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1 Introduction

These notes are on the world wide web at:
http://www.stat.cmu.edu/∼hseltman/rube/rubeManual.pdf.

The R package, rube is a Really Useful WinBUGS (or JAGS) Enhancer.
It makes working with WinBUGS much easier. It is (currently) built on top of the
R2WinBUGS package. It works with either the WinBUGS or the JAGS MCMC engines.
The latter requires the R2jags package. R2WinBUGS or R2jags takes a good first step
to allow you to

• Get your data and parameter initializations ready in R.

• Run your model in WinBUGS (or JAGS) without touching WinBUGS (or JAGS).
(The WinBUGSdoodle editor is really just a toy!)

• Examine your results in R.

The rube package is a wrapper for R2WinBUGS or R2jags, but also much more. If
you use it, you don’t need to learn the details of R2WinBUGS or R2jags.

Although rube contains many features and options, most users will want to start with
use of the substitution, LC() and FOR() pseudo-functions for better model code mainte-
nance, the use of rube() to check and run analyses (while hiding bugs() and WinBUGS
or JAGS() and jags), and the use of p3() and compare() to examine MCMC results.

2 Philosophy

WinBUGS is a powerful and flexible program for performing Bayesian analyses. Unfor-
tunately it is not user-friendly in a number of ways. While the R package R2WinBUGS

simplifies getting data and initial parameter values into and out of WinBUGS, that only
slightly reduces the pain, effort, and frustration of working with WinBUGS, especially
when setting up your own model.

JAGS is another (perhaps better) Bayesian MCMC engine that has major overlap in
model syntax with WinBUGS. As opposed to WinBUGS, it is cross-platform and work
on Macs and Linux.

The rube package aims to greatly reduce the pain, effort, and frustration in several
ways. It is based on these ideas:
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1. Analysts make mistakes writing model description code and want specific informa-
tion on where they went wrong (WinBUGS doesn’t even point to the code line with
the error, let alone explain the error in most situations).

2. Analysts make mistakes in setting up data and initializations that match the model
code, and want specific information on where they went wrong. WinBUGS often
simply gives a useless “TRAP” error if bad values are used. What users need is a
summary of the relationships between the model distributions, the data, and the
parameter initializations as an aid to finding the problems.

3. Real world analyses often involve working with different sets of covariates, including
interactions, and WinBUGS and JAGS only offers two poor choices: maintaining
multiple model files or using a matrix form for input with no meaningful variable
names. We need a simple, flexible, familiar method for specifying covariates without
modifying model code files.

4. Analysts often want to consider different approaches for small portions of their
model code, but it is best to maintain only a single model file with “conditional
coding” which is not supported by WinBUGS or JAGS.

5. Analysts choose default values for hyperparameters, but often perform sensitivity
testing at some point. It would be nice to keep defaults in the model file, ignore
them mostly, but easily change them without altering the model file.

6. Efficient and transparent methods are needed for automated evaluation of models
on repeated simulated datasets, as well as for sensitivity testing.

7. Initialization functions should have access to the data and run time options so that
they can flexibly set their values.

8. If you forgot to save parameters that are just functions of other parameters it should
be easy to add them, so that they are included in the plots and summaries.

9. WinBUGS or JAGS result objects should be more self-documenting so that there is
never any question about the conditions under which results were generated.

10. The R2WinBUGS or JAGS overview plot of results is not that useful for complex
models. A generic plotting function to interactively examine traces, ACFs, and
distribution shapes is the best first step to examining an MCMC result.

11. The ability to plot priors and posteriors on the same plot is highly desirable.

12. Functions are needed to help explore choice of prior distributions.
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13. When considering multiple related models the specific data values, initializations,
and parameter.to.save may vary. It would be nice if superfluous values would be
automatically culled to simplify coding and avoid WinBUGS or JAGS errors (es-
pecially losing a correct analysis because you specified monitoring a non-existent
node). Similarly, it would be nice to simply specify “all” as the parameters.to.save.

The rube package solves all these problems and more. Rube is designed to reduce
your cognitive overload relating to technical details so that you can focus on
the bigger issues of Bayesian data analysis.
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3 One-time Setup

The rube package has so-far only been tested on a Windows operating system (including
CMU Virtual Andrew and Parallel on Macintosh), with both WinBUGS (because Win-
BUGS only runs on Windows) and JAGS. I expect it to work with JAGS on a Macintosh.

If WinBUGS is your MCMC engine choice, first install WinBUGS from http://www.mrc-
bsu.cam.ac.uk/bugs/. Click on “WinBUGS 1.4.3” under “WinBUGS 1.4.3” to get to the
download page. Note that Windows Vista and Windows 7 do not allow writing to the
”Program Files” folder, but WinBUGS tries to do this. Therefore on these operating
systems, you should install WinBUGS into a folder such as ”c:\\WinBUGS14”. If you
do this you will need to explicitly tell rube() and getBugsExample() where to find Win-
BUGS as explained below. (Alternatively you can let WinBUGS be installed in “Program
Files”, but start R using right-click/”Run as administrator”.)

As of November 2012, it is also necessary to follow the instructions on that page
to also install the latest WinBUGS patch as well as the “immortal key”. Verify that
you can run WinBUGS directly, and note the location of the WinBUGS program file. (If
WinBUGS did not install its start icon on your desktop, first look in “All Programs” on the
Windows Start menu. If you can’t find it there, look for the WinBUGS14.exe icon in the
WinBUGS14 folder at the install location.) If the program file “WinBUGS14.exe” is not
in “c:/Program Files/WinBUGS14/” then you will need to need to set the environmental
variable “BUGSDIR” (see below) or specify the location of the program file using the
rube argument ’bugs.directory’ each time you run rube().

If JAGS is your MCMC engine choice, install JAGS from JAGS.
You should install R (or upgrade to at least version 3.4.1) before installing rube. To

install R go to http://r-project.org, and then click on “CRAN” under “Download”, then
choose a mirror, then click “Download R for Windows”, then click “base”, and finally
click “Download R #.##.# for Windows”. Save the file to any location, then run the
file to install R. I recommend a custom installation so that you can change the default
“mdi” to “sdi”.

Next, prepare to install rube() by installing the R packages R2WinBUGS and stringr.
To do this start R with its icon, then go to the “Packages” menu and choose “Install pack-
ages...”. Next choose a mirror and select the two packages to be installed, using control-
click to add the second package. (See below for special procedures needed when you
do not have sufficient privileges to install packages.) For JAGS use, also install package
R2jags.

As of November 2012, rube is not yet available from public sources, so you need
to follow this special procedure to install rube. Put rube 0.2-17.zip anywhere on your
computer, then use the R menu option Packages => Install package(s) from local

zip files.
Note: If you are upgrading rube from an earlier version, and you also use a .First()

function to load rube automatically when R starts, you will need to unload the old version
before installing the new version using the R commands
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detach("package:rube")

unloadNamespace("rube")}.

Like any package, you install rube once, and then you need to use library(rube)

each time you start R (or put the “library(rube)” command into your .First function).
To test rube start with these commands:

library(rube)

m = "model {

for (i in 1:N) {

x[i] ~ dnorm(mu, 1)

}

mu ~ dnorm(0, PREC.MU=0.01)

}"

d = list(N=20, x=rnorm(20, 5, 1))

i = function() list(mu=rnorm(1,0,5))

r = rube(m, d, i)

summary(r)

This should show a “Rube Summary” with sections called “For variables”, “No assign-
ments”, “Constants”, “Data”, and “Stochastics”. The final line should be “No problems
detected!”. If anything different appears, you have not loaded rube correctly or have
entered the test code incorrectly.

