
1

CMU MSP 36602 Advanced Python: Classes 22 Apr 2019

1) You are already used to using Python classes

a. E.g., x = [1, 5, 7] creates an object of class “list”.

b. Then x.pop() uses the pop method on x to remove and return the last value.

c. type(x) shows the class of x

d. dir(x) shows the attributes and methods of a “list” (if x is a list)

e. dir(list) works identically to dir(x) when type(x) is “list”.

f. You may need to use, e.g., type(x.pop) to see if “pop” is a method vs. data attribute

g. Note that assignment may well not be needed or appropriate when altering class data
with a class method, e.g., x = [1, 2]; x.clear(); x shows an empty list.

h. New for us: The “double underscore” methods correspond to special “magic methods”
related to the implementations of the built-in functions for the class. E.g., a class may
define a __len__() method (sometimes called “dunder len”). This allows the len()
function to work (according to user specifications) on the class.

E.g., dir(list) show us that lists implement len(), “<” (using “__lt__”), etc. Some
built-in functions are implemented via other dunders, e.g., iteration requires __iter__
and __next__ and max() requires iteration and __lt__ (see below).

2

2) Writing your own Python classes

a. Planning is key. Break larger programming tasks into separate pieces, including classes,
based on DRY, reusability, separation/encapsulation, and clarity.

b. The basic Python 3 code to start a class definition is: class Spam(object):

i. The “(object)” is optional. Anything inside of parentheses indicates that this
class “inherits” functionality from another class, possibly a “virtual class”, i.e.,
one that can only be inherited from and not instantiated. If omitted, “(object)”
is assumed, and ‘object’ is a simple class that makes simple definitions of the
comparison operator methods and the defines __str__() as __repr__().

ii. The convention is UpperCamelCase for the class name.

c. To create an instance of a class that you have defined, use code like spam = Eggs()
to create an instance of the class “Eggs” called “spam”. Then ham = Eggs() creates a
second instance. You can also initialize the instantiation with arguments, e.g., bacon =
Eggs(with_meat=TRUE, slices=4) (see below). If you are a vegan use, e.g.,
breakfast = MealSansAnimalProducts(oatmeal=True, fruit="apple").

d. Classes have access to three types of variables: global variables (rarely appropriate),
the automatic variables created from the arguments to each method defined in the
class (but only while that method is running), and the special “self” variable that
corresponds to variables defined separately for each instantiation of the class. E.g., you
may have many instantiations of an Employee class, and each will have a different value
for self.name, but they would all share a common method (function) called
self.get_name(). In addition, you do have access to global built-in functions, and the
global classes and functions you have imported. (Note that the variable name “self” is
only a very strong convention, but not a keyword or requirement.)

e. To define a method for a class you use the usual def spam(foo): syntax, but the first
argument is required and special, and should be called “self”. This is used to give your
function (method) access to the contents of the variables in the current instantiation of
the class. When you access a method such as increment_salary() for an
instantiation of a class such as “Employee” named “howard” in code outside your class,
you typically use a form like howard.increment_salary(5000). This is actually translated
by Python into Employee.increment_salary(howard, 5000), which explains why
every function definition uses “self” as its first argument.

3

f. A first class definition: creating a class with some extra string functionality (similar to
the “string” module)

In file "StringPlus.py":
class StringPlus(object):
 """ Functions to get a list of digits, lower case letters and
 upper case letters. Also, set and get your name.
 """
 def digits(self):
 """ Return a list of the 10 digits """
 return list("0123456789")

 def lower_letters(self, count):
 """ A list of the first 'count' lower case letters """
 return list("abcdefghijklmnopqrstuvwxyz"[:count])

 def upper_letters(self, count):
 """ A list of the first 'count' upper case letters """
 return list("ABCDEFGHIJKLMNOPQRSTUVWXYZ"[:count])

 def set_name(self, name):
 """ Set your name for later retrieval """
 self.my_name = name
 return self

 def get_name(self):
 """ Retrieve your name (fails if not first set!) """
 return self.my_name

In another file (testStringPlus.py):
from StringPlus import StringPlus
sp = StringPlus()
print("isinstance(x1, StringPlus):", isinstance(sp, StringPlus))
print("".join(sp.digits()))
print(sp.lower_letters(5) + sp.upper_letters(2))
print(sp.get_name()) # fails!
sp.set_name("Howard")
print(sp.get_name())
print(sp.my_name)
sp.set_name("Seltman").get_name()
help(sp)
help(sp.get_name)

Important note:

If you change the code for a module, just re-running import myModule will not activate
the new code. Instead, when developing a module, including a new class definition, you
should run import importlib, and then use importlib.reload(myModule) to
activate the new code.

