
1 
 

CMU MSP 36602 Intro to Hadoop 
H. Seltman, Feb 20+25, 2019 

a) Starting and Stopping Hadoop on your Ubuntu Virtual Machine 

i) Hadoop is implemented as a Java process. Check which Java processes are running with jps.  
You should only see “Jps” itself. 

ii) Start Hadoop and Yarn on your machine by clicking the green arrow “Start Hadoop” button 
on the left side of your Ubuntu console.   

iii) Verify that all of the components are working by running the jps command again.  You 
should see the “NameNode” and “DataNode” which are the Hadoop processes, and 
“NodeManager” and “ResourceManager” which are the Yarn processes.  Now you know 
how to check if Hadoop is running on your machine. 

iv) To stop Hadoop, click the red “Stop Hadoop” button.  The UNIX command jps can be used to 
verify that all of the Hadoop Java processes have been shut down.  There are reports that 
you may run into difficulty if you do not stop Hadoop before closing VirtualBox.  To close 
VirtualBox close the window or use the menu item File/Close.  Either “saving the machine 
state” or “powering off” the machine are OK. 

b) Getting to know the Hadoop file system 

i) The Hadoop file system runs alongside the UNIX file system.  We use the hdfs (hadoop 
distributed file system) command to manipulate the Hadoop file system and transfer files 
between systems.  Hadoop analyses only run on the Hadoop file system. 

ii) Think of the hdfs command as the “prefix” to a set of standard commands that apply to the 
Hadoop file system. 

iii) Most of the commands of hdfs are technical things you will likely never need to use.  The 
main command is dfs. The syntax is hdfs dfs -subcommand [subcommand 
options].   You can see valid the subcommands here.   Many of the subcommands mimic 
standard UNIX file commands, e.g., ls, mkdir, etc., but not cd. 

iv) On your version of the Hadoop machine, your home directory on the Hadoop side is 
“/users/student” (as opposed to /home/student” on the UNIX side).  Your working directory 
is your (unchangeable) home directory. 

v) Here are the most useful sub commands for the hdfs dfs command: 

(1) ls, e.g., hdfs dfs -ls /user/student 

(2) mkdir and rmdir, e.g., hdfs dfs -mkdir test 

(3) put UNIXFile(s) HadoopFileDir, i.e., transfer file(s) from UNIX to Hadoop, e.g.: 

echo abc > letters.txt; echo def > letters2.txt 
ls 
hdfs dfs -put letters.txt letters2.txt /user/student 
[or hdfs dfs -put letters.txt letters2.txt . ] 
hdfs dfs -ls 

(4) get HadoopFile(s) UNIXDir, i.e., transfer file(s) from Hadoop to UNIX, e.g., 

hdfs dfs -get /user/student/letters*.txt ~/test 

https://hadoop.apache.org/docs/r2.7.1/hadoop-project-dist/hadoop-common/FileSystemShell.html


2 
 

(5) appendToFile UNIXFile HadoopFile, e.g., hdfs dfs -appendToFile 
letters2.txt /user/student/letters.txt  

(6) cat, e.g., hdfs dfs -cat letters.txt 

(7) Additional commands (with obvious syntax) include rm, mv, cp, tail (but not 
head), and du (disk usages). 

c) Appending to ~/.bashrc to make some commands be “auto-run” 

i) The UNIX file “~/.bashrc” contains important commands that are entered into your bash 
shells as they start up.  You can add to that file (typically at the end of the file). 

ii) We will be running various examples stored in a jar (Java Archive) file that comes with 
Hadoop.  First use which hadoop to find where the hadoop binary lives on your system.  
Then replace “bin/hadoop” with “share/hadoop” and ls at this new location.  This shows 
the folders for various hadoop programs.  Look in the “mapreduce” folder and note the 
name of the .jar file containing the examples.  Examine the shell variable called “mrex” that I 
loaded in the your auto-run file.  We will need this soon. 

iii) Here is another line that I put in your auto-run file: alias dfs="hdfs dfs". This means 
that when you type “dfs” it is equivalent to typing “hdfs dfs” (just to save typing).  You can 
use the “alias” command to view all current aliases.  Consider periodically adding other 
entries to “~/.bashrc”.  Note that commands you add are not run until the next time you 
open a terminal.  

d) First Hadoop project: word counting 

i) Create UNIX folder “ex1” in your home directory and cd to it. 

ii) Make a simple, useless input dataset with ps -aux > psaux.txt 

iii) Create folder “/user/student/ex1” on the hadoop file system using the syntax hdfs dfs -
mySubcommand myOptions (or use the alias).  Note that on the Hadoop side “ex1” points 
to “/user/student/ex1”. 

iv) Copy the psaux.txt “input” text file to “ex1” on the Hadoop file system using hdfs dfs -
put with the appropriate source and destination. 

v) Open Firefox from the Ubuntu icon, and click on the quick links bar link to “Hadoop jobs”. 

vi) Back in the terminal window, start the Hadoop job to use map-reduce to count the words in 
“psaux.txt”.  We will use the hadoop command with the first argument jar to tell it that we 
are using the option to supply the map-reduce program we want to run in the form of 
compiled java byte-code in a Java ARchive.  As you might expect, the parameter after 
hadoop jar is the name of the jar, and you can now use your shell variable $mrex rather 
than typing that long file path.  As you also might expect, what follows hadoop jar $mrex 
is any options to the examples jar.  In this case the parameters are first the name of one of 
the many examples in the jar (wordcount now), followed by any specific parameters for 
that example (input file and output directory).  So the full command you need is hadoop 
jar $mrex wordcount ex1/psaux.txt ex1/out.  Note that the program you run is 
on the normal UNIX file system, while the input data and output files are on the Hadoop 
file system.  (The hadoop command loads the code onto the Hadoop machines.) 