Next run

r = rube(m, d, i, "*", n.burn=0, n.thin=1, n.iter=100)

summary(r)

What should happen is that JAGS or WinBUGS will run. WinBUGS opens it’s own
window, runs for a while, quickly draw some nice colored graphs, and then automatically
close, returning you to R. JAGS shows a gui progress bar, then returns you to R. The
result of the summary(r) command is a “Rube summary” with information about the
MCMC run, with no errors or warnings and ending with the “DIC” value for the model.
If you see this, WinBUGS and rube are correctly installed, and you may procedure to
your own data analysis.

If WinBUGS runs, produces graphs, but stops with a “BlackBox” window with a “trap
#60” message, then close the trap box, and notice the R warnings about “file.create” being
unable to create the file “Registry.odc”. In this case your problem is with insufficient
Windows file permissions. The solution is to either

1. Re-install WinBUGS outside of “C:/Program Files”
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2. Run R each time you use rube by right-clicking the R icon and then selecting
“Run as administrator” and then answering “yes” to “Do you want to allow the
following program from an unknown publisher to make changes to this computer?”
(recommended solution)

3. Ignore these particular “trap” and “warning” messages each time you run rube.

If WinBUGS does not open and you get an error with the warning message “WinBUGS
failed: WinBUGS executable does not exist in ...” then the problem is that rube cannot
find WinBUGS. The possible solutions are:

1. specify the folder that contains “WinBUGS14.exe” as the ’bugs.directory” argument
of rube.

2. Specify the folder that contains “WinBUGS14.exe” as the Windows environmental
variable “BUGSDIR” (see below under “Environmental Variables”).

At this point you should try method 1 first. If WinBUGS now runs, but hangs, continue
below. If it runs correctly, you should try method 2 as a nicer alternative to specifying
the folder every time you run rube. Then you will be ready for your own data analysis.

If WinBUGS opens, but does not run the model and just hangs, then the problem
is the specification of the “working directory”. Close WinBUGS, and fix the problem as
specified here. (You may want to run getwd() in R; if the result starts with “////” (or
with backslashes) then the problem is definitely that WinBUGS does not know how to
work with that kind of folder name.) The possible solutions are:

1. Specify a different working directory using the ’wd’ argument of rube.

2. Use the R menu item “File / Change dir...” to change your R working directory to
something that starts with “C:” (or any other single alphabetic character that is a
disk drive name followed by the colon).

3. Specify the folder that will serve as your working directory as the Windows envi-
ronmental variable “BUGSWD” (see below under “Environmental Variables”).

3.1 Using RUBE when you don’t have administrative sufficient
administrative privileges to install new packages (courtesy
of Fabrizio Lecci)

This problem arises when using “public” machines (including Virtual Andrew at CMU)
rather than your own computer. From the WinBUGS website download the “zipped
version of the whole file structure” to any location on your computer. Unzip it to a folder
that has a simple single drive letter as the start of its location. (Usually this can be done
by right-clicking on the zip file, and then choosing “unzip”.) Remember to separately
install the patch and the immortal key.
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To perform the one-time install of the rube package, download the rube zip file to
any location on your computer, and the run the R command .libPaths(‘‘xxx’’) where
xxx is a folder location that has a simple name and which you have write access to (e.g.,
W:/Desktop/RLibs on CMU Virtual Andrew). Then from the R menu choose “Packages
/ Install package(s) from local zip files”, and navigate to the zip file that you saved.

Each time you use rube in the future you will need to run the following the R com-
mands once per R session:

.libPaths("xxx") # xxx is the same location used when installing rube

library(rube)

Sys.setenv("BUGSDIR", "yyy") # yyy is the folder holding WinBUGS14.exe

After first installation, and these three setup lines, perform the above check of rube
using the simple model, data, and initialization given there.

If the test shows the WinBUGS hangs, find a good alternate working directory location
and then for each R session, set that as the rube ’wd’ argument by using:

Sys.setenv("BUGSWD", "zzz") # zzz is the folder used as the working directory

3.2 Using RUBE on Macs with WinBUGS (courtesy of Liz
Lorenzi)

Three options for running RUBE and WinBUGS on Macs are

1. to run Window remotely (e.g., Virtual Andrew at CMU, see above)

2. to use dual boot with a Windows partition

3. to use Parallels to run Windows 7. This option allows for simultaneous use of
Windows OS and Mac OS and the installation and use of Windows programs.

As of September 2013, running JAGS and rube directly on the Mac is preferred.
To use the Parallels option, buy the Parallels USB drive (possibly online at

http://www.parallels.com/products/desktop/). You will also need to have a version of
Windows 7 to install. Follow the directions prompted by Parallels and Windows 7 to
install the Parallels desktop and Windows platform for your Mac.

Once Windows is installed, you will need to install R to run on the Windows operating
system. Do this by opening a browser window through the Windows start menu and go
to http://www.r-project.org to find the latest version of R for Windows. Then follow the
instructions outlined above to install WinBUGS and rube.

Next, select the directory where you intend to save and use your files, i.e., the “working
directory”. Change to this directory by going to File⇒ Change Dir. This step is especially
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important for running rube using Parallels. R will automatically select a directory that
is unreadable by WinBUGS. Parallels causes the default directory to be a mirror version
of your Mac documents, but in a format that cannot be read by WinBUGS.

3.3 Environmental Variables and .First

When rube runs, if no value is specified for the ’bugs.directory’ argument, the Windows
environmental variable “BUGSDIR” is checked first and this is used in place of the de-
fault value if it exists. Similarly then “BUGSWD” environmental variable sets the ’wd’
(working.directory) argument.

There are two ways to set the environmental variables. If you have administrative
privileges and want to set one or both (typically just “BUGSDIR”) permanently then
follow this procedure:

1. Open the Windows Control Panel

2. Open the System control panel icon (perhaps found under Performance and Main-
tenance)

3. On the Advanced Tab click “Environmental Variables”

4. In the “User variables” panel, click “New”, then enter “BUGSDIR” as the “Variable
name” and the location where you installed WinBUGS as the “Variable value”. Click
“OK”.

5. Click “OK” back in the “Environmental Variables” dialog box, and then “OK” in
the System Properties dialog box to complete the process. The next time you start
R, rube() and getBugsExample() will automatically find WinBUGS. If you have
problems, try the R command Sys.getenv("BUGSDIR") to verify that you have
correctly set the environmental variable.

Or, to set an environmental variable for one R session, use

Sys.setenv(BUGSDIR="c:\\WINBUGS14")

each time you run R. (Of course, you must enter the location of WinBUGS on your
own computer inside the quotes.)

One useful R feature is the .First() function. If you define this function and “save
workspace image” when you quit R, then this function will run automatically each time
you start R with the same working directory. Typically library(rube) and one or two
Sys.setenv() commands are used as the body of the .First function.

Special note on upgrading rube: If you put library(rube) in your .First() function,
this will prevent you from loading a new version of rube. The solution is to enter these
two commands to remove the old version before loading the new one:

detach("package:rube")

unloadNamespace("rube")
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4 Features

Here are the main features of rube:

1. The rube package will perform syntax checking of your model description ”code”
with explicit error messages. This finds most syntax errors and several other types
of errors.

2. When you supply data and initializations along with your model code, rube can
also help you find many additional problems related to the relationships between
the model code, the data, and the initializations because it summarizes these rela-
tionships. This often gives ideas about how to fix WinBUGS “Trap” errors, because
these are commonly due to inappropriate initializations. JAGS tends to give clearer
error messages, but the rube summary is still useful to help you be sure your model
is what you intended it to be.

3. Easy to use ”pseudo-functions” make your code much more flexible and easier to
maintain.

(a) Anywhere in your code, you can use the ”substitution” syntax VAR=value to
set default values. This feature is most useful for setting hyperparameters.
The two advantages are that it makes the code easier to read (it becomes
more obvious where you chose arbitrary hyperparameter values), and it makes
hyperparameter sensitivity testing easy because you can add simple run-time
options to override any or all defaults without modifying your code. In addi-
tion, the utility function showDefaults() can be used to list all of the defaults
in a model.

