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CMU MSP 36602: Spark, Part 1 
H. Seltman, March 18-20 2019 

1) Apache Spark is an alternative to MapReduce that has a wider range of capabilities, is often faster, 
can use either Hadoop or some other distributed storage system, but uses its own processing 
system in the form of parallel in-memory cluster computing.  It requires large amounts of 
(expensive) RAM. 

2) Links: 

a) Official Website: http://spark.apache.org/  

b) Tutorial: http://www.tutorialspoint.com/apache_spark/  

c) Cheatsheet: https://d1jnx9ba8s6j9r.cloudfront.net/blog/wp-
content/uploads/2018/10/PySpark_CheatSheet_Edureka.pdf  

3) Spark is already loaded on your virtual machine. 

4) Features 

a) The in-memory computing model reduces disk I/O, speeding up tasks, often dramatically. 

b) Spark supports Java, Python, and Scala programming languages. 

c) In addition to “map” and “reduce”, Spark supports SQL queries, Streaming data, Machine 
learning, and Graph algorithms. 

d) Spark can sit directly on the Hadoop File System or on top of Hadoop Yarn or Hadoop 
MapReduce (both of which sit directly on HDFS). 

e) The fundamental data structure in Spark is RDD (Resilient Distributed Datasets).  It is an 
immutable structure partitioned across nodes of a computing cluster that is fault tolerant and 
allows parallel computing.  

f) The main components of Spark are: 

i) Apache Spark Core, which provides distributed task dispatching, scheduling, and basic I/O 
functionalities. 

ii) various top-level components of Spark which sit on the core: 

(1) Spark SQL: provides the data abstraction “SchemaRDD” to allow data analysis via SQL-
like commands 

(2) Spark Streaming: uses a distributed processing system to read data in batches and 
perform RDD transformations on those batches 

(3) MLib: performs distributed machine learning 

(4) GraphX: models user defined graphs 

  

http://spark.apache.org/
http://www.tutorialspoint.com/apache_spark/
https://d1jnx9ba8s6j9r.cloudfront.net/blog/wp-content/uploads/2018/10/PySpark_CheatSheet_Edureka.pdf
https://d1jnx9ba8s6j9r.cloudfront.net/blog/wp-content/uploads/2018/10/PySpark_CheatSheet_Edureka.pdf
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g) Spark addresses the fundamental speed weakness of MapReduce: separate jobs in a workflow 
are stored on the disks of the HDFS.  There is no other direct way to connect jobs.  Similarly, 
multiple queries on the same dataset each go back to disk storage to get the data.  Spark uses 
distributed memory (RAM) instead of a distributed file system whenever possible. 

5) Aside on Scala: Scala is a programming language designed to address deficiencies in Java, but which 
produces Java bytecode that is run on a Java Virtual Machine.   

6) Spark can be run in local mode for learning and testing.  To run on a cluster you need to prepare a 
list of Java ARchive (JAR) files to be deployed to each cluster node.  These files must be prepared 
using a “build” system such as Apache Maven or “sbt”. 

7) The basic Scala interactive version of Spark uses the Spark Shell. 

a) Invoke with spark-shell and quit with :quit. 

b) The prompt tells you that your language is scala.  The sc “spark context” variable is pre-defined. 

c) A simple scala program in spark: 

scala> val inputfile = sc.textFile("input.txt") 
scala> inputfile.getClass 
res1: Class[_ <: org.apache.spark.rdd.RDD[String]] = class  
      org.apache.spark.rdd.MapPartitionsRDD 
scala> val words = inputfile.flatMap(line => line.split(" ")) 
scala> words.collect() 
res7: Array[String] = Array(now, is, the, time, for, all, good, men,  
   to, come, to, the, aid, of, their, country., Are, you, going, to, 
   be, a, good, man?) 
scala> val countmap = words.map(word => (word, 1)) 
scala> countmap.take(6) 
res2: Array[(String, Int)] = Array((now,1), (is,1), (the,1), (time,1),  
  (for,1), (all,1)) 
scala> val counts = countmap.reduceByKey(_+_) 
scala> counts.take(5) 
res3: Array[(String, Int)] = Array((country.,1), (men,1), (is,1),  
  (you,1), (to,3)) 
/* next line keeps the RDD in memory for future operations */ 
scala> counts.saveAsTextFile("myDir") 
:quit 
 

