Schizophrenia Example

- **Scientific background:** People with schizophrenia spend less time focusing on the eyes and mouth than non-schizophrenic people when asked to look at photographs of faces.

- **Scientific Hypotheses:** The people with schizophrenia have a reduced physiological ability to hold their focus vs. they avoid those areas for psychological reasons.

- **Experiment:** Randomize people with schizophrenia to look at faces with different emotions (neutral, happy, angry, disgusted). Record the mean time spent looking at eyes and mouth vs. elsewhere. Repeat over 5 pictures with the same emotion (at 1 minute/picture), so the outcome is an “eyes/mouth” time between 0 and 5 minutes.
Example, cont.

- Operationalization of concepts (concept validity) and variable classification:

- **Means model:** Define $\mu_N = \text{population (condition)}$ mean parameter for eye/mouth time (EMT) in the neutral, happy, angry, and disgusted conditions
 - Can the means model be wrong?

- **Null and alternate hypotheses:** $H_0: \mu_N = \mu_H = \mu_A = \mu_D$
 H_1: at least one mean differs.
Example, cont.

- Error model:
 - Is the usual error model plausible? (Also, check using EDA before formal analysis and residual plots at the end.)
 - Making a conclusion: Plausible parameter values (95%CI) or p-values (compare a statistic to its null sampling distribution, e.g., compare $F=MS_B/MS_W$ to the null distribution $F_{k-1,N-k}$).

1) Before running the experiment

- **Generalizability (external validity):** If we get “statistically significant” results, will rational critics claim applicability to the real world is overly limited? External validity comes from appropriate (ideally random) selection of subjects from a population (and not-too-rigid or narrow control of experimental conditions).

- **Interpretability:** If we get “statistically significant” results, will rational critics claim that the effects seen may not be due to what we say that are due to?
 - Internal validity comes from random assignment of treatment to subjects. A non-randomized study has great potential for confounding. If experimental groups differ on more than one thing, we also have confounding.
 - Use of a control condition
 - Use of blinding
Before running, cont.

Power: (probability of rejecting the null hypothesis when a particular alternative hypothesis is true and for a particular sample size and residual variance)

When we see a non-significant result, will our critics claim that there really is an effect of treatment, but we just designed our experiment poorly and had insufficient power?

- Reduce error (residual; within groups) variance (σ^2) considering the four sources of variation:
 - Subject-to-subject
 - Environmental
 - Treatment application
 - Measurement of the outcome
Power, cont.

- Consider “design measures” to reduce error variance, such as within-subjects design, blocking, and means modeling of important factors and/or covariates. All of these improve power by reducing error variance.
- Assure treatment is of appropriate “strength” (compared to control).
- *Calculate* the power for alternative hypotheses that correspond to appropriate substantive significance (e.g., clinical benefit, cost-efficiency, etc.).
- Use enough subjects to get, sufficient power (e.g. ≥80%) for important alternative hypotheses.
Before running, cont.

Best experiment possible: Think about: pilot testing, good experimenter training, good record keeping, valid randomization, effective blinding, good “x” measurement, avoiding inter-subject communication, etc.

2) Perform the Experiment
3) Exploratory Data Analysis

- Perform EDA to
 - learn the distribution of each variable
 - find mistakes and outliers
 - make initial check of model assumptions (linearity, additive vs. interaction model, equal variance)
 - make tentative, initial hypothesis testing (mean/median differences, zero vs. non-zero slope, pattern of means).
4) Formal Analysis

- Formal analyses produce p-values for choosing between null and alternative hypotheses about scientifically interesting parameters.

- Choose a standard model and corresponding (initial) analysis.
Concept of Interaction

- Applies (should be considered) whenever there are **two IVs** in a model (or more than two).

- Terminology: There is an interaction between IV A and IV B in their effects on the DV. **Not** between levels of an IV, e.g., between control group and male.

- Implies: The **effect of** a change in IV A on the mean of the DV **depends on** the level or value of IV B. (And always vice versa.)

- As opposed to: **no interaction** (additive model) where the effect of a change in IV A on the mean of the DV is the **same** for every level or value of IV B.
Use the following table for \textit{continuous outcomes} with \textit{independent errors}, especially one measurement per subject (between-subjects design).
<table>
<thead>
<tr>
<th>Explanatory Variables</th>
<th>Model Assumptions</th>
<th>H_0 vs. H_A</th>
<th>EDA</th>
<th>Formal Analysis</th>
</tr>
</thead>
</table>
Formal Analysis, cont.