The use of an expression for a Normal precision, as shown below, allows the
more familiar standard deviation to be visible to those reading the code.

As an example,

Y[i] ~ dnorm(0, Y.PREC=1/100^2))

will be interpreted as

Y[i] ~ dnorm(0, 0.0001)

if nothing special is done, but as

Y[i] ~ dnorm(0, 0.0025)

if subs=list(Y.PREC=1/20^2) is used as a run-time function option.

(Note that ”^” for powers is not available in WinBUGS or JAGS. The ”subs”
argument to rube shown above uses R to convert 1/20^2 to 0.0025 before
WinBUGS or JAGS see it. As shown above, the use of ”^” in model code is
allowed by rube as a special exception in arguments to stochastic functions, and
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the corresponding value will appear in the model code file seen by WinBUGS
or JAGS.)

(b) Coding of covariates is made simpler, easier to read, and much more flexi-
ble (while avoiding the maintenance problems of multiple model code files).
This is accomplished through use of the linear combination pseudo-function
which takes the form LC(prefix, FORMULA, suffix, index) anywhere in
your code. Here prefix, suffix, and index are ”hard-coded” in your model, but
FORMULA is specified at run-time (with an intercept only as the default), and
FORMULA is just like the right-hand-side of an R model formula (with some
minor restrictions). The formula will include the covariates of interest for a
particular WinBUGS or JAGS model run, and the prefix and suffix are used to
automatically create corresponding parameter names. An intercept is created
unless -1 is included in the formula. The index is automatically appended to
the covariates values as shown below. Here are a couple of examples:

mu[j] ~ dnorm(LC(b,DEMOGS,,j), Y.PREC=0.001)

will be interpreted as

mu[j] ~ dnorm(beta0 + bOld*Old[j] +

bMale*Male[j] + bOldMale*Old[j]*Male[j], 0.001)

in various rube functions when you define varList=list(DEMOGS="Old*Male").
Then when you re-run your analysis with, say, varList=list(DEMOGS="Old*Male+White")
the appropriate covariate model is automatically used. Your model can have
any number of formulas, and the same name can be used in multiple places,
or any number of different names can be used, depending on your model com-
plexity. You can create parameter names corresponding to each covariate using
the prefix, or both the prefix and suffix.

An example of a more complex covariate formula is A+B+C+B:C+D*E*F+(G+H+I)^2
which is shorthand for the model formula

A + B + C + B:C + D + E + F + D:E + D:F + E:F + G + H +

I + G:H + G:I + H:I

Currently the model formulas do not allow ”-” (except -1 is allowed) or ”/”, and
inside the (...)^n syntax ”A:B” and ”A*B” are treated as ”A+B”. Warning:
rube does not recode your variables, so the formula system will be inappropriate
for k-level categorical variables that have not been manually recoded into k-1
indicator variables (or other suitable coding). But the system does work for
0/1 or 1/-1 indicator variables and quantitative covariates.

(c) Parallel with LC() is FOR() which generates the corresponding prior distri-
butions for the covariate parameters. The syntax is FOR(prefix, FORMULA,
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suffix, codeText). This syntax generates one model code line for each
term/parameter in the FORMULA by replacing a question mark (?) in the
”codeText” with the parameters one by one. Continuing with the above ex-
ample, we might have a model code line

FOR(b,DEMOGS,, ? ~ dnorm(0, COV.PREC=0.001))

to automatically generate

b0 ~ dnorm(0, 0.001)

bOld ~ dnorm(0, 0.001)

bMale ~ dnorm(0, 0.001)

bOldMale ~ dnorm(0, 0.001)

bWhite ~ dnorm(0, 0.001)

when varList=list(DEMOGS="Old*Male+White") is defined. If intercept b0

has a different prior, code it separately and use
varList=list(DEMOGS="Old*Male+White-1").

(d) A less used pseudo-function is BASE(FORMULA,index) which can be useful for
encoding a baseline covariate status. E.g.

isBase[i] <- BASE(DEMOGS,i)

will be coded as

isBase[i] <- (1-Old[i])*(1-Male[i])*(1-White[i])

when varList=list(DEMOGS="Old*Male+White") is defined.

(e) The final improvement in the form of pseudo-functions is conditional coding.
This allows two (or more) options to be in the code with the final choice made
at run-time. One example of where this is useful is for a choice of distributions
for a parameter. There are two forms of conditional coding: in-line and multi-
line.

In-line conditional coding takes the form
code1 IFCASE(caseFormula) code2 ELSECASE code3 ENDCASE code4

which results in
code1 code2 code4

if the caseFormula evaluates to TRUE and
code1 code3 code4

if the caseFormula evaluates to FALSE. The code1, ELSECASE code3, and
code4 elements are all optional. The ”caseFormula” can be simple such as
GAMMA or complex such as GAMMA || (ALPHA && !INTERCEPT) which will, e.g.,
evaluate to FALSE and TRUE respectively when the argument cases=c("ALPHA","AGE2")
is included in the various rube functions. This uses standard R evaluation in-
cluding OR (||), AND (&&), NOT (!) and parentheses. Each element in
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the ”subs” vector is defined TRUE and all missing elements are defined to be
FALSE. The caseFormula is case sensitive.

An example of the multi-line form is:

IFCASE(GAMMA || (ALPHA && !INTERCEPT))

a <- b + c

d <- e + f

ELSEIFCASE(ALPHA)

a <- b + c

d <- e - f

ELSECASE

a <- b

d <- f

ENDCASE

which evaluates to

a <- b + c

d <- e + f

when the argument cases=c("ALPHA","AGE2") is used, and

a <- b + c

d <- e - f

when the argument cases=c("ALPHA","INTERCEPT") is used.

4. The heart of the Rube package is the rube() function which is a wrapper for the
bugs() function of R2WinBUGS or the jags() and jags.parallel() functions
of R2jags. The functionality of rube() includes the ability to generate data on the
fly and to more flexibly generate parameter starting values on the fly (see below),
as well as extensive abilities to modify WinBUGS or JAGS code on the fly (see
above). I recommend that you always use rube to run WinBUGS or JAGS to
perform MCMC from on your data using your model. Here are two examples (both
at http://www.stat.cmu.edu/∼hseltman/rube/#examples).

• basicExample.R.

• Rasch.R.

5. Rube is very flexible in terms of the form in which the WinBUGS or JAGS model
may be specified. It allows either a file with the model specification or a string vector
or a single vector separated by newline (\n) characters. The latter is convenient for
keeping your model definition in the same file as your code, where you just define
your model in this form:
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myModel = "model {

for (i in 1:N) {

prec.y[i] <- pow(sig.y[i], -2)

Y[i] ~ dnorm(x[i], prec[i].y)

}

}"

(But with this string variable form of the model, you must remember to reload the
text defining the string whenever you change the text.)

To examine this very long string in R, use model(myModel). To see a particular ver-
sion of the model based on evaluating any conditional code and/or pseudo-functions,
use a form like

model(myModel, cases=c("singleX","gamPrior"),

varList=list(RHS1="A+B", RHS0="A+B-1"))

Also note that model() may be run on a rube() result (whether successful or not)
to see the model code used for that rube() run.