8) pyspark lets you work in Python.  The basic data type is a parallelized list of anything.  In context, a 
tuple of length two may be interpreted as a key / value pair. 

a) Links 

i) http://spark.apache.org/docs/2.1.0/api/python/pyspark.html  

ii) http://www.mccarroll.net/blog/pyspark2/  

b) These command are your in “~/.bashrc” to make Spark will use python 3 instead of 2 (which is 
deprecated). 
export PYSPARK_DRIVER_PYTHON=python3.5 
export PYSPARK_PYTHON=python3.5 
 

http://spark.apache.org/docs/2.1.0/api/python/pyspark.html
http://www.mccarroll.net/blog/pyspark2/
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c) At the Unix prompt, identify the “Filesystem” name to access Hadoop within Spark: 

$ hdfs dfs -df  # "disk free" 
Filesystem                     Size        Used   Available  Use% 
hdfs://localhost:54310  21523689472  1860243456  9230733312    9% 

d) Start pyspark from the Unix prompt with $pyspark.  This is Python, but with access to a library 
that does Spark tasks. 

e) dir() shows that the sc object already exists.  This is the spark context class object that 
provides the Spark connection.  There can be only one spark context in a given session. 

f) The spark context has a .parallelize() method that takes a regular python data object and 
returns an RDD object.  It also has a .textFile() method that converts a file on the Linux or 
Hadoop system to an RDD object. 

To access a file on the Hadoop side, using 8c above, the filename starts 
“hdfs://localhost:54310/user/student/”. 

g) Quick pyspark word count example: 
$ echo I am the walrus > walrus.txt 
$ echo You are the walrus >> walrus.txt 
$ pyspark 
>>> walrus = sc.textFile("walrus.txt") 
>>> walrus.collect()  # careful -- use only on small data 
['I am the walrus', 'You are the walrus'] 
>>> walrus.map(lambda line: line.split()).collect() 
[['I', 'am', 'the', 'walrus'], ['You', 'are', 'the', 'walrus']] 
>>> walrus.flatMap(lambda line: line.split()).collect() 
['I', 'am', 'the', 'walrus', 'You', 'are', 'the', 'walrus'] 
>>> words = walrus.flatMap(lambda line: line.split()) 
>>> words.take(5) 
['I', 'am', 'the', 'walrus', 'You'] 
>>> words = words.map(lambda w: (w, 1)) 
>>> words.sample(withReplacement=False, fraction=0.5).collect() 
[('You', 1), ('are', 1), ('the', 1)] 
>>> counts = words.reduceByKey(lambda x, y: x + y) 
>>> counts.collect() 
[('I', 1), ('the', 2), ('You', 1), ('are', 1), ('am', 1), ('walrus', 2)] 
>>>   
>>> quit() 
$ ls walrus 
part-00000  _SUCCESS 
$ cat walrus/part-00000 

h) Running as a batch file 
Make a .py file starting with 

from pyspark import SparkContext 
sc = SparkContext("local", "myAppName", pyFiles=[]) 

and then include any pyspark code. 
At the unix prompt run: 

spark-submit myPySparkFile.py  
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i) We will divide spark context methods into three groups: i) those that do not use a key, ii) those 
that work with keys, and iii) those that tune the partitions.  In this handout, we look at the first 
of these. 

j) Spark context methods that do not use a key 

i) Note that the default print() result for an RDD shows some information but no contents. 

ii) .count() returns the number of elements in an RDD. 

iii) .collect() converts all of an RDD to a list, usually for debugging purposes 

iv) Except for small data sets, we just peek at what is happening with .take(num) which 
makes a list (not RDD) of the first “num” elements.  To get a random subset, use 
.takeSample(withReplacement=myBoolean, num), which also returns a list and 
respects the value of “withReplacement”.  You can also use .first(), which is the same as 
.take(1)[0]. 

v) To make an RDD that is a random sample of an RDD, use 
.sample(withReplacement=myBoolean, fraction=myFloat).  Then .collect() 
or .take() can be used to examine the random sample, if needed. 

vi) If the data in the RDD are numeric then .sum(), .mean(), .min(), .max(), 
.sampleStdev(), and .sampleVariance() return the appropriate sample statistic as a 
float. 