Interpreting **ANOVA** tables

- **Rows:** corrected model; between group / individual factor main effects; interaction; error / residual / within groups; (corrected) total
- **Columns:** SS(D); df; MS=SS/df;

 \[F = \frac{MS_{between}}{MS_{error}} \]

 - “D” is a specific deviation from a sample mean
 - Degrees of freedom is a measure of the “effective” number pieces of information in an SS or MS or F.

- **MS_{within}** or **MS_{error}** or **MS_{residual}** is \(\sigma^2 \): 95% of individual values fall within \(\pm 2 \sigma \) of the **group mean**.

- Other MS values estimate \(\sigma^2 \) + some treatment effect
Formal Analysis, cont.

Interpreting ANOVA tables, cont.

- Null & alternative hypotheses and p-values
 - **Corrected model**: H_0: no IVs have any effect on the DV
 - **Interaction (A*B)**: Used for model selection.
 - H_0: additive model is good enough (or interaction is not needed)
 - H_A: Interaction model is needed.
 - **Main effects (A, B, separately)**: $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$ (ignoring other factors). It is silly to ignore other factors if the effect of the factor of interest depends on other factors.
Formal Analysis, cont.

Interpreting ANOVA, cont.

- Interpreting 2-way ANOVA results
 - If I/A p-value ≤ 0.05, conclude “both factors affect the DV in a complicated way, i.e., the effect of a level change of factor A on the DV depends on (varies with) the level of factor B”. [Contrast tests are needed for any additional conclusions.]
 - If I/A p-value >0.05, choose the additive model (parsimony). Read additive model main effects to test the individual null hypothesis about each factor ignoring the other. Four cases: A, B, both, neither affect the DV.
 - Compare means if $k=2$ (which is better?). [Do planned contrasts and/or post-hoc testing when $k>2$.]
Formal Analysis, cont.

- Interpreting **regression** results (incl. ANCOVA)
 - Rows: Intercept (“Constant”) and each IV, possibly including indicator variables and interactions (product variables).
 - Columns: “B”, i.e., unstandardized parameter estimates; SE(B); [standardized estimates]; T=B/SE(B); p-value (“sig”)
 - In SPSS, the “B” column shows estimates of parameters, e.g., b_0 or $\hat{\beta}_0$, not parameter values, e.g., β_0, because the latter is a secret of nature.
 - All p-value are for $H_0: \beta_{\text{something}} = 0$ vs. $H_A: \beta_{\text{something}} \neq 0$.
Formal Analysis, cont.

- Interpretation of regression results
 - Simple regression means model:
 - \(\text{E}(Y|x) = \beta_0 + \beta_1 x \)
 - \(\beta_0 \) is the population mean of \(Y \) when \(x=0 \)
 - Interpretation as “mean of \(Y \) when \(x=0 \)” requires \(x=0 \) makes sense and there is data near \(x=0 \).
 - Interpretation of \(H_0: \beta_0=0 \) is meaningful only if both \(H_0 \) and \(H_A \) were scientifically possible before running the experiment.
 - \(\beta_1 \) or \(\beta_x \) is the change in population mean of \(Y \) when \(x \) goes up by one unit.
Formal Analysis, cont.

Setup for **ANCOVA** (in the regression format)

- For any \(k \)-level factor (categorical IV), choose a baseline, code all other levels as indicator variables, and use only the \(k-1 \) indicators to represent the factor in the model.

- Create interaction variables, as products of the IVs. Specifically for one factor and one covariate (quantitative IV), multiply each indicator by the covariate to create \(k-1 \) interaction variables.

- Means models (e.g., indicators B,C, covariate \(x \)):
 - Additive: \(E(Y) = \beta_0 + \beta_B B + \beta_C C + \beta_x x \)
 - I/A: \(E(Y) = \beta_0 + \beta_B B + \beta_C C + \beta_x x + \beta_{Bx} Bx + \beta_{Cx} Cx \)

- Note: Baseline level, e.g., “A”, is “invisible”.
Formal Analysis, cont.

- Interpretation of ANCOVA (in the regression format)
 - For ANCOVA in SPSS, use the single model-2 F-change statistic and p-value to choose which model to interpret.
 - Know how to write the overall model equation plus the simplified equations for each individual factor level (including the baseline). Model equations use $E(Y)$ and β’s. Prediction (fit) equations use \hat{Y} and b’s.
 - Interpret using EDA plot, coefficient table and simplified equations all together. Make detailed interpretations (as opposed to 2-way ANOVA).
Interpreting ANCOVA (in the regression format)

- Interpret intercept as the true (parameter β_0) or estimated (b_0, SPSS “(constant)”) mean outcome for subjects in the baseline category with the covariate equal to zero (convert to subject matter words, including for indicator variables). Ignore if substantively meaningless or if $x=0$ is a gross extrapolation.