6. Rube allows data to be provided as a data.frame. In this case, an “N” variable is
automatically created which equals the number of rows in the data.frame. A special
feature for data in the form of data.frames is provided for the case where a small
number of additional data value must be provided in addition to the data.frame
columns and “N”: any numeric attributes of the data.frame are added to the data
list automatically. Here is an example:

m = "model {

known.prec <- pow(known.sd, -2)

for (i in 1:N) {

x[i] ~ dnorm(mu, known.prec)

}

mu ~ dnorm(0, MU.PREC=1/10^2)

}"

rube(m)

d = data.frame(x = rnorm(30, 5, 1)) # or some read.table()

rube(m, data=list(d, known.sd=1.1))

# alternate approach

attr(d, "known.sd") = 1.1

rube(m, data=d)

i = function() list(mu=rnorm(1,0,5))
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rube(m, d, i)

# recommended initial run conditions to investigate burnin:

r = rube(m, d, i, "mu", n.burn=0, n.thin=1, n.iter=1000)

p3(r)

7. Particularly for simulation studies, the ability to provide data as a data-generating
function with optional arguments is a useful alternative to the usual method of
providing data as a list. Rube allows its data argument to be a function that returns
a list. Optional arguments to the function can be provided using the “dataParams”
argument to rube(). Here is a trivial example:

m = "model {

for (i in 1:N) {

x[i] ~ dnorm(mu, 1)

}

mu ~ dnorm(0, MU.PREC=1/10^2)

}"

rube(m)

d = function(ns, truemu) {

dtf = data.frame(x = rnorm(ns, truemu, 1))

return(dtf)

}

rube(m, d, dataParams=list(ns=20, truemu=6))

i = function() list(mu=rnorm(1, 0, 5))

rube(m, d, i, dataParams=list(ns=20, truemu=6))

rube(m, d, i, "*", dataParams=list(ns=20, truemu=6))

8. As in R2WinBUGS or R2jags, parameter starting values can be set with either a
data list or a function, but rube allows for passing arguments to this function. This
allows alternate methods of starting value generation in different situations, possibly
fully or partially data driven. In complex Bayesian problems, this can be extremely
helpful.

9. WinBUGS and JAGS fail (sometimes after the MCMC is complete) when extra
information is supplied in various forms. Rube() automatically culls extra data,
parameters, and “parameter.to.save” elements before passing them to WinBUGS or
JAGS to avoid this problem. (For JAGS error are also prevented by removing non-
stochastics from the initializations.) This means, e.g., that you can construct your
(complete) data once, and use that same object even if you drop some covariates
from your model. Similarly, you can have a single parameter initialization function,
and when you drop parameters from the model, rube() will adjust and prevent
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the WinBUGS or JAGS error. (Rube() does give a warning message when it drops
elements to avoid any confusion about what information gets through to WinBUGS
or JAGS.)

10. The object returned from the rube() function is self-documenting. It contains com-
ponents called model, startTime, runTime, and bugs.seed that can be examined. It
also contains the full analysis of the relationship between the model code, the data,
and the initialization, which can be viewed using the generic check() function on
the rube object. The final model code can be seen using model() function on the
rube object. In addition the rube object has the LC()/FOR() model formulas in
its “varList” component.

11. The rube package tends to preserve the bugs() defaults, but it does reverse the
default for a random number seed. By default rube() generates a random number
seed, supplies it to WinBUGS or JAGS, and stores it in the rube() result as the
bugs.seed component. If you want the bugs() default, which gives exactly the same
MCMC results for each run, set bugs.seed=NULL in the rube() command line. You
can also use bugs.seed=foo$bugs.seed to get identical MCMC results as for the
prior run whose rube() results are stored in ”foo”.

Another difference is that the ’parameters.to.save’ argument can be set to "*" to
save all pararmeters, or, e.g., c("*", "bage", "RIs") to save all but the “bage”
parameter and the “RIs” parameter vector.

12. The rube package provides a function called p3() which plots the trace, AR plot, and
histogram for each monitored parameter. For multidimensional parameters, initially
a random subset of the parameters is shown in a panel display, with new random
subsets generated by a single click and with a detailed view of individual parameters
also available. The related set of parameters generated by each LC() command
(excluding the intercept) are also displayed together in a panel. In addition, the
viewGroups= argument of p3() can be used to group other parameters. p3() allows
you to add new and view parameters that are compuatble from old ones (see below).

13. The rube package provides a function called priPost() which is a prior/posterior
density plotter to compare the posterior density of various distributions to their
prior densities. This includes some ”compound” prior distributions, e.g., a beta or
gamma that has two gammas as its parameters.

14. The compare() function takes a list of rube objects as its input and graphically
compares results across objects on a parameter-by-parameter basis.

15. As an aid to learning WinBUGS, rube has a function called getBugsExample()

which reads the model(s), data, and initializations of the standard WinBUGS ex-
amples into R. (This cannot be done with simple copy-and-paste from WinBUGS
because any data in matrices or arrays are improperly imported into R.)
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16. Functions for exploration of reasonable prior distributions are in hyperEx-
plore.R (but will be added to rube in the near future).

• betaHyperExplore() allow interactive setting of the four hyperparameters of a
beta distribution parameterized by two gamma distributions. A histogram of
the prior density and an image plot of the means and standard deviations of
the betas that are being mixed to produce the final composite beta are shown.
The final explored parameters are returned.

• gammaHyperExplore() allow interactive setting of the four hyperparameters of
a gamma distribution parameterized by two gamma distributions. A histogram
of the prior density and an image plot of the means and standard deviations
of the betas that are being mixed to produce the final composite gamma are
shown. The final explored parameters are returned.

• betaHyperPlot() shows the histogram of a composite beta prior density from
four gamma hyperparameters or the posterior histogram from the ”bugs” ob-
ject.

• gammaHyperPlot() shows the histogram of a composite gamma prior density
from four gamma hyperparameters or the posterior histogram from the ”bugs”
object.

5 Using rube: Details of a Typical Analysis

5.1 Writing Model Code

The first step in WinBUGS or JAGS analysis is writing a model specification (model
code) file. You can also enter the model directly into a string variable (see above). Here
are some tips for writing models in rube. The main goals are to improve clarity and
maintain only a single model description rather than several (or many).

• Use the “#” sign where needed for commenting. It can be at the beginning of a
line or in the middle. Everything after the “#” sign is ignored.

• You may use a semicolon (“;”) to enter multiple statements on a line. (Do this
sparingly or you will sacrifice clarity.)

• As in R, you can break a long statement across multiple lines by carefully assuring
that the statement(s) before the break cannot be interpreted as a valid statement,
e.g., by ending with a plus sign (“+”).

• In rube you also have the option of indicating that a line continues by placing
two backslashes (“\\”) at the end of the line. This is a safer way to continue
lines, and may be the only clear way to conditionally add a term to an expression
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using IFCASE. (Although WinBUGS supports almost any form of haphazard line
breaking, rube() enforces a clearer set of forms based on the use of the semicolon,
R-style incomplete lines, and the explicitly line continuation symbol.)

• Whenever you enter a hyperparameter, it is good practice to indicate that it is a
default value by using the form NAME=VALUE, e.g., PREC=0.001. The use of capi-
tal letters is a common convention. Use separate names for values that might be
changed individually, or a common name for values that will be changed en-mass.
As an example if “myModel” contains

yt[i] <- (z + log(y[i]) / FACTOR=20

it will be interpreted as

yt[i] <- (z + log(y[i]) / 20

when you run rube(myModel), but as

yt[i] <- (z + log(y[i]) / 200

when you run {\tt rube(myModel, subs=list(FACTOR=200))}.

• If you are making a coding choice more complex than a simple default use conditional
coding. For example, to code a transformation as either log or square root use

yt[i] <- (z + IFCASE(SQRT.XFORM) sqrt(y[i]) ELSECASE log(y[i]) ENDCASE) / FACTOR=20

This is called the in-line form of conditional coding. For larger blocks of code (or if
it seems clearer to you than the in-line form), the block form of conditional coding
is used. For example:

IFCASE(!LOGNORM)

mu[i] ~ dnorm(tau[i], xi)

ELSECASE

tauE[i] <- exp(tau[i])

mu[i] ~ dlnorm(tauE[i], xi)

ENDCASE

which will result in running the first line of code if “LOGNORM” is not defined in
the cases= argument to rube() or similar functions, and the second and third lines
if it is defined.

