
1 
 

CMU MSP 36-602: SAS Macros I 
Howard Seltman, April 1, 2019 

1) Why learn SAS macros? 
a. Many jobs list it as required or desired 
b. It is an example of a useful computing technique you probably haven’t seen: programs 

that write programs 
 

2) Macro Quicksta rt Examples 
a. Setting “constants” 

%LET cutoff = 2; 

... a bunch of code 
PROC GLM DATA=myData(where=(myVar >= &cutoff)); 
  CLASS myCat; 
  MODEL myY = myCat myQuant / SOLUTION; 
RUN; 

... even more code 
 
 

b. A “function” 
/* Define the macro */ 
%MACRO myMacro(cutoff, data=myData, var=myVar); 

  ... a bunch of code 
  PROC GLM DATA=&data(WHERE=(&var>=&cutoff)); 
    CLASS myCat; 
    MODEL myY = myCat myQuant / SOLUTION; 
  RUN; 

    ... even more code 
%MEND myMacro; 
/* Somewhere else, run the macro */ 
%myMacro(cuoff=5, var=myOtherVar)  /* defaults to myData */ 

 

3) Macro Concepts 
a. The uses of the macro facility are to 

i. pass information to or between DATA and/or PROC steps (macro variables)  
ii. automate complex and/or repetitive tasks, similar to an R function (macros) 
iii. simulate the use of FOR, IF, etc. for PROCs (macros) 

b. Why can’t we do these directly, like in R? 

i. Data are stored in files not memory (more efficient for large data) 

ii. PROCs are compiled, self-contained programs (faster than in R) 



2 
 

c. The macro facility’s two basic capabilities are storing/retrieving data values and 
dynamically generating code.  The latter is complemented by 1) special functions that 
connect DATA steps to the macro system and 2) ODS OUTPUT with PROC-specific “ODS 
table names” which sends PROC output to SAS datasets. 

d. The macro language is a set of additional syntactic elements that you put into your SAS 
code.  For macros per se (i.e., macro “functions”), the macro processor compiles your 
macro code into a macro, which is a text generator that writes SAS code (one SAS step 
at a time), and then passes it on to the usual SAS compiler.  Therefore, the macro 
facility can have no effects during DATA or PROC execution (with some very specific 
exceptions). 

e. The ampersand (“&”) and percent (“%”) symbols, plus certain DATA step functions, e.g., 
SYMGET(), and calls, e.g., CALL SYMPUT(), are indicators of the use of the macro 
language.  The “&”symbol in front of a macro variable name tells the macro facility to 
insert the value of the variable into the code.  The “%” symbol is a prefix for macro 
statement keywords (including the keywords %MACRO and %MEND which bracket the 
definition of a macro per se), for macro-specific functions, and for invoking a user-
defined macro (i.e., running it).   

f. Exception: The following starts with %, but is not part of the macro system:  
      %INCLUDE myFileName; (to load and run code from a file) 

g. Alternatives to use of macros include 
i. passing information solely in the form of data sets (ODS) 

ii. use of the Interactive Matrix Library (advanced) 
iii. use of the SAS Toolkit to write new PROCs in C (very advanced) 

 

4) Macro Variables 
a. Macro variables are named strings that persist across DATA and PROC steps within a 

SAS session.  Names can be up to 32 characters and can contain letters, underscores and 
digits (not in the first position).  Macro variables with names that match dataset names, 
variable names, LIBNAME’s, or FILENAME’s are distinct from them.  “Local” macro 
variables are distinct from global macro variables with the same name (see below).  The 
names are not case-sensitive. 

b. Macro variable creation (allowed almost anywhere, but pointless in DATA/PROC steps):  
Syntax: %LET myVar = myUnquotedString;  
The %LET assignment statement is allowed in “open code”, not just inside macros.  
Everything between the first non-blank character after the equals sign and the last non-
blank character before the semicolon ends up in the variable, including any quotes. 



3 
 

c. Syntax for macro variable use (allowed almost anywhere, but not expanded inside of 
single quotation marks or the %NRSTR() function):  &myVar or &myVar. 

Wherever either &myVar or &myVar. is found, your SAS code is re-written by 
“expanding” the reference into the actual macro text corresponding to the macro 
variable.  After this “text preprocessing” the code is run in the usual way. 

