOVA (analysis of covariance) refers to multiple regression with one quantitative IV ("covariate") and one categorical IV of primary interest coded as dummy variables.
- Example: covariate "Age" and factor "Color" (baseline=green) $E(Y | Age, Color) = E(Y | A, B, R) = \beta_0 + \beta_A A + \beta_B B + \beta_R R$ $E(Y | Age, Color=Green) = E(Y | A, B=0, R=0) = \beta_0 + \beta_A A$ $E(Y | Age, Red) = \beta_0 + \beta_A A + \beta_B 0 + \beta_R 1 = (\beta_0 + \beta_R) + \beta_A A$ $E(Y | Age, Blue) = \beta_0 + \beta_A A + \beta_B 1 + \beta_R 0 = (\beta_0 + \beta_B) + \beta_A A$



Multiple Regression: ANCOVA, cont.

Coefficients										
		Unstandardize	d Coefficients	Standardized Coefficients						
Model		В	Std. Error	Beta	t	Sig.				
1	(Constant)	49.992	.318		157.009	.000				
	A	.996	.017	.572	58.144	.000				
	В	9.875	.301	.345	32.806	.000				
	R	-19.793	.293	721	-67.568	.000				

In ANCOVA as regression, dummy variables' "slopes" reflect different *intercept offsets* from the intercept of the baseline category. <u>As</u> opposed to individual regressions, inference for comparing lines is provided.

Fear and Anger Example

- This is loosely based on Constraints for emotion specificity in fear and anger: The context counts by Stemmler, et al., Psychophysiology, 38, 275–291 (2001). One hundred and sixty-nine adult female subjects were randomized to a control condition or to induction of fear or anger. The outcome of interest is the subjects' combined ratings on three 0-10 point scales of 'negativity'. The 'covariate' is a quantitative measure called heart-period-variability (HPV), which is measured before the emotion induction and is taken as a measure of individual physiological sensitivity to one's surroundings.
 - Experiment or observational study? Experimental units? Interpretability? Generalizability? Power? Construct validity? EDA?
 - Model? Null hypotheses? Alternative hypotheses?

Example, cont.

➢ Regression output

 Model Summary^b

 Model
 R
 R Square
 Adjusted R Square
 Std. Error of the Estimate

 1
 .891^a
 .794
 .790
 3.181

 a. Predictors: (Constant), Anger Induction, Heart period variability, Fear Induction
 b. Dependent Variable: Feelings of negativity
 3.181

ANOVA									
Model		Sum of Squares	df	Mean Square	F	Sig.			
1	Regression	6438.971	3	2146.324	212.119	.000			
	Residual	1669.550	165	10.118					
	Total	8108.521	168						

Example, cont.

	Unstandardiz			95% Confidence Interval for B		
	в	Std. Error	t	Sig.	Lower Bound	Upper Bound
(Constant)	2.707	.691	3.920	.000	1.343	4.071
Heart period variability	1.442	.128	11.263	.000	1.189	1.694
Fear induction	13.233	.618	21.397	.000	12.012	14.454
Anger induction	12.118	.602	20.141	.000	10.930	13.306

Prediction equations:

 \hat{Y}_i = 2.71 +1.44 HPV_i + 13.23 Fear_i + 12.12 Anger_i

Controls (Fear=0, Anger=0): $\hat{Y}_i = 2.71 + 1.44 \text{ HPV}_i$

Fear subjects: \hat{Y}_i = 2.71 + 1.44 HPV_i + 13.23 (1) = 15.94 + 1.44 HPV_i

Anger subejcts: $\hat{Y}_i = 2.71 + 1.44 \text{ HPV}_i + 12.12(1) = 14.83 + 1.44 \text{ HPV}_i$

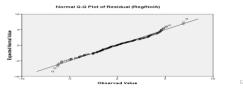
> Hidden assumption of the (non-interaction) ANCOVA means model:

Example, cont.

> Standardized coefficients: coefficients from running regression on standardized x's and Y: $x_{ij}^* = (x_{ij} - \overline{x_j})/s_{x_i}$

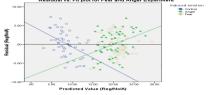
 $Y_i^* = (Y_i - \bar{Y})/s_Y$

- Residual = obs exp = $Y_i \hat{Y}_i$ (estimated error)
- Residual = $obs exp = r_i r_i$ (estimated error)
- Residual quantile normal plot: random scatter around reference line \rightarrow Normality OK

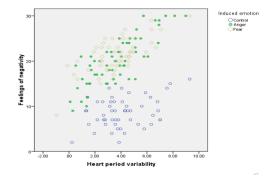


Example: residual analysis, cont.