4

g. Adding functionality to the class with magic methods
i. An __init__(self[, argument[, …]]) method is used to initialize any

per-instantiation data variables, as well as to allow arguments so that each
instantiation starts differently. E.g., a Book class might use arguments to set
the “title”, “ISBN”, “author” and “year”, but it will always set “condition” to
“new” and “checked_out” to False. Because you don’t know the order that the
methods will be called, it is good to set appropriate defaults for every class level
variable. E.g., the StringPlus class should have had in __init__(self)
method that included self.my_name = None.

ii. The default __repr__(self) method is the string “<class 'foo'> “. The
intent is that you provide a method that shows how to recreate foo, if possible
and reasonable. This method is used if you write repr(foo) or just foo.

iii. The __str__(self) method is provided to implement str(foo), which is
intended to be a “human” oriented representation of the object. By default,
repr() is used, but you should write your own __str__ if something better
than repr(foo) is possible. You must return a str.

iv. A __len__(self) method is needed to allow len(foo) to work on foo
instantiations of your object. Note that there is no general idea of length for all
possible class objects.

v. A __getitem__(self, key) method should be included if you want users to
be able to use foo[index] on a foo instantiation of your object.

h. Breakout: Make a class that implements the Fibonacci series. Initiate with the length
(>=2) and in the initiation, compute and store the series as a list element called
“sequence”. Implement _repr_(), __str__(), __len__(), __getitem__().

i. Adding more functionality to the class with magic methods
i. You may want your class to support iteration, e.g., be the object after “in” in

for index in object:. To do this you must implement __iter__(self)
in your class. This method initializes the iteration, e.g., sets an internal indexing
variable to 0. It must return a class object that contains a __next__()
method. Usually this is just “self” with __next__() in your class.

What happens “under the hood”: The “for loop” (and other related
functionalities) work by first calling iter(foo) when you write for index in
foo:, which actually calls foo.__iter__(). The return value has a __next__()
method, and this method is called repeatedly and index is set to
__next__()’s return value (repeatedly). The whole thing stops when
__next__() throws the StopIteration exception.

What you must implement: __next__() should return a single value (typically
based on an index set to 0 by __iter__(), then it usually increments the
index. Usually there is an if statement at the beginning of the method that
throws StopIteration if there are no more values to return.

An alternative to providing __iter__() and __next__()is to just implement
__getitem__().

5

ii. __eq__() and __ne__() define equality and inequality. They are used when
you have code like x==y or x!=y. The defaults just compare the memory
address of the objects! Usually you want to compare some or all of the instance
variables and the class of the second object. If you run x == y, and x is of class
“foo”, then by definition, you are running foo.__eq__(self, other=y). It
is possible that y is of a different class and the it has the same attributes as x
and the same values, but you probably don’t want to call x and y as equal.
Usually you need to check isinstance(y, self.__class__) as part of
your equality test.

iii. To support set()s of your class objects and dictionaries that use your class
objects as the key, you need to implement the __eq__(self, other)
method (which also defines foo == spam) and the __hash__(self) method
which supports the hash(foo) function. [Discussion of hashing.] Your object’s
data usually consists of some collection of objects that are likely to have their
own hash() function pre-defined, so the task is really to write a method that
combines several hash values. See the example below for one good method.

iv. To support min() and max() and to allow use of foo1 < foo2, define
__lt__(self, other) which defines the meaning of less than in the form of self
< other.

v. If you have lt, you will probably also want gt, le, ge, eq, and ne.

vi. You can implement addition (and thus, sum()) with __add__(self,
other)and __radd__(self, other). You can implement += with
__iadd__(self, other); The __radd__() function is tried when you run
x+y, but the class of x does not have and _add_() function.

