
1

CMU MSP 36-602: SAS Macros III
Howard Seltman, April 8, 2019

1) Review
a. The SAS macro facility consists of macro variables and macros (functions). These are

supplemented by a few DATA step functions such as SYMGET() and CALL SYMPUTX().

b. Macro variables are global (or local inside macro functions) text-only variables created
with %LET myMacroVar = my contents; and everything between the “=” and the
“;” except leading and trailing spaces is stored in the variable. Macro variables do not
persist across SAS sessions.

c. Macro variables are used in the form &myMacroVar. (with the period often optional),
and the variable’s contents are substituted into the code before the code is run. This
includes within a DATA step, so %LET cannot be used to store a dataset variable to a
macro variable. You can use CALL SYMPUTX() to store a dataset variable to a macro
variable.

d. Outside of a “step” you can use code like %PUT myMacroVar equals
&myMacroVar..; to write messages to the log.

e. Macro functions like %LENGTH(), %SUBSTR(), and %SCAN() may be used in any code,
and these also carry out their functions before your code is submitted.

f. The %STR() function may be needed if you want to include special characters in your
variable contents.

g. Code like %SYMDEL myMacroVar; deletes macro variables.

h. You can use %PUT _USER_; to see all the macro variables you created.

i. You can write your own macro “functions” with the syntax:

%MACRO myMacroName[(myArgName1[=[myDflt1]][,myArgName2[=[myDflt2]][…]])];
 ---any text lines---
%MEND [myMacroName];

j. The purpose of every macro fucntion is to generate text that can be submitted to the
SAS system, generally DATA and PROC steps. Smaller text outputs, e.g., a set of variable
names are also possible. Side effects, e.g., printing information with %PUT, may also be
part of a macro result.

k. Macros are invoked using syntax like %myMacro(myArg1Txt, optArg=myArg2Txt)

l. Semicolons are not part of macro invocation. Macros are evaluated and their return
text are inserted into the “input stream” before any surrounding code is run.

m. There are two methods for storing macros between sessions (compiled and as source
code). Otherwise, they need to be re-run before being used in a new SAS session.

2

2) Example: converting the monthly and cumulative accounting example of Macros I to a macro
a. Setup

*%LET wd = /folders/myfolders/36602;
%LET wd = .;
LIBNAME fiscMac "&wd/fiscalData";
OPTIONS MSTORED SASMSTORE=fiscMac;

/* Macros to add monthly data to cumulative data and print
 year-to-date results.
 Assume: ExpensesMMMYYYY.dat with variables category and
 amount (at least) are in the current folder; "cumDS" is a
 cumulative dataset with variables category, amount, month,
 and year (at least).
*/

/* New cumulative dataset /*
%MACRO newCum(cumDS) / STORE SOURCE DES="Make new cum. dataset";
 DATA &cumDS;
 LENGTH category $12 amount 8 month $3 year 8;
 STOP;
 RUN;
%MEND newCum;

/* Year to date expense plot */
%MACRO ytdExpensePlot(year, cumDS) / STORE SOURCE
 DES="Plot YTD expense means";
 TITLE "Expenses to date for &year (&SYSDATE9)";
 /* Sort by month to allow BY in UNIVARIATE */
 PROC SORT DATA=&cumDS (WHERE=(year=&year)) OUT=oneYear;
 BY month;
 RUN;
 /* Get monthly sums */
 PROC UNIVARIATE DATA=oneYear NOPRINT OUTTABLE=monthlySums;
 BY month;
 VAR amount;
 RUN;
 /* Add numeric month */
 DATA monthlySums;
 SET monthlySums;
 nMonth = MONTH(INPUT(mon||"2000", MONYY.));
 RUN;
 /* Sort months numerically */
 PROC SORT DATA=monthlySums;
 BY nMonth;
 RUN;
 /* Plot Monthly Sums */
 PROC SGPLOT DATA=monthlySums;
 SERIES X=month Y=_SUM_;
 YAXIS LABEL = "Total Expenses";
 RUN;
 TITLE;
%MEND ytdExpensePlot;

3

/* Year to date expense report */
%MACRO ytd(year, cumDS) / STORE SOURCE DES="Print YTD means";
 TITLE "Expenses to date for &year (&SYSDATE9)";
 PROC MEANS DATA=&cumDS (WHERE=(year=&year));
 RUN;
 TITLE;
%MEND;