The .stats() method returns a StatCounter class object, which has methods count(), sum(), 
etc.  You can merge the StatCounter results from two StatCounters using combinedStats = 
myStatCounter1.merge(myStatCounter2).  You can also convert it to a dictionary 
with .asDict(). 

vii) You can count data in bins using .histogram(buckets). E.g., 

>>> c = sc.parallelize([0, 2, 3, 4, 1.2, 4, 2, 4.5, 24]) 
>>> c.histogram(3) 
([0, 8, 16, 24], [8, 0, 1]) 
>>> c.histogram(list(range(-1, 30, 10))) 
([-1, 9, 19, 29], [8, 0, 1]) 
>>> c.histogram(list(range(-1, 20, 10))) 
([-1, 9, 19], [8, 0]) 
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viii) Set operations are carried out with .distinct(), .intersection(), .union() and 
.subtract(). 
>>> A = sc.parallelize([1.5, 1.5, 2.2, 0.6]) 
>>> setA = A.distinct() 
>>> setA.collect() 
[0.6, 1.5, 2.2] 
>>> setB = sc.parallelize([1.5, 1.7, 1.9]) 
>>> setA.union(setB).collect() 
[1.5, 2.2, 0.6, 1.5, 1.7, 1.9] 
>>> setA.intersection(setB).collect() 
[1.5] 
>>> setA.subtract(setB).collect() 
[0.6, 2.2] 
>>> setB.subtract(setA).collect() 
[1.7, 1.9] 

ix) The .filter(f) method returns an RDD with only selected elements.  The “f” argument 
is a function that takes one value and returns a Boolean.  Elements with a True return value 
end up in the new RDD. 

>>> import random 
>>> r = sc.parallelize([chr(ord('A')+random.randrange(26)) for _ _ in 
range(10)]) 
>>> ram = r.filter(lambda x: x <= 'M') 
>>> ram.collect() 
['A', 'I', 'M', 'G', 'M']  
>>> data = sc.parallelize([(1, 4, 2), (2, 2, 4), (3, 5, 8), (3, 5, 9)]) 
>>> def sums(triple): 
...    return triple[0] + triple[1] == triple[2] 
>>> data.filter(sums).collect() 
[(2, 2, 4), (3, 5, 8)] 

x) The most commonly used method is .map(f), which applies function f() to every element 
of the RDD and returns a new RDD which is a list of values whose type is the type of f()’s 
return value.  The function is commonly a lambda function with a single argument, returning 
any value.  E.g., if the contents of RDD “three” are tuples of length 3, then 
three.map(lambda x: (x[1], (x[0] + x[2])/2)) will create an RDD of the same 
count as the original, but with values that are tuples of length 2 (the original middle value 
and the mean of the other values). 

It is also OK to use a function defined separately using the usual def f(args): syntax. 

xi) The .foreach() method is similar to .map(), but there is no return value.  Therefore it is 
only useful for its side effects, e.g., printing or inserting specific elements into a database. 
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xii) The .groupBy(f) method applies single argument function f() to each element of the 
RDD and returns an RDD with a tuple for each unique value of the return value.  The first 
element of the return tuple is the “key” (return value) and the second is a generator 
containing the original data matching the key. 

>>> three = sc.parallelize([(1,2,3), (2,2,2), (2,5,3)]) 
>>> threeG = three.groupBy(lambda x: x[0]) 
>>> threeG.collect() 
[(1, <pyspark.resultiterable.ResultIterable object at 
   0x7f40840b65c0>), (2, <pyspark.resultiterable.ResultIterable  
   object at 0x7f40840b6c18>)] 
>>> threeG.map(lambda kv: (kv[0], tuple(kv[1]))).collect() 
[(1, ((1, 2, 3),)), (2, ((2, 2, 2), (2, 5, 3)))] 

xiii) The .cartesian(other) method returns an RDD with all possible tuples made by taking 
one value from the “self” RDD and one from the “other” RDD. 

>>> letters = sc.parallelize(['a', 's', 'd', 'f']) 
>>> nums = sc.parallelize([2, 10, 6])  
>>> letters.cartesian(nums).collect() 
[('a', 2), ('a', 10), ('a', 6), ('s', 2), ('s', 10), ('s', 6), ('d', 
2), ('d', 10), ('d', 6), ('f', 2), ('f', 10), ('f', 6)] 

xiv) The .flatMap() method  makes a larger RDD by applying a function that returns a tuple to 
every element of the original RDD and treats the result as separate elements. 