- Residual plots for assumption checking
 - Residual vs. fit (predicted) plot y-axis: residuals, x-axis: fitted values
 Smile or frown suggests non-linearity (bad means model)
 Funneling suggests unequal variance



Example: skipped EDA



Multiple Regression: interaction

- An interaction between two IVs in their effect on the DV implies non-additivity. The effect of a one unit increase in x₁ depends on the level of x₂ (and vice versa).
- Interaction is coded by adding a new IV which is the product of the two original IVs. If x₁ and x₂ are both quantitative there is one new IV, x₁*x₂. If one is a k-level factor there are k-1 new IVs.
- ANCOVA with interaction
 - Structural model: $E(Y | x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2$
 - Prediction: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_{12} x_1 x_2$

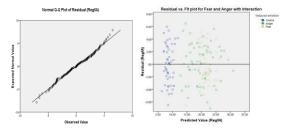
Example with interaction

$$\begin{split} & \succ \mathsf{E}(\mathsf{Negativity}|\mathsf{HPV},\mathsf{emotion}) = \mathsf{E}(\mathsf{N}|\mathsf{H},\mathsf{A},\mathsf{F}) \\ & = \beta_0 + \beta_\mathsf{H}\mathsf{H} + \beta_\mathsf{A}\mathsf{A} + \beta_\mathsf{F}\mathsf{F} + \beta_{\mathsf{H}^*\mathsf{A}}\mathsf{H}\mathsf{A} + \beta_{\mathsf{H}^*\mathsf{F}}\mathsf{H}\mathsf{F} \\ & \mathsf{Key step: simplification} \\ & \mathsf{Key concept: }\beta'\mathsf{s} \ \mathsf{are fixed}; \ \mathsf{H},\mathsf{A},\mathsf{F} \ \mathsf{are data values} \\ & \mathsf{Controls: } \mathsf{E}(\mathsf{N}|\mathsf{H},\mathsf{A}\!=\!\mathsf{0},\mathsf{F}\!\!=\!\mathsf{0}) = \beta_0 + \beta_\mathsf{H}\mathsf{H} \\ & \mathsf{Anger: } \mathsf{E}(\mathsf{N}|\mathsf{H},\mathsf{A}\!=\!\mathsf{0},\mathsf{F}\!\!=\!\mathsf{0}) = \beta_0 + \beta_\mathsf{H}\mathsf{H} + \beta_\mathsf{A}\!+ \beta_{\mathsf{H}^*\mathsf{A}}\mathsf{H} \\ & = (\beta_0 + \beta_\mathsf{A})\!+ (\beta_\mathsf{H} + \beta_{\mathsf{H}^*\mathsf{A}})\mathsf{H} \\ & \mathsf{Fear: } \mathsf{E}(\mathsf{N}|\mathsf{H},\mathsf{A}\!\!=\!\!\mathsf{0},\mathsf{F}\!\!=\!\mathsf{1}) = (\beta_0 + \beta_\mathsf{F})\!+ (\beta_\mathsf{H} + \beta_{\mathsf{H}^*\mathsf{F}})\mathsf{H} \end{aligned}$$

Example with Interaction: Results

				Model Sum	mary					
Model	R	F	R Square	Adjusted R Squa		Std.	Std. Error of		nate	
1	0.89	91	0.794	0.792				3.181		
2	0.90	06	0.821		0.816			2.982		
				Change Statistics						
Mo	del I	R Squ	are Change	F Change	df1	df2	Sig. F	Change		
1			.794	212.119	3	165		.000		
2			.027	12.359	2	163		.000		
				0 10						
				Coeffici	entsª					
				United	Unstandardized Coefficients					
	Model			В		Std. I		t	Sig.	
1 (Constant) Heart period variability anger			2.70		.691	3.920	.000			
		1	1.44		.128	11.263	.000			
			12.11		.602	20.141	.000			
	fear			13.23		.618	21.397	.000		
2	(Constant)			6.15		1.003	6.135	.000		
Heart period variability			1	.61		.220	2.780	.000		
	anger fear HPV*Anger				6.45		1.272	5.073	.00	
					9.80		1.350	7.264	.00	
					1.43		.289	4.972	.000	
HPV*Fear				.82	5	.312	2.643	.009		
a. Depend	lent Vari	iable: F	eelings of negati	vity						

Example with interaction: Diagnostics



QN plot: OK for Normality Res. vs. Fit: OK for linearity and equal spread

Example: Subject Matter Conclusions

- There is a statistically significant interaction (F_{chapge}=12.4, df=2, 163, p<0.0005) between HPV and emotion in their effects on negativity (N).</p>
- Heart period variability is positively associated with negativity (t=2.78, df=163, p=0.006) in controls, and the estimated mean change in N is a rise of 0.612 points for each 1 unit rise in HPV (95% CI=[0.18,1.05].
- The estimated mean N when HPV=0 is 6.15 for controls, and is 6.45 higher for induced anger (t=5.07, df=163, p<0.0005) and 9.81 higher for induced fear (t=7.26, df=163, p<0.0005).</p>
- The change in N associated with a 1 point rise in HPV is estimated to be 1.44 points greater for anger compared to control (t=4.97, df=163, p<0.0005) and 0.82 points greater for fear compared to control (t=2.63, df=163, p=0.009).
- Overall compared to control inducing fear and anger increases N, and the increase is greater when HPV is greater.

Class Summary

- > In multiple regression, the means model *adds terms of the form* $\beta_v V$ when variable V is added.
- Any k-level categorical variable must be replaced with k-1 indicator variables [or similar].
- Without interaction, a "parallel" means model is produced: at each level of one IV the slope of the DV vs. the other IV is the same.
- With interaction (adding product variables) different slopes are accommodated.
- You can deduce the meanings of parameters by simplifying the means model for each category to a Y=a+bX form where a is the intercept and b is the slope.
- \succ Continue the deduction by finding equations that differ only in a single parameter. The p-value for that parameter is the null hypothesis that that β =0 which is equivalent to the two lines being the same.