6

j. Example: Class definition with magic methods

"""
Rectangle is a test class for 36602, H. Seltman, April. 2019
Show basic methods desired for most classes.
"""

class Rectangle(object):
 """ A class that holds width and length, computes area,
 and implements math by constructing a square with the
 appropriate area.
 """
 def __init__(self, length, width):
 """ Class is initialized with length and width """
 self.set_length(length)
 self.set_width(width)

 def get_length(self):
 return self.length

 def set_length(self, length):
 if not isinstance(length, (int, float)) or length <= 0:
 raise ValueError
 self.length = length

 def get_width(self):
 return self.width

 def set_width(self, width):
 if not isinstance(width, (int, float)) or width <= 0:
 raise ValueError
 self.width = width

 def get_area(self):
 """ Compute the rectangle's area """
 return self.length * self.width

 def __repr__(self):
 """ Standard representation of a Rectangle class object """
 return "Rectangle(length=" + str(self.length) + \
 ", width=" + str(self.width) + ")"

 def __str__(self):
 """ Human representation of a Rectangle class object """
 return str(self.length) + " x " + str(self.width) + \
 " rectangle"

 def __len__(self):
 """ I choose to define length as floor(perimeter) """
 return int(2.0 * (self.length + self.width))

7

 def __getitem__(self, key):
 """ Implement indexing as foo[L/W] (flexibly) """
 if not isinstance(key, str):
 raise TypeError
 key = key[:1].upper()
 if key not in ('L', 'W'):
 raise IndexError
 if key == 'L':
 return self.length
 else:
 return self.width

 def __iter__(self):
 """ Silly implementation of the first half of iteration """
 self.__index = 0
 return self

 def __next__(self):
 """ Silly implementation of the second half of iteration """
 if self.__index >= self.get_area():
 raise StopIteration
 self.__index = self.__index + 1
 return self.__index

 def __key(self):
 """ 'Private' method to define a key as a tuple """
 return (self.length, self.width)

 def __eq__(self, other):
 """ Define equality as same length and width """
 return isinstance(other, self.__class__) and \
 self.__key() == other.__key()

 def __hash__(self):
 """ Hash based on length and width """
 # simplest method, perhaps inefficient
 return hash(self.__key())

 def __lt__(self, other):
 """ Area based '<' """
 return self.get_area() < other.get_area()

 def __ne__(self, other):
 """ Inequality based on different length or width """
 return not isinstance(other, self.__class) or \
 self.__key() != other.__key()

 def __gt__(self, other):
 """ Area based '>' """
 return self.get_area() > other.get_area()

 def __le__(self, other):
 """ Area based '<=' """
 return self.get_area() <= other.get_area()

8

 def __ge__(self, other):
 """ Area based '>=' """
 return self.get_area() >= other.get_area()

 def __add__(self, other):
 """ Add means make a square with area equal to their sum """
 area = self.get_area() + other.get_area()
 new = Rectangle(1, 1) # arguments are arbitrary
 new.length = area**0.5
 new.width = new.length
 return new

 def __radd__(self, other):
 """ Reverse add adds a Rectangle and either a numeric or
 another Rectangle
 """
 if isinstance(other, (int, float)):
 new = Rectangle(1, 1) # arguments are arbitrary
 new.length = (other + self.get_area())**0.5
 new.width = new.length
 return new
 else:
 return self + other

 def __sub__(self, other):
 """ Subtract returns a square Rectangle with the area
 equal to the difference of areads """
 if other.get_area() >= self.get_area():
 return ValueError
 new = Rectangle(1, 1) # arguments are arbitrary
 new.length = (self.get_area() - other.get_area())**0.5
 new.width = new.length
 return new

 def __mul__(self, other):
 """ Multiply returns a square Rectangle with the area
 equal to the product of areas """
 new = Rectangle(1, 1) # arguments are arbitrary
 new.length = (self.get_area() * other.get_area())**0.5
 new.width = new.length
 return new

 def __truediv__(self, other):
 """ Divide returns a square Rectangle with the area
 equal to the ratio of areas """
 new = Rectangle(1, 1) # arguments are arbitrary
 new.length = (self.get_area() / other.get_area())**0.5
 new.width = new.length
 return new

 def copy(self):
 return Rectangle(self.length, self.width)