/* Delete temporary datasets */
 PROC DATASETS LIBRARY=WORK NOLIST;
 DELETE oneYear monthlySums;
 RUN;
 QUIT;
%MEND;

/* Year to date expenses by categories */
%MACRO ytdCategoryPlot(year, cumDS) / STORE SOURCE
 DES="Plot YTD categories";
 TITLE "Expenses by category for this year to date (&SYSDATE9)";
 PROC SORT DATA=&cumDS (WHERE=(year=&year)) OUT=oneYear;
 BY category;
 RUN;
 /* Get monthly sums */
 PROC UNIVARIATE DATA=oneYear NOPRINT OUTTABLE=monthlySums;
 BY category;
 VAR amount;
 RUN;
 /* Plot Monthly Sums */
 PROC SGPLOT DATA=monthlySums;
 VBAR category / response = _SUM_;
 YAXIS LABEL = "Total Expenses";
 RUN;
 TITLE;
 /* Delete temporary datasets */
 PROC DATASETS LIBRARY=WORK NOLIST;
 DELETE oneYear monthlySums;
 RUN;
 QUIT;
%MEND;

/* Group of all available expense reports */
%MACRO showAll(year, cumDS) / STORE SOURCE
 DES="All tables and plots";
 %ytd(year=&year, cumDS=&cumDS);
 %ytdExpensePlot(year=&year, cumDS=&cumDS);
 %ytdCategoryPlot(year=&year, cumDS=&cumDS);
%MEND;

4

/* Main monthly macro */
/* Add data from a month, and run all reports */
%MACRO addMonthData(month, year, cumDS, fileLoc) / STORE SOURCE
 DES="Add month and summarize";
 %LOCAL inname;
 %LET inname = "&fileLoc/Expenses&month&year..dat";
 DATA E&month&year; /* temporary dataset */
 INFILE &inname;
 LENGTH category $12. month $3.;
 INPUT category$ amount;
 year = &year;
 month = "&month";
 RUN;

 DATA &cumDS;
 SET &cumDS E&month&year;
 RUN;

 %showAll(year=&year, cumDS=&cumDS);
%MEND;

/* Macro to remove data, if needed */
%MACRO drop(month, year, cumDS) / STORE SOURCE
 DES="Remove all data from a month and year";
 DATA &cumDS;
 SET &cumDS (WHERE=(month^="&month" OR year NE &year));
 RUN;
%MEND;

/* See listing of stored macros */
PROC CATALOG CATALOG=fiscMac.SASMACR;
 CONTENTS;
RUN;

b. Usage
LIBNAME data "&wd/fiscalData";
LIBNAME fiscMac "&wd/fiscalData";
OPTIONS MSTORED SASMSTORE=fiscMac;

%newCum(data.expenses)
%drop(cumDS=data.expenses, month=Jan, year=2017)
%drop(cumDS=data.expenses, month=Feb, year=2017)

%addMonthData(month=Jan, year=2017, cumDS=data.expenses,
 fileLoc=&wd)
%addMonthData(month=Feb, year=2017, cumDS=data.expenses,
 fileLoc=&wd)

%showAll(year=2017, cumDS=data.expenses)

5

3) Aside: ODS OUTPUT
c. For any PROC, search the SAS help for “ODS Table Names” along with the PROC name to

get a list of all possible SAS datasets that can be produced containing various parts of
the PROC output.

d. You can add a statement like
ODS OUTPUT OFFICIAL_TABLE_NAME = myDatasetName;

to the PROC to send a portion of the output to the dataset whose name you specify.
You can include as many NAME=name pairs as you like, and/or you can use multiple ODS
OUTPUT statements. Usually you will want/need to try out an example to find out what
specifically ends up in the dataset, and what the exact variable names are.

e. E.g., for PROC UNIVARIATE, there are 17 possible tables, and we note that one called
“TestsForNormality” is associated with the NORMALTEST option.
Let’s try this code:
FILENAME drd4 "&wd/data/DRD4.dat";
DATA drd4;
 INFILE drd4 FIRSTOBS=2;
 INPUT DRD4 sensPar EBS;
RUN;

TITLE "Demonstrate ODS OUTPUT";
PROC UNIVARIATE DATA=drd4 NORMALTEST;
 VAR EBS;
 ODS OUTPUT TESTSFORNORMALITY=myNormTests;
RUN;

The result is a dataset called myNormTests. This can be examined directly through the
Explorer Window, or by using PROC PRINT, or most systematically with:

PROC CONTENTS DATA=myNormTests;
RUN;

The result of CONTENTS is:

Data Set Name WORK.MYNORMTESTS Observations 4
Member Type DATA Variables 7

 Alphabetic List of Variables and Attributes

Variable Type Len Format Label
4 Stat Num 8 BEST8. Value of Goodness-of-Fit Statistic
2 Test Char 18 Goodness-of-Fit Test
3 TestLab Char 4 Label for Goodness-of-Fit Statistic
1 VarName Char 3
6 pSign Char 1 Sign of p-value
5 pType Char 9 p-value Label
7 pValue Num 8 PVALUE6.4 p-value

6

The result of PROC PRINT is:

 Var Test p
Obs Name Test Lab Stat pType Sign pValue
 1 EBS Shapiro-Wilk W 0.9609 Pr < W 0.043
 2 EBS Kolmogorov-Smirnov D 0.1232 Pr > D 0.018
 3 EBS Cramer-von Mises W-Sq 0.1389 Pr > W-Sq 0.034
 4 EBS Anderson-Darling A-Sq 0.8474 Pr > A-Sq 0.028

f. Once you have the PROC output in a dataset, the usual next step is to run a DATA
NULL; step, and use something like:

 IF Test="Shapiro-Wilk" THEN CALL SYMPUTX("NormPVal", pValue);

This stores the p-value in a macro variable for later use. Alternatively, sometimes all
you want to do create one or more new columns in the dataset.

g. You might think that it is a good idea to use a NOPRINT option to suppress output to the
Output Window, because often you are only interested in the dataset that is created,
but unfortunately, this inactivates the ODS OUTPUT statement. One thing you are
allowed to do is add a statement like ODS SELECT TESTSFORNORMALITY; which
limits the information in the Output Window to the same information as what goes into
the dataset.

4) Full macro example using ODS OUTPUT

/* A macro to add LCI, UCI confidence limits endpoints to
 GLM ESTIMATE results (same as CLPARM option).
 Use: ODS OUTPUT ESTIMATES=myEstDS OVERALLANOVA=myAnovaDS;
 to store the GLM output that is the input for this macro.
*/
%MACRO contrastCI(estimates, overallANOVA, alpha=0.95);
 %LOCAL errDF SEmult L U;
 DATA _NULL_;
 SET &overallANOVA;
 IF Source = "Error" THEN DO;
 CALL SYMPUTX('errDF', df);
 CALL SYMPUTX('SEmult', TINV(1-(1-&alpha)/2, df));
 END;
 RUN;
 %LET L = CIL%SYSEVALF(&alpha * 100);
 %LET U = CIU%SYSEVALF(&alpha * 100);
 %PUT Calculating %SYSEVALF(&alpha*100)% CI using df=&errDF,
 multiplier=&SEmult..;
 DATA &estimates;
 SET &estimates;
 &L = estimate - &SEmult * StdErr;
 &U = estimate + &SEmult * StdErr;
 RUN;
%MEND contrastCI;

7

Example:
TITLE "Creating contrasts dataset from ESTIMATE's";
PROC GLM DATA=drd4;
 CLASS sensPar DRD4;
 MODEL EBS = sensPar|DRD4;
 ESTIMATE "Un-sensitive: DRD4 absent-present"
 DRD4 1 -0.5 -0.5
 sensPar*DRD4 1 -0.5 -0.5 0 0 0 0 0 0;
 ESTIMATE "Medium Sensitive: DRD4 absent-present"
 DRD4 1 -0.5 -0.5
 sensPar*DRD4 0 0 0 1 -0.5 -0.5 0 0 0;
 ODS OUTPUT estimates=contrasts overallANOVA=OA;
RUN;
QUIT;

%contrastCI(contrasts, OA)
%contrastCI(contrasts, OA, alpha=0.99)
PROC PRINT DATA=contrasts;
 FORMAT Estimate StdErr CIL95 CIU95 CIL99 CIU99 6.2;
RUN;

Obs Dependent Parameter Estimate
 1 EBS Un-sensitive: DRD4 absent-present -5.49
 2 EBS Medium Sensitive: DRD4 absent-present 4.56

Obs StdErr tValue Probt CIL95 CIU95 CIL99 CIU99
 1 1.08 -5.08 <.0001 -7.65 -3.32 -8.37 -2.60
 2 1.12 4.09 0.0001 2.33 6.80 1.58 7.54