3 
 

vii) Various lines of information show on the screen (hopefully no errors).  Quickly go to the 
Firefox window and press F5 to update the information.  You may see part of what is 
happening if you are quick enough.  You can click links to get more info.  Play a bit. 

viii) Return to the UNIX window, assure that you have a new prompt, and examine the ancillary 
data (in the terminal window) about your first map-reduce analysis. 

ix) Examine your actual Hadoop results using hdfs dfs to see the contents of the “ex1/out” 
folder.  You should see a file called “_SUCCESS” with size 0, which indicates success, and a 
file called “part-r-00000” with a size of about 10KB containing your results.  Use the hdfs 
dfs -get command to get that result file into your UNIX file space.  (You can use just a 
period for the destination to indicate “here” with the same file name. 

x) Use the plain old UNIX head and tail commands to examine the copy of your results that you 
pulled back into the UNIX file system.  Can you write a piped command to count how many 
words have greater than one occurrence? 

xi) Use ls -lrt psaux.txt to see the size of “psaux.txt”.   Use ps -aux >> psaux.txt to 
put more text into the input file.  Re-check the size.  Think carefully, then carry out all steps 
to re-run the analysis on the new input.  Note that you will need to delete the old output 
files or use a different directory name.  Rename the old output file on the UNIX side to a 
different name before getting the new output file.  Compare the number of words between 
the two files, the number of non-singlicate words, and the counts for a few specific high 
frequency words. 

  



4 
 

e) Second Hadoop project: word counting from your own Java program 

i) Imagine that you knew how to write your own Java code.  Create “/home/student/ex2” on 
UNIX and “/user/student/ex2 on Hadoop”.  Download and skim “WordCount.java”.  (One 
way to get the file is  

wget http://www.stat.cmu.edu/~hseltman/602/code/WordCount.java 

What other ways do you know?)  Here is how to byte-compile the program to (three) class 
files, and then combine those into a jar file called “wc.jar”: 

As one-time setup, type these UNIX commands: 

echo $JAVA_HOME 
echo $PATH 
if needed: 
export PATH=${JAVA_HOME}/bin:${PATH} 
echo $PATH 
 
echo $HADOOP_CLASSPATH 
if needed: 
export HADOOP_CLASSPATH=${JAVA_HOME}/lib/tools.jar 
echo $HADOOP_CLASSPATH 
 
Compile using: 
hadoop com.sun.tools.javac.Main WordCount.java 
ls -lrt 
 
Combine the classes into a Jar using: 
jar cf wc.jar WordCount*.class 
ls -lrt 

ii) Now think about how you could run the word count task using your jar file instead of the 
one from $mrex.  Note that the name of the app in the wc.jar file is “WordCount”.  Run it. 

  

http://www.stat.cmu.edu/%7Ehseltman/602/code/WordCount.java


5 
 

f) Third Hadoop project: word counting in Python 

i) You can look at the reference, http://www.michael-noll.com/tutorials/writing-an-hadoop-
mapreduce-program-in-python/ in your browser. 

ii) Note: On either the Unix or the Hadoop side “/usr/bin/python” is 2.7, “/usr/bin/python3” is 
3.5, and “/usr/bin/env python” is 2.7.  On the Unix side, “python” is python 3.5 via an alias. 

iii) Create folder “ex3” and cd to it.  Download mapperWC.py and reducterWC.py from 
602/code.  Be sure you understand the code. 

iv) Try the following test code in UNIX: 

chmod u+x mapperWC.py  
echo "spam spam 602 spam eggs" | ./mapperWC.py 

chmod u+x reducerWC.py  
echo "spam spam 602 spam eggs" | ./mapperWC.py | sort | ./reducerWC.py 

ps -aux | grep -v stringPrefs | ./mapperWC.py | sort | ./reducerWC.py 

ps -aux | grep -v stringPrefs > psaux.txt 

v) Sill on Unix, map and reduce psaux.txt.  Add a pipe through “cut” using “-d$'\t'” to get 
just the counts.  Sort the result using the -g flag to get a numeric sort.  Pipe through 
“uniq” using the -c flag to count. 

vi) Make “/user/student/ex3” in the Hadoop file system.  Upload “psaux.txt” to Hadoop. 

vii) In Unix, list the files in “/usr/local/hadoop/share/hadoop/tools/lib” restricting to those 
filenames containing “str”.  These are the Java ARchives that we can use to run our Python 
programs.  Examine the shell variable “sjar” that I put in your auto-run. 

viii) Run the Python map/reduce program on the Hadoop system as follows.  This both uploads 
files (with -file) and sets the mapper and reducer (-mapper and -reducer). 

hadoop jar $sjar -file mapperWC.py -mapper mapperWC.py -file 
reducerWC.py -reducer reducerWC.py -input ex3/psaux.txt -output 
ex3/out 

ix) Check the results 

g) Make mapper and reducer files to process 602/data/streets.txt as in IntroToBigData.pdf. 

http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/
http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/