- Interpret the non-indicator, non-interaction slope coefficient as the change (up or down) in mean outcome for a one-unit increase in the covariate for the baseline category. In an additive model this also applies for all other categories.
Interpreting **ANOVA**

- Interpret indicator variable coefficients as *changes in intercept* for a given category *relative to the baseline* category (all zero indicators, missing in SPSS tables). For additive models this becomes *at each x value*.

- Interpret continuous by indicator interaction coefficients as the *change in slope* for a given category *relative to the baseline* category.
Formal Analysis, cont.

- **Interpreting ANCOVA**
 - Mean Squared Error, MSE, is an estimate of σ^2. (Square root is in the units of the outcome.)
 - The residual for each observation is the observed value minus the expected (predicted) value. This is an estimate of the “error” and represents unexplained variation.
 - Residual plots are used to test assumptions.
 - R-squared is a unitless measure of the closeness of the observations to the prediction “line”. Quantitatively it is “percent of variation in the outcome explained by the explanatory variables.”
5) Model Assessment

- Know that p-values and confidence intervals have the correct meaning only if the assumptions are (approximately) met. (Depends on robustness.)

- Check assumptions with formal tests
 - Less commonly done (often less useful): Levene’s test for equal variance, t-test for skew or kurtosis
 - Commonly done: check if interaction is needed (F-change test in ANCOVA, interaction p-value in 2-way ANOVA)
 - Commonly done: Add a square term for a quantitative IV to check for non-linearity
 - [Sometimes done: Durbin Watson test for serial correlation]
Model Assessment, cont.

➢ Check assumptions informally
 ▪ ANOVA or regression (incl. ANCOVA): Check normality of residuals by quantile-normal (or PP) plot. (These analyses are robust to moderate non-normality.)
 ▪ ANOVA: Check residual vs. predicted (fitted) plot. Non-zero group means suggests non-additivity (interaction). Check for unequal spread (funneling); these analyses are robust to less the 2:1 spread ratio.
 ▪ Regression (incl. ANCOVA): Check residual vs. predicted plot. A consistent pattern of non-zero means (smile or frown) suggests non-linearity (no analyses are robust to non-linearity). Also check for unequal spread.
6) If needed, modify the model and try again

- Drop non-significant interaction terms (Occam’s razor = parsimony).
- Transform the DV (e.g., log or square root) to see if equal spread, normality of errors, and/or linearity are better on a different scale.
- Transform IV(s) to see if linearity is better on a different scale. (Commonly, add the square of a continuous explanatory variable.)
7) Report Results (Critical on exam!)

- Give appropriate regression coefficient estimates (best with confidence intervals), prediction equations and/or plots, condition means and/or interaction plots. Usually 3 significant digits are all that are meaningful, so round appropriately.

- Report p-value (NOT 0.000!) not just reject/retain. Include the corresponding statistic (t, F, etc.). State which specific H_0/H_A the p-value refers to. (Do not report unimportant p-values, e.g., the intercept in an ANOVA.)

- Report the direction of the effect(s)!!! Put coefficient estimates into words, never just “x” and “y”.

- Appropriately explain interaction (plot plus corresponding meaning of p-values).
Report Results, cont.

- [Perform appropriate planned or post-hoc comparisons (contrasts).]
- [Un-transform where appropriate.]
- Never say proved! “Provides evidence supporting” is good jargon. Be honest about removal of outliers, assumption violation, limited generalizability, and limited interpretability. Appropriate use “cause” vs. “associated with”.
- Consider the possible role of “bad luck” (type-1 error if $p \leq 0.05$; type-2 error if $p > 0.05$).
8) Place your experiment in context

- Speculate on the connection between the operationalized world of the experiment and the real world.
- Consider what future experiments are needed or suggested by your work.
Possible schizophrenia experiments

• Outcome is EMT (eye-mouth time).
• Explanatory variable is emotion shown (neutral vs. negative vs. positive).
Possible schizophrenia experiments

• Outcome is EMT (eye-mouth time).
• Explanatory variables are emotion shown and photo vs. drawing.
Possible schizophrenia experiments

- Outcome is EMT (eye-mouth time).
- Explanatory variable is a quantitative emotion measure (anger pictures only).
Possible schizophrenia experiments

• Outcome is EMT (eye-mouth time).
• Explanatory variables are emotion shown and a quantitative measure of reaction time for an unrelated task.