This multi-line version of conditional coding allows any number of code lines in each
block. You can have a single optional block by excluding the ELSECASE statement,
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and you can have several alternate cases by including one or more ELSEIFCASE()
statements.

For both types of conditional coding, you can have different identifiers inside dif-
ferent IFCASE() or ELSEIFCASE() statements and/or re-use the same identifiers.
The identifiers are case sensitive and the choice of code is made at run-time by
adding or excluding identifiers in the rube(..., cases=) statement. For example
you might have rube(...) to use the standard normal (not defining LOGNORM)
or rube(..., cases="LOGNORM") to use the log normal distribution, or rube(...,
cases=c("LOGNORM","OTHERS")) in a more complicated situation. Also note that
the condition can be simple like the IFCASE(!LOGNORM) above, or quite complicated
such as IFCASE(!LOGNORM || (OTHERS && !FOO)).

• Any rube code may include the LC() “linear combination” pseudo-function to sim-
plify model writing while flexibly allowing covariate choice and at the same time
assure meaningful parameter names in model results.

The syntax is:
LC(prefix, FORMULA, suffix, index)

This creates a linear combination of parameters and data based on the FORMULA
as defined at run-time. In practice, you will replace the word FORMULA with
some meaningful name (though FORMULA might be appropriate if there is only
one LC() statement in your code). Again, upper case is a common convention. The
other elements of the pseudo-function are entered verbatim (i.e, they are constants).
The FORMULA is defined at run time in the varList= function option, and resem-
bles the right hand side of a standard R model formula, i.e, it contains covariate
names separated by “+”, “:” (for interactions) and/or “*” (for main effects plus
interaction). You may also use the R syntax (A+B+C)^n to indicate that you want
main effects plus all interactions up to order n. Complex forms such as

varList = list(FORM1 = "A*B + (C+D+E)^2 + A:C + (F+G+H)^2")

are allowed.

The linear combination is created by multiplying the variable names (with [index]

appended if “index” is not blank) by the corresponding parameter names. The lat-
ter are created by concatenating the prefix, variable name from the FORMULA,
and suffix. The suffix may be blank Interaction parameters are created by multi-
ple concatenation, and interaction variables are created as products (so warning:
they are only appropriate for two level categorical variables, or k-level variables re-
coded as k-1 indicators, or for quantitative variables). An intercept is created as
“prefix0suffix” unless a -1 is included in the FORMULA.

As an example

mu[i] <- LC(b,FORM1,pop,j)
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will be interpreted as

mu[i] <- b0pop + bApop*A[j] + bBpop*B[j] + bABpop*A[j]*B[j]

if varList=list(FORM1="A*B") is defined, and as

mu[i] <- bApop*A[j] + bBpop*B[j]

if varList=list(FORM1="A+B-1") is defined, and as

mu[i] <- b0pop + bApop*A[j] + bBpop*B[j] + bCpop*C[j] +

bABpop*A[j]*B[j] + bACpop*A[j]*C[j] + bBCpop*B[j]*C[j]

if varList=list(FORM1="(A+B+C)^2)") is defined.

• The rube pseudo-function FOR() is used to create statements such as prior distri-
bution definitions for all of the parameters created by an LC() formula (though it
need not be limited to that use). The syntax is
FOR(prefix, FORMULA, suffix, codeText)

where prefix, FORMULA, and suffix are the same as for LC() and codeText is any
valid WinBUGS or JAGS model declaration code, but with a question mark (“?”) at
the place where a parameter name is to be substituted at run-time. One statement
is created for each parameter implied by the value of the FORMULA at run-time.

Note that the FOR() statement must be the only statement on its line in the code.

As an example

FOR(b, FORM1, pop, ? ~ dnorm(0, POP.PREC=0.001))

will be interpreted as

b0pop ~ dnorm(0, 0.001)

bApop ~ dnorm(0, 0.001)

bBpop ~ dnorm(0, 0.001)

if varList=list(FORM1="A*B") is defined, and as

bApop ~ dnorm(0, 0.001)

bBpop ~ dnorm(0, 0.001)

if varList=list(FORM1="A+B-1") is defined.
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• The rube pseudo-function BASE() can be used to create a baseline indicator variable
for a formula. (This may have limited use, but I needed it for one project.) The
syntax is:
BASE(FORMULA,index)

This creates a product of the form (1-var[index]) for each main effect variable in
the FORMULA. So

isBase[i] <- BASE(FORM1, i)

will be interpreted as

isBase[i] <- (1-A[i]) * (1-B[i])

if varList=list(FORM1="A+B") is defined.

5.2 Checking Models

The usual way to use rube is to first use the simple rube(myModel) form to perform
initial syntax checking of your model. The problems detected include

• Not starting with model and not enclosing the model in curly braces.

• Unbalanced parentheses, brackets or braces.

• Misspelling a distribution name or using the wrong number of parameters. (Note:
Standard WinBUGS or JAGS distributions plus, for WinBUGS, those in http://www.winbugs-
development.org.uk/ are allowed.)

• Misspelling a function name or using the wrong number of parameters. (Note: Stan-
dard WinBUGS or JAGS functions plus, for WinBUGS, those in http://www.winbugs-
development.org.uk/ are allowed.)

• Incorrect syntax of logical (assignment), stochastic, or for statements.

• Inconsistent use of vectors or matrices.

• Use of the same variables inside and outside “for” statements.

• Nesting of the same variable in “for” statements.

• Use of vector indices that are inactive (in another “for” statement).

• Invalid formulas, such as A + + B.

• Incorrect use of the censoring syntax I(,).
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The object returned from a call to rube() is a “rube” object. If you print() the
object, the data, constants, stochastics, and problems will be shown. The summary() gives
additional information, namely the “for” variables, the initializations, and the concerns
(possible problems), as well as including the actual code lines the caused each problem.
You can also check the $check$model component which allows you to locate errors in
context by line number. Note that line numbers refer to the processed file as reflected in
“tempModel.txt” which is produced in the current directory. Due to the complex nature
of the code pre-processor, rube() does not currently give the line number in your original
unprocessed code file.

For all calls to rube() the options subs=mySubsList, cases=myCaseVector, and
varList=myVarList may be used. Currently extra elements in these options are ignored.
The subs and cases options are never needed: leaving them out gives the default values for
substitutions (usually hyperparameters) and for the CASE selections. If any LC() and/or
FOR() pseudo-functions are used, a missing varList value corresponds to an intercept only
formula.

After your model is syntactically correct, it is a good idea to cross check the data
and the initializations with the code. A function call that does not specify the parame-
ters.to.save argument, such as rube(myModel, data=myData, inits=myInits) will cre-
ate a summary showing the relationships between the model components. The objects
myData and myInits are either lists, function calls, or file names of objects stored using
dget(). Note that, by default, after running WinBUGS (bug not JAGS) through rube

the data are in “data.txt”, and the initializations are in “inits1.txt” in the working direc-
tory so, e.g., inits=dget("inits1.txt") will analyze your model using the last set of
initializations.