The period form is needed, e.g., if you want to include letters immediately following the 
substituted text: 

%LET hydrogens = 2; 
PROC MEANS DATA=water; 
  VAR H&hydrogens.O; 
RUN; 

This code will be converted to: 

PROC MEANS DATA=water; 
  VAR H2O; 
RUN; 

The result is calculation of the mean of the H20 variable in the water dataset.  But if the 
period were missing, the SAS Macro Processor would try to look up the macro variable 
“&hydrogensO” , which would result in a message like “WARNING: Apparent symbolic 
reference HYDROGENSO not resolved.” 

d. Special macro statement:  %PUT  

Syntax:  %PUT [space-separated-text and/or &var and/or macro-%functions]; 
The %PUT statement prints text, possibly including the contents of some macro 
variables, to the SAS Log.  It is allowed in “open code”, including DATA steps and PROC 
steps (pointless), as well as inside macros. 

i. Example: %PUT myVar equals &myVar; 
ii. Example: %PUT myVar starts with %SUBSTR(&myVar,1,1); 

iii. Also, %PUT _USER_; shows all of your macro variable definitions. 

e. Special macro statement:  %SYMDEL  
Syntax: %SYMDEL myVar1 [myVar2 [myVar3…]]; 
Deletes macro variables.  Allowed in “open code”, not just in macros. 

i. Example: %SYMDEL myVar1; 
ii. Example: %SYMDEL tax period; 

f. Note that macro variables always begin with an “&” except immediately after the 
keywords %LET or %SYMDEL or in functions like %SYMEXIST() or %SYMLOCAL().  The 
exceptions are because macro variable names are the only things that can appear in 
those places.  Also, code like %SYMDEL &varToKill; is useful. 



4 
 

g. Simple, but useful, example: 
%LET currentYear = 2017; 
LIBNAME fiscal "fiscalData"; 
TITLE "Report for &currentYear"; 
PROC FREQ DATA=fiscal.FY&currentYear; 
  TABLES expenses; 
RUN; 
PROC MEANS DATA=fiscal.FY&currentYear; 
  VAR amtSpent; 
RUN; 

h. Extended example: 
/* Goal: Add monthly expenses to full expense data set, 
   and report year-to-date results. */ 
 
/* Requires: Text file "ExpensesMMMYYYY.dat" must be in 
   the current directory with variables "category" and "amount". 
   Permanent dataset "expenses" is in the "mylib" folder. */ 
 
/* Change just these two lines each month */ 
%LET year = 2017; 
%LET month = Feb; 
 
FILENAME infile "Expenses&month&year..dat"; 
LIBNAME mylib "mylib"; 
 
DATA E&month&year; /* temporary dataset */ 
  INFILE infile; 
  LENGTH category $12. month $3.; 
  INPUT category amount; 
  year = &year; 
  month = "&month"; 
RUN; 
 
DATA mylib.expenses; 
  SET mylib.expenses E&month&year; 
RUN; 
 
TITLE "Year to date up to &month &year"; 
PROC MEANS DATA=mylib.expenses (WHERE=(year=&year)); 
RUN; 



5 
 

i. Technical details for %LET 
i. No quotes are needed.  If quotes are included, they end up in the variable. 

ii. Digits are treated as text, i.e., everything is a string.  The same goes for 
arithmetic expressions, i.e., the whole expression ends up in the string. 

iii. You can include %EVAL(non-decimal expression) or %SYSEVALF(any expression) 
to put the text corresponding to an expression’s result into the macro variable: 

%LET age1 = 2019 - 1954; 
%LET age2 = %EVAL(2019 - 1954); 
%PUT age1 = &age1 and age2 = &age2; 

Log shows:  age1 = 2019 - 1954 and age2 = 65 

iv. Aside: Using SAS as a calculator: %PUT %SYSEVALF(3.5 + (2.54*6)/3); 

v. A “null” value is allowed: %LET country =; 

vi. & and % are evaluated during the %LET assignment.  %STR() can be used to 
“protect” these. 
%LET name1=Barnes; 
%LET name2=Noble; 
%LET company=&name1 and &name2; 
%PUT &Company; 

In the Log: Barnes and Noble 

%LET company=S&H Green Stamps; 

In the Log: WARNING: Apparent symbolic reference H not resolved. 
%LET company=S%STR(&)H Green Stamps; 
%PUT &Company; 

In the Log: S&H Green Stamps 



6 
 

vii. %LET discards leading and trailing spaces and ends with the semicolon (ignoring 
semicolons inside paired quotes).  To include code with a semicolon, use %STR() 
to convert its entire contents to a string. 

%PUT "use proc print data=dat;"; 

In the Log: "use proc print data=dat;" 

%LET doit = PROC MEANS; VAR x; RUN; 
                        --- 
                        180 
ERROR 180-322: Statement is not valid or it is used out of 
proper order. 
 

%PUT &doit;     shows PROC MEANS in the log. 
 
%LET doit = "PROC MEANS; VAR x; RUN;";  /* no error */ 
&doit 
NOTE: Line generated by the macro variable "DOIT". 
"PROC MEANS; VAR x; RUN;" 
------------------------- 
180 
ERROR 180-322: Statement is not valid or it is used out of 
proper order. 