>>> x = sc.parallelize([2, 4, 6]) 
>>> x.map(lambda x: (x, x**2)).collect() 
[(2, 4), (4, 16), (6, 36)] 
>>> x.flatMap(lambda x: (x, x**2)).collect() 
[2, 4, 4, 16, 6, 36] 

xv) The .fold(zero, op) method combines values from all elements of the RDD.  The 
function op(), which may be a lambda function, always takes two arguments and the first 
argument matches zero’s type while the second argument matches the RDD type.  The 
return type matches zero, not (necessarily) the RDD data type.  

E.g., if each value is an “n”, a “sum”, and an “id”, then we might want to add the “n” and 
“sum” values separately: 

>>> nv = sc.parallelize([(3, 22, 'a'), (2, 17, 'f'), (1, 5, 'z')]) 
>>> sums = nv.fold((0,0), lambda x, y: (x[0]+y[0], x[1]+y[1])) 
>>> sums 
(6, 44) 
>>> print("mean =", sums[1]/sums[0]) 
mean = 7.33333333333333 

>>> def special(a, b): 
...     out1 = a[0] + b[0] 
...     out2 = a[1] + b[1] 
...     out3 = max(a[2], b[2]) 
...     return (out1, out2, out3) 
...  
>>> nv.fold((0,0,'a'), special) 
(6, 44, 'z') 
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xvi) The .reduce(f) method is similar to the .fold() method, but there is no zero 
argument, so the function return type must be the same as the data in the RDD. 

.fold(zero, op) is generally safer because it works on an empy RDD. 

>>> x = sc.parallelize([(1,4), (2, 5), (3, 6)]) 
>>> x.reduce(lambda x, y: (min(x[0], y[0]), x[1]+y[1])) 
(1, 15) 

xvii) The .randomSplit() method splits an RDD into two or more random subsets. 

>>> R = sc.parallelize(range(50)) 
>>> train, test = R.randomSplit([0.7, 0.3]) 
>>> test.take(10) 
[4, 8, 19, 22, 24, 25, 27, 30, 36, 38] 

xviii) The .saveAsTextFile(path) method saves the RDD to a file.  Similar functions save 
in different formats or to the Hadoop rather than Linux side. 

xix) The .sortBy(keyfunc, ascending=True) method returns an RDD with the values 
sorted based on the result of keyfunc() applied to each element of the RDD. 

>>> three.collect() 
[(1, 2, 3), (2, 2, 2), (2, 5, 3)] 
>>> three.sortBy(lambda tup: tup[2]).collect() 
[(2, 2, 2), (1, 2, 3), (2, 5, 3)] 

xx) The .zip() method creates one RDD from two of the same size (count) by constructing 
tuples. 

>>> R1 = sc.parallelize(['A', 'E', 'F']) 
>>> R2 = sc.parallelize([(1, 4), (2,7), (3,1)]) 
>>> R1.zip(R2).collect() 
[('A', (1, 4)), ('E', (2, 7)), ('F', (3, 1))] 

xxi) The .glom() method flattens the data into one giant list (per partition; see next handout). 

>>> text = sc.parallelize(['This is sentence 1.  And', 'this is', 
    'sentence 2.']) 
>>> text.glom().collect() 
[['This is sentence 1.  And', 'this is', 'sentence 2.']] 
>>> text.glom().map(lambda x: " ".join(x)).collect() 
['This is sentence 1.  And this is sentence 2.'] 

k) pyspark exercise #1: Read in space-separated files cust.dat and purchase.dat.  Each has a 
header line.  For customers we know a unique numeric id, an indicator for female, and “origin” 
which is 1 or 2 indicating the original company before two companies merged.  For purchase, we 
have one record per purchase containing id, store number, dollar amount, and an indicator for 
use of a debit card.  The current goal is to find the customer(s) with the single highest purchase 
amount and return the total purchases, gender, stores used, and percent debit for each of those 
customers.   Use python variables as the intermediary between the two data sets, since we have 
not learned any “join” type operations yet. 