If you use a function for the data, the function arguments may be whatever you like,
and you can use the rube() optional argument dataParams=myList to provide non-default
values in the form of a named list. Here is an example:

genData = function(nsubj, beta, sig=1) {

x=runif(nsubj, 10, 30)

y=rnorm(nsubj, beta[1]+beta[2]*x, sig)

return(list(x=x, y=y, N=nsubj))

}

myModel="model {

for (i in 1:N) {

mu[i] <- beta0 + beta1*x[i]

y[i] ~ dnorm(mu[i], prec)

}

beta0 ~ dnorm(0, 0.001)

beta1 ~ dnorm(0, 0.001)

prec ~ dgamma(0.01, 0.01)

}"

myInits = function() list(beta0=rnorm(1,0,0.5), beta1=rnorm(1,0,0.5),
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prec=rnorm(1,1,0.1))

rube(myModel, genData, myInits, dataParams=list(nsubj=50, beta=c(0,1)))

Each time you run the rube() statement above, the genData() function is run once
to generate a new dataset. The arguments to the genData() function come from the
“dataParms” argument and the the value of sigma is taken from the function default
(sig=1) because “sig” is not listed in “dataParams”.

If you use a function for the inits, you may specify any of the following as arguments:
“data” to get the data in list form, “cases” to get whatever is passed to the rube()
function in the “cases” argument, and “extra” to get whatever is passed into rube() as
the argument startExtra=myStartList to provide non-default values.

A call to rube() with the data and inits arguments will identify definite problems such
as:

• Inconsistent variable dimensions

• Identical components of a matrix defined (i.e., not NA) for matrices present in both
the data and the initializations.

• Data or initializations incompatible with their distributions.

• Data or initializations not present in the model (but this is not necessarily a problem
if “culling” is in effect, as explained below).

In addition potential problems (labeled as “concerns”) such as data or initializations
that are unlikely under their distribution (outside of 3 s.d. from the mean) are flagged.

Finally various summaries of variables are produced (use summary() rather than
print() to see them all) which will aid you in assessing the appropriateness of your model
and in identifying the problem(s) if WinBUGS or JAGS fails.

There are separate sections for constants, data, and other stochastics. Among other
things, the summaries of the data and other stochastic variables include, for each variable,
the distribution name, and, when rube is able to determine them, the variable size (using
RxC notation for matrices), the parameter values, the number of missing values, the
censoring limits (if present), and theoretical mean and s.d. If the variable is data or if it is
a variable with user initialized values, the initialized mean, s.d., and range are calculated.
Finally “Flags” are calculated as follows:

• Values inconsistent with the distribution are flagged “!!!” and a listed as a critical
problem (i.e, running WinBUGS or JAGS will not be attempted).

• Values outside of mean +/- 3 s.d. are flagged “**” and listed as a “concern”.

• Values outside of mean +/- 2 s.d. are flagged “*”.

22



For censored values, estimated means and s.d.s are produced by simulation (for some
distributions).

Hints for detecting common problems: When looking for problems it may also
be useful to examine the list of “for” variables and the list of uninitialized data. Also, you
may find spelling errors for variables by noticing multiple version of what was intended
to be one variable.

5.3 Running Models

To actually run a WinBUGS or JAGS model, use the function call rube(myModel,

data=myData, inits=myInits, parameters.to.save=myParameters) where “myParam-
eters” is a string vector of parameters that will be monitored by WinBUGS or JAGS and
returned to rube() to be analyzed in R. (Unlike R2WinBUGS or R2jags, "*" may be used
as the ’parameters.to.save’ to save all parameteres.) If all goes well, the return object for
this form of the rube() call is a “bugs” object as well as a “rube” object. In this case,
the summary() call will show the results of the MCMC. If WinBUGS or JAGS fails, you
will get an informative message, and a summary of the “rube” object will show the model
check information instead of MCMC results.

The rube() function uses the same defaults as WinBUGS bugs() function or JAGS
jags() function , but some of these are not very appropriate and interact with each
other in strange ways. I recommend that you control the number of iterations as
follows. Explicitly specify the arguments n.burnin to specify the total number of burn-in
MCMC iterations to be discarded, n.iterations to specify the total iterations to run, and
n.thin to specify than only every n.thin’th iteration will be saved after the burn-in.

By default three forms of culling are automatically turned on, but you do have the
option of turning them off if desired. Data culling removes variables from the data if
they are not used in the model. This is very useful because you do not need to manually
adjust your data object when you change which covariates you are using. Without culling,
WinBUGS or JAGS will fail if the data contain any variables not used in the model. You
will get a rube warning when data are culled, but this warning may be suppressed with
cullWarn=FALSE.

Similar culling is present for initializations, again simplifying the construction of ini-
tialization functions. In other words, if your intialization list contains parameters that
are not in the model, rube() will remove them so that bugs() does not fail.

Culling of parameter.to.save serves the same purpose: you can use a variable containing
all possible parameters, then let the culling process remove those that are not used based
on the active varList covariate formulas.

You have some control over the way syntax checking is done when parameter.to.save is
included (i.e., when WinBUGS or JAGS is run) thorough setting the modelCheck variable.
The default is “always”. You can set this to “onFail” or “never” to save run-time for a
large set of simulations by suppressing some model checking. In the case of “onFail”, the
model checking will be done if the call to WinBUGS or JAGS fails, so that a summary()
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of the result will be informative. Note that if you use the “never” setting no checking,
and therefore no culling, is done.

The final “rube” object may be printed (the summary method currently just does
printing) which gives a result similar to, but better than the print function that comes
with R2WinBUGS or JAGS. The object may also be examined manually (usually through
the $sims.array component and the $runTime and $startTime components), or examined
with the rube functions p3(), check(), model(), compare(), and/or priPost (see below
or the package help files for more information).

6 Details of Additional Functions

• The getBugsExample() function reads the model code, data, and initializations
from a WinBUGS example “.odc” file. The required argument is a quoted string
indicating which example you want. You may specify either the exact name of the
example file (with or without the file suffix), or you may specify a portion of the
file name in which case the first partial match will be returned. If you installed
WinBUGS in a non-default location, use the “bugs.directory” argument to specify
the correct location or use the BUGSDIR environmental variable as explained above
“Environmental Variables”.

The return value is a list with components “model1”, “data1”, “inits1”, and possibly
additional, higher numbered components if the example has more that one model.

The model component returned by getBugsExample() is a multi-line string which
can be viewed using code such as:

print(ali$model1)

or

model(ali$model1)

Also, getBugsExample() corrects the model code to standard form with more rea-
sonable line breaks when the original form is non-compliant with rube standards.

The data component fixes matrices and arrays so that they will be in the correct
“column major” order for R.

The inits component is just a list, not a function, so these examples are more suitable
for single chain analysis unless you write an initialization function.

Note that in some cases getBugsExample() misidentifies the component, e.g., calling
initializations as data, so some manual correction may be necessary.

The simplest way to run an example is demonstrated here:
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ali = getBugsExample("Aligator")

with(ali, summary(rube(model1, data1, inits1)))

result = with(ali, rube(model1, data1, inits1,

parameters.to.save=c("alpha","beta"), n.chains=1))

print(result)

p3(result)

• The p3() function provides overview and detailed plots of the MCMC results re-
turned to rube() from WinBUGS or JAGS through bugs(). Its required argument
is a “rube” object. As shown in figure 1 an interactive plot is produced with infor-
mation about one parameter (or one group of parameters) at the top and a menu
at the bottom. The title identifies the parameter and its distribution.

The menu shows clickable buttons for all monitored model parameters (i.e., those
specified under “parameters.to.save” when running rube()), and it has a “Quit”
button which is used to return to your interactive R session.

For parameters with many values (i.e., vectors or arrays), the menu button shows
the range of indices in square brackets. Clicking on any parameter button displays
plots of the MCMC results for that parameter. For single-values parameters the
“detailed mode” plot (see below) is presented when the parameter button is clicked.
For multiple-valued parameters, the “summary mode” plot is initially displayed.

p3() automatically creates parameter groups, and thus initially uses the “sum-
mary mode” for the related components of each LC() linear combination formula in
your model. (The intercept, if any, is excluded from this group, because it is com-
monly on a different scale.) This is demonstrated in figure 1 by the “b[DEMOG]”
button which corresponds to an LC() group which has prefix “b” and formula “DE-
MOG”. In addition to the automatic creation of parameter groups, you can create
groups manually using the “viewGroups=” argument to p3(), e.g., viewGroups =

list(main=c("bA","bB","bC"), aux=c("bT","bU")) will produce two parameter
groups labeled “main” and “aux”, and these will each use summary mode to display
the related parameters together.