 
%LET doit = %STR( 
  PROC MEANS; 
  VAR x; 
  RUN;);   /* also works on one line */ 
&doit 
NOTE: There were 4 observations read from the data set WORK.FAKE. 
NOTE: PROCEDURE MEANS used (Total process time): 

      real time           0.01 seconds 
      cpu time            0.01 seconds 

viii. A % can be used to “protect” an unmatched single or double quote or a percent 
sign or unmatched parenthesis inside of %STR(): 

%PUT Favorite punctuation: %STR(%%, %'s, %).); 

Favorite punctuation: %, 's, ). 

ix. %LET can include substitution of macro text: %LET myCode=%myMacro; 

x. A period after a macro variable is a “disappearing” delimiter, silently indicating 
the end of the macro variable (see 4c above). 



7 
 

xi. The equivalent of %LET, while actually running inside a DATA step, is the CALL 
SYMPUT() routine, which assigns a string to a macro variable.  Note that there 
is no % or & involved, and you usually will want to remove extra spaces. 

DATA fruit; 
  %LET stupidDemo = x$ y; /* in/outside: precedes DATA */ 
  INPUT &stupidDemo @@; 
  DATALINES; 
  Apple 3 Pear 4 Grapes 10 Mango 1 
RUN; 
DATA fruit; 
  SET fruit END=lastLine; 
  IF lastLine THEN DO; 
    CALL SYMPUT('lastx', TRIM(x)); 
    CALL SYMPUT('lasty', TRIM(LEFT(PUT(y,8.)))); 
  END; 
RUN; 
%PUT Last count is &lasty and &lastx is the last fruit.; 

In the Log: Last count is 1 and Mango is the last fruit. 

Important note: the macro variables “lastx” and “lasty” are not available for use 
until after the DATA step ends, i.e., they cannot be used to carry information 
within a DATA step (use RETAINed variables instead). 

Easier version: CALL SYMPUTX('lasty', y); converts, trims, and justifies 

 
5) Macro function examples:  

a. %LENGTH() 
i. Syntax: %LENGTH(argument) 

ii. Action: returns the number of characters in the argument 
iii. E.g.,  %LENGTH(&stupidDemo)   (using “stupidDemo” from above) 

is replaced by “4” in your code. 

b. %SUBSTR() 
i. Syntax: %SUBSTR(argument, position[,length]) 

ii. Action: returns the substring of “argument” starting at “position” and 
continuing to the end or only “length” characters long. 

iii. E.g., %SUBSTR(&doit, 18, 5)  (using “doit” from above) 
is replaced by “VAR x” in your code. 

c. %EVAL()   Note: compare to %SYSEVALF() which does “floating point” 
i. Syntax: %EVAL(argument) 

ii. Action: returns the value for an integer mathematical expression 
iii. E.g.,  %EVAL(101/25+3) is replaced by “7” in your code and 

%EVAL(1/3) is replaced by “0” in your code. 



8 
 

d. %SCAN() 

i. Syntax: %SCAN(text, index, delimiter) 
ii. Action: return the index’th word from “text” using the “delimiter” 

iii. %PUT %SCAN(&SYSDSN,1,%STR( )); returns the LIBNAME of the most 
recently used dataset.  Index 2 gives the dataset name. 

iv. The default delimiters are blank ! $ % & ( ) * + , - . / ; < ^ 

e. For others, search "macro functions" (with the quotes) in SAS Help. 

f. Silly, informative, example: 
DATA prepost; 
  INPUT preQ1 preQ2 preQ3 preQ4 
        postQ1 postQ2 postQ3 postQ4 
  preH1 preH2 postH1 postH2; 
  DATALINES; 
  20 30 40 50  21 31 41 51  50 90 52 92 
  11 22 33 44  16 26 36 46  33 77 42 82 
  9 8 7 6      19 18 17 16  17 13 37 33 
RUN; 

%LET tax = pre; 
%LET period = Half2; 

%LET var = 
   &tax%SUBSTR(&period,1,1)%SUBSTR(&period,%LENGTH(&period)); 
TITLE "Taxes for &var"; 
PROC MEANS DATA=prepost; 
  VAR &var; 
RUN; 

g. Example for similar, but different datasets (different numbers of columns) 

%LET fname = experiment3.dat; 
%LET count = 4;  /* varies by experiment */ 

DATA exper; 
  ARRAY s{&count}; 
  ARRAY a{&count}; 
  INFILE "&fname" FIRSTOBS=2; 
  INPUT id treatment handicap t1-t&count s1-s&count; 
  DO i = 1 to &count; 
    a[i] = s[i] - handicap; 
  END; 
  DROP i; 
RUN; 
PROC PRINT DATA=exper; 
RUN; 