9

if __name__ == "__main__":
 # Test through get_area()
 try:
 x1 = Rectangle() # fails!
 except TypeError:
 print("TypeError: __init__() missing 2 required positional"
 + "arguments: 'length' and 'width'")
 try:
 x1 = Rectangle(0, 2) # fails!
 except ValueError:
 print("ValueError")
 try:
 x1 = Rectangle(1, -2) # fails!
 except ValueError:
 print("ValueError")
 x1 = Rectangle(1.5, 2)
 print("x1.get_length():", x1.get_length())
 print("x1.get_width():", x1.get_width())
 print("x1.get_area():", x1.get_area())
 x1.set_width(5.5)
 print("x1.get_width():", x1.get_width())
 print("x1.get_area():", x1.get_area())

 # Result of overriding default for __repr__()
 print("repr(x1):", repr(x1)) # same as x1 at the prompt

 # Result of overriding default for __str__()
 print("str(x1):", str(x1))
 print("x1:", x1)

 # Result of supplying __len__()
 print("len(x1)):", len(x1))

 # Result of supplying __getitem__()
 print("x1['L']:", x1['L'])
 print("x1['width']:", x1['width'])
 try:
 print("x1[0]:", x1[0])
 except TypeError:
 print("TypeError")
 try:
 print("x1['A']:", x1['A'])
 except IndexError:
 print("IndexError")

 # Result of implementing __iter__ and __next__
 x2 = Rectangle(width=4, length=2)
 print("x2:", x2, " area =", x2.get_area())
 print("Using x2 in a for loop:")
 for i in x2:
 print(i)
 print("tuple(x2):", tuple(x2))

10

 # Result of implementing __eq__ and __hash__
 print("x2 == Rectangle(width=2, length=4):",
 x2 == Rectangle(width=2, length=4))
 print("x2 != Rectangle(width=2, length=4):",
 x2 != Rectangle(width=2, length=4))
 print("set([x1, x2]):", set([x1, x2]))
 d = {x1: 'first', x2: 'second'}
 print("d[x2]:", d[x2])

 # Result of implementing __lt__
 x3 = Rectangle(2, 3)
 print("x3:", x3)
 print("area(x2) =", x2.get_area(), " area(x3) =", x3.get_area())
 print("x2 < x3:", x2 < x3)
 print("x2 > x3:", x2 > x3)
 print("max(x1, x2, x3):", max(x1, x2, x3))
 print("x2.__lt__(x1):", x2.__lt__(x1))

 # Result of implementing additional comparisons
 print("x2.__le__(x1):", x2.__le__(x1))
 print("x2 <= x3:", x2 <= x3)
 print("x2 >= x3:", x2 >= x3)

 # Result of implementing __add__
 x4 = Rectangle(1, 1)
 print("x2:", x2)
 print("x4:", x4)
 print("x2 + x4:", x2 + x4)

 # Results of implementing __radd__
 print("sum([x4, x4, x4, x4]):", sum([x4, x4, x4, x4]))

 # Result of implementing __sub__, __mul__, and __div__
 print("Rectangle(1, 11) - Rectangle(1, 2):",
 Rectangle(1, 11) - Rectangle(1, 2))
 print("Rectangle(1, 2) * Rectangle(1, 8):",
 Rectangle(1, 2) * Rectangle(1, 8))
 print("Rectangle(2, 9) / Rectangle(1, 2):",
 Rectangle(2, 9) / Rectangle(1, 2))

 # Result of implement copy()
 x5 = x4
 x4.set_length(11)
 print("x5.get_length():", x5.get_length())

11

3) Summary of writing classes

a. Consider what data to store and how
b. Consider what methods to provide
c. Use set/get functions to hide implementation details
d. Write documentation strings as you go
e. Write an __init__ method
f. Write __str__ and perhaps __repr__
g. Write __getitem__ if you want to support indexing
h. Write __len__ if you want to support len()
i. Write __iter__ and __next__ if you want to support iteration
j. Write __eq__ and __hash__ if you want to support set() and dictionary keys
k. Write __lt__ if you want to support min(), max() and “<”
l. Write __add__ if you want to support “+”
m. Write __radd__ if you want to support sum()
n. Write __sub__, __mul__, __truediv__ if needed
o. Write copy() and deepcopy() if you want that functionality
p. Write each method along with test code