For single-valued parameters, the detailed mode plot consists of a trace of the
MCMC values of each chain vs. iteration number. (The iterations shown are se-
quential regardless of the value of n.skip.) The colors in this panel only serve to
distinguish the various chains.

The second panel of the detailed mode plot shows the autocorrelation function for
each chain, again using colors to distinguish chains. Dotted lines indicate confidence
intervals for significantly non-zero correlations. If there are multiple chains, then
the Gelman R-hat value is shown at the upper right hand corner using a color code
of green for OK, orange for warning, and red for high (all based on the values of the
“rHatGrayZone” which defaults to c(1,1.2)).
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Figure 1: p3() showing detailed mode for a single-valued parameter.
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The third panel of the detailed mode plot shows a density plot with the posterior
credible interval marked based on “PIprob” which defaults to 0.95. If you supply
values in some or all positions of the “true” argument vector, the corresponding
plots will have that value marked with a dotted vertical line on the density plot.
This is useful to MARK either a null value or the true value for simulated data.

For parameters with many values, clicking on the the menu button shows the sum-
mary plot, as in figure 2. The summary plot has two or three vertically arranged
panels, depending on whether a single or multiple MCMC chains were run. The
summary plot shows results for a random sample of parameter elements based on
the “nSample” parameter (default is 20). Of course all elements are shown if the
number of elements is less than “nSample”. Clicking the button again shows a new
random sample. The “intelligent parameter matching” feature assures that you
switch to another parameter with the same number of elements, the same subset
of elements is initially shown. You can just click again to see a different subset of
elements.

The first panel shows the 95% posterior credible interval for each chain of each
parameter element with different colors designating the different chains. The second
panel shows the how many lags have significantly non-zero autocorrelation, again
with different colors designating the different chains. If there are multiple chains,
there will be a third panel showing Gelman’s r-Hat for each parameter element
(whether in the currently displayed parameter subset or not), with colors designating
whether the value is high enough to indicated a mixing problem (rather than relating
to individual chains). As for detailed value mode, the color code is green/orange/red
for OK vs. gray zone vs. elevated values.

When the displayed parameter is multiple-valued, the menu buttons marked “-1”,
“-10”, “+1” and “+10” can be used to enter detailed mode and to move through
the detailed results of each individual element of the multiple-valued parameter.

The “Previous” and “Next” buttons move between parameters as an alternative to
clicking on specific parameter buttons.

The “params” argument of p3() is useful for restricting the size of the menu when
very many parameters are present or to select a single parameter for printing the
plot with no menu present. You can enter either a string vector or a numeric vector.
E.g., “alpha” plots only the alpha parameter. Or “10:15” examines only the 10th
through the 15th parameters.

The “only” argument of p3() in conjunction with the “params” parameter plots
only a single element of a single parameter or a set of specific elements for a vector
parameter. The value is an (absolute) index into the parameter mentioned.

The “drop” argument removes values from the beginning of every chain and is useful
if burn-in was insufficient. The value you supply is taken as the number of recorded
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Figure 2: p3() showing summary mode for a multi-valued parameter.

28



values to drop, i.e., the same number of values is removed regardless of the value of
n.burnin in the rube() call.

The “noMenu=TRUE” option suppresses the menu which allows you to print the
p3() plots without the menu.

The “add=NULL” argument can be used to view the posterior of parameters that
were not included in the WinBUGS or JAGS run, but which are computable from
existing parameters. The argument must be a named list containing one or more
expressions or strings defining expressions that include the names of existing pa-
rameters. Expressions may refer prior expressions in the list. Currently vector
parameters are not allowed, and there is not yet a way to view the summary() of
the new parameters.

As an example, consider the case where you save ’log.sd’ and want to see the pos-
terior of the sd itself. This is achieved with either of these forms:

p3(myRubeObject, add=list(sd="exp(log.sd)")

p3(myRubeObject, add=list(sd=expression(exp(log.sd)))

As another example, consider a logistic regression with covariate age centered at 40
and a male indicator variable. To see the posterior of the probability of success for
a 50 year old male use:

p3(myRubeObject, add=list(Pr50M="1/(1+exp(-(b0+(50-40)*bage+bmale)))")

• The compare() function takes two or more “rube” objects and compares them
graphically. The comparison is similar to the chain comparisons of p3() when
multiple chains are present.

The syntax is

compare(rubeResult1, rubeResult2, ...)

The optional parameter “chains” selects which chain from each “rube” object is used
in the comparison (default is chain 1 from each model) and its length should be 1
or the number of objects in the list. The “params”, “nSample”, “true”, “PIprob”,
“rHatGrayZone”, and “noMenu” options are the same as for p3().

Note that parameters that appear in only one model are not accessible, and that
the title will suppress the name of the distribution if it differs across models.

If the MCMC runs being compared are not from the same model, a warning message
is issued.
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• The merge(rubeResult1, rubeResult2, ...) function takes two “rube” objects
and merges them into a single object. Iterations are trimmed from the beginning of
the longer MCMC simulation. The merging works as if the number of chains run is
equal to the sum of the number of chains from the individual runs. Some information
is (currently) lost, including the the DIC. The recomputed n.eff is computed using
’coda’, but differ from the R2WinBUGS or JAGS result. The same applies to
MCMCerr for R2WinBUGS, but new MCMCerr values is not implemented in R for
JAGS objects.

• The stitch(rubeResult1, rubeResult2, ...) function takes two “rube” objects
from the same model and with the same number of chains (possibly with differences
in which parameters were saved) and merges them into a longer single object. The
intention is that ’rubeResult2’ is a continuation of ’rubeResult1’, probably using
’inits=rubeResult1$last.values’, and that there is no burn-in for the second run.
Some information is (currently) lost, including the the DIC. The recomputed n.eff
is computed using ’coda’, but differs from the R2WinBUGS or JAGS results. The
same applies to MCMCerr for R2WinBUGS, but new MCMCerr values is not im-
plemented in R for JAGS objects.

• The shrink(rubeResult, n.thin=1, drop=0, chainsDropped=NULL, ignore=NULL,

keep=NULL, minimal=FALSE) function takes a “rube” object and produces a smaller
rubeObject, either to remove more burn-in, or to save space, e.g., by further thin-
ning, dropping of chains, or dropping of $sims.matrix and $sims.list, and a few
other fairly useless components of the rube (bugs) object. Some information is (cur-
rently) lost, including the the DIC. The recomputed n.eff is computed using ’coda’,
but differs from the R2WinBUGS or JAGS results. The same applies to MCMCerr
for R2WinBUGS, but new MCMCerr values is not implemented in R for JAGS
objects.

• The augment(rubeResult, add=NULL, minimal=FALSE) function takes a “rube”
object and produces a rubeObject with additional parameters that are computable
from the existing parameters. The ’add’ argument is a named list, where the names
are the formulas defining new elements. The formulas can be entered either as
expressions (e.g., /tt expression(log(b0))) or as quoted strings (e.g., /tt ”expres-
sion(log(b0)”). If the formulas refer to a vector parameter, a correpondingly sized
vector of new parameters is created. Here is an example that assumes that ’varRI’
is an existing scalar and that ’LO’ is an existing vector (log odds for each subject).
This function call creates a new /rube object that has a new scalar parameter called
’sdRI’ and a new vector parameter of probabilities.

newRubeResult <- augment(oldRubeResult,

add = list(sdRI = expression(sqrt(varRI)),

pr = "1/(1+exp(-LO))"))
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Some information is (currently) lost, including the the DIC. The recomputed n.eff
is computed using ’coda’, but differs from the R2WinBUGS or R2bugs results.
The same applies to MCMCerr for R2WinBUGS, but new MCMCerr values is not
implemented in R for JAGS objects.

