
Approximations for Mean and Variance of a Ratio
Consider random variables R and S where S either has no mass at 0 (discrete) or has support
[0,∞). Let G = g(R, S) = R/S. Find approximations for EG and Var(G) using Taylor
expansions of g().

For any f(x, y), the bivariate first order Taylor expansion about any θ = (θx, θy) is

f(x, y) = f(θ) + f ′x(θ)(x− θx) + f ′y(θ)(y − θy) + R (1)

where R is a remainder of smaller order than the terms in the equation.

Switching to random variables with finite means EX ≡ µx and EY ≡ µy, we can choose the
expansion point to be θ = (µx, µy). In that case the first order Taylor series approximation for
f(X, Y ) is

f(X, Y ) = f(θ) + f ′x(θ)(X − µx) + f ′y(θ)(Y − µy) +R (2)

The approximation for E(f(X, Y )) is therefore

E(f(X, Y )) = E
[
f(θ) + f ′x(θ)(X − µx) + f ′y(θ)(Y − µy) +R

]
(3)

≈ E [f(θ)] + E [f ′x(θ)(X − µx)] + E
[
f ′y(θ)(Y − µy)

]
(4)

= E [f(θ)] + f ′x(θ)E [(X − µx)] + f ′y(θ)E [(Y − µy)] (5)
= E [f(θ)] + 0 + 0 (6)
= f(µx, µy) (7)

Note that if f(X, Y ) is a linear combination of X and Y , this result matches the well-known
result from mathematical statistics that E(aX + bY ) = aEX + bEY = aµx + bµy, and in that
case the error of approximation is zero. But with the Taylor series expansion, we have extended
that result to non-linear functions of X and Y .

For our example where f(x, y) = x/y the approximation is E(X/Y ) = E(f(X, Y )) =
f(µx, µy) = µx/µy.

The second order Taylor expansion is

f(x, y) = f(θ) + f ′x(θ)(x− θx) + f ′y(θ)(y − θy) (8)

+
1

2

{
f ′′xx(θ)(x− θx)2 + 2f ′′xy(θ)(x− θx)(y − θy) + f ′′yy(y − θy)2

}
+R (9)

So a better approximation is for E[f(X, Y )] expanded around θ = (µx, µy) is

E(f(X, Y )) ≈ f(θ) +
1

2

{
f ′′xx(θ)Var(X) + 2f ′′xy(θ)Cov(X, Y ) + f ′′yy(θ)Var(Y )

}
. (10)

Note that we again use the fact that E(X − µx) = 0, and we now add in the definitions for
variance and covariance: Var(X) = E[(X − µx)2] and Cov(X) = E[(X − µx)(Y − µy)].



For f(R, S) = R/S, the derivatives are f ′′RR(R, S) = 0, f ′′RS(R, S) = −S−2, and f ′′SS(R, S) =
2R
S3 .

Specifically, when θ = (µR, µS), we have f(θ) = µR/µS, f ′′RR(θ) = 0, f ′′RS(θ) =
− 1

(µS)2
, and f ′′SS(θ) =

2µR
(µS)3

.

Then an improved approximation of E(R/S) is

E(R/S) ≡ E(f(R, S)) ≈ µR
µS
− Cov(R, S)

(µS)2
+

Var(S)µR
(µS)3

(11)

By the definition of variance, the variance of f(X, Y ) is

Var(f(X, Y )) = E
{
[f(X, Y )− E(f(X, Y ))]2

}
(12)

Using E(f(X, Y )) ≈ f(θ) (from above)

Var(f(X, Y )) ≈ E
{
[f(X, Y )− f(θ)]2

}
(13)

Then using the first order Taylor expansion for f(X, Y ) expanded around θ

Var(f(X, Y )) ≈ E
{[
f(θ) + f ′x(θ)(X − θx) + f ′y(θ)(Y − θy)− f(θ)

]2}
(14)

= E
{[
f ′x(θ)(X − θx) + f ′y(θ)(Y − θy))

]2}
(15)

= E
{
f ′2x (θ)(X−θx)2+2f ′x(θ)(X−θx)f ′y(θ)(Y −θy)+f ′2y (θ)(Y −θy)2

}
(16)

= f ′2x (θ)Var(X) + 2f ′x(θ)f
′
y(θ)Cov(X, Y ) + f ′2y (θ)Var(Y ) (17)

Now we return to our example: f(R, S) = R/S expanded around θ = (µR, µS).

Since f ′R = S−1, f ′S = −R
S2 and θ = (µR, µS), we now have f ′2R (θ) = 1

(µS)2
, f ′R(θ)f

′
S(θ) =

−µR
(µS)3

, f ′2S (θ) =
(µR)2

(µS)4
.

and so

Var(R/S) ≈ 1

(µS)2
Var(R) + 2

−µR
(µS)3

Cov(R, S) +
(µR)

2

(µS)4
Var(S) (18)

=
(µR)

2

(µS)2

[
Var(R)
(µR)2

− 2
Cov(R, S)
µR µS

+
Var(S)
(µS)2

]
(19)

=
(µR)

2

(µS)2

[
σ2
R

(µR)2
− 2

Cov(R, S)
µR µS

+
σ2
S

(µS)2

]
(20)
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