• mergeLists() is a convenience function that merges two lists of named values in
such a way that

– the result contains all element present in only one of the lists

– for elements on both lists, the result contains the value from the second list.

The main use is with “subs” and/or “varList” arguments to rube() and other func-
tions with these arguments. For example if “v” is a varList of names model formulas
for the “LC()” pseudo-functions of a model, including DEMOGS="male+age" among
others, then

rube(..., varList=mergeLists(v, list(DEMOGS="male*age")))

will add in the interaction.

• priorExplore() is an interactive function to explore prior distributions graphically.
It has no arguments. It initially has a menu of discrete distributions and a button
to switch to continuous distributions. You can click to select a distribution and see
its pdf or pmf graphically, along with mean and sd.

Then you can click on the parameter slider bars to see the effects of changing
parameter values. Click Quit to return to the normal interactive R prompt.

• priPost() makes a plot comparing the prior to the posterior for a particular model
parameter. The syntax is

function (post,

dist = c("Normal", "Uniform", "Gamma", "Beta",

"sdFromGammaPrecision", "HyperBeta", "HyperGamma"),

pripar,

main = NULL, xlab = NULL, xlim = NULL,

nsim = 2000, digits = 1, true = NULL)

For “post” you need a vector of posterior values, normally in the form of the
$sims.list[[”myParameter”]] component of a rube object. For a vector or array
parameter you can follow this with an index or indices in square brackets. (As op-
posed to the sims.array form, the sims.list form includes all of the chains in a single
vector.)
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Unless the distribution is ”Normal”, you need to specify it in the ”dist” argument.

The “pripar” argument is required and is a numeric vector including the parameters
as follows:

– Normal: mean and standard deviation

– (Continuous) Uniform: lower and upper limits

– sd from gamma precision: gamma shape and scale parameters

– Gamma: shape and scale parameters

– Beta: alpha and beta parameters

The “sdFromGammaPrecision” takes a gamma prior on the precision parameter of
a normal distribution, and plots it on the s.d. scale. The “post” value should be
the posterior standard deviation, usually generated by a model statement such as
sd <- pow(precision, -2).

The HyperBeta prior refers to a beta prior distribution with independent gamma
hyperpriors on alpha and beta. The “pripar” in that case is either a matrix with
the alpha hyper-parameters in the first column and the two beta hyper-parameters
in the second column, of a list for two length-two number vectors with the hyper-
parameters.

The HyperGamma prior refers to a gamma prior distribution with independent
gamma hyperpriors on the shape and scale. The “pripar” in that case is either
a matrix with the shape hyper-parameters in the first column and the two scale
hyper-parameters in the second column, of a list for two length-two number vectors
with the hyper-parameters.

You can set the title with “main” and the x-axis label and limits with “xlab” and
“xlim”. For the hyperBeta and hyperGamma. the “nsim” argument is used to
set the number of simulations used to generate the estimated distribution. The
“digits” argument controls the number of digits in the display of the mean and s.d.
The “true” argument allows specification of the true mean (for simulated data).

• showDefaults() is a convenience function that takes a model (as a file name or
text string) as its argument and returns the names and values of all defaults of the
“NAME=VALUE” form (see the substitution pseudo-function, above). Duplicates
that have different default values are flagged. If the code uses the IFCASE pseudo-
function(s) then defaults from all of the various conditional code are shown unless
the “CASES=” argument is set as a string or string vector to select particular cases.

• model() is a generic convenience function that applies all of the pre-processing
pseudo-functions based to the code specified by its “model” argument. It uses the
“subs=”, “cases=”, and “varList=” arguments to produce a specific version of the
model and display it. There are method functions defined for model() that apply
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to rube objects, ’bugsCheck’ objects and strings. The string may be either model
code or the name of a file containing the model code.

Note that rube() operates by pre-processing the model code, writing it to a file
(named tempModel.txt by default), then passing that file name to WinBUGS or
JAGS, the most recently used pre-processed code is available for viewing in temp-
Model.txt. From R, you can view this file by running model("tempModel.txt") or
my running model() on the rube() result itself.

• The unlister() function is a convenience function related to the WinBUGS or
JAGS idea that ragged arrays of data in hierarchical models can most easily be
handled by putting the data into vectors, then using a corresponding “index” vector
to specify which upper level unit each value belongs to.

The unlister() function takes a list called “data”, and looks for an “unlist” element
in the form of a named list of strings. Each string is a variable name in “data”,
and those particular elements of data, which are presumably lists, are converted
to a vector with unlist, and then renamed to the name in the unlist element that
matches the variable.

This procedure, which only seems complicated, allows generation of a data object
that contains ragged arrays in list form, and then manual or automatic (see “special
features of data generating functions”, below) conversion to the “indexed” form.

Here is code for a simple example:

N = 10

t1 = sample(5:7, N, rep=TRUE)

t2 = sample(9:12, N, rep=TRUE)

x = apply(cbind(t1,t2), 1, function(tt) tt[1]:tt[2])

id = rep(1:N, sapply(x,length))

reg = function(x, b, sig) {

y = rnorm(length(x), b[1] + b[2]*x, sig)

return(round(y,2))

}

y = lapply(x, reg, b=c(1,3), sig=2)

myData = list(N=N, id=id, x=x, y=y, unlist=list(X="x", Y="y"))

sapply(myData,length)

# N id x y unlist

# 1 54 10 10 2

print(myData)

print(cbind(myData$id,unlister(myData)$Y)[1:4,])

# [,1] [,2]

#[1,] 1 16.66

#[2,] 1 20.58
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#[3,] 1 26.28

#[4,] 1 27.33

• Full details of calling rube()

Here is the full list of rube() parameters with defaults and explanations.

– model: the model definition code. This can be a text string with on or more
newlines, or the name of a file containing the model code.

– data=NULL: the WinBUGS or JAGS data. This can be a named list of data
values (possibly including NAs), a data.frame, the name of a file containing
data saved using dput() or a function that generates a named list of data
values. A data.frame will be converted to a list of its columns plus “N” for
the number of rows. The file name form is useful to supply the data most
recently used by rube() which is in “data.txt” by default. The function form is
useful for simulating multiple datasets. See “Special features of data generating
functions”, below. If data culling is in effect (the default case), then any
supplied data variable not needed by the current model will be automatically
dropped to prevent a WinBUGS or JAGS error. This allows use of a single
data list for different models with different covariates.

– inits=NULL: the initial parameter values for the MCMC run. This can be
a named list of data values (possibly including NAs), the name of a file con-
taining data saved using dput() or a function that generates a named list of
initial values. The file name form is useful to supply the chain initializations
most recently used by rube() which is in “inits1.txt”, “inits2.txt”, etc. by
default. For details on the function form of “inits”, see “Special features of
inits functions”, below. If inits culling is in effect (the default case), then any
initializations that refer to parameters not in the model will be automatically
dropped to prevent a WinBUGS or JAGS error. This allows use of a single
inits list or function for different models with different parameters.

– parameters.to.save=NULL: the MCMC parameters that are to be saved and
returned to the user. This is a vector of string names of parameters (without
use of “[]”). Setting these values rather than leaving them blank is what
changes the behavior of the rube() function from model checking to running of
the MCMC. If PTS culling is in effect (the default case), then any values that
refer to non-parameters will be automatically dropped to prevent a WinBUGS
or JAGS error

– n.chains=3: the number of MCMC chains to run. This defaults to 3. Each
chain is given a different set of initial values if “inits” is a function or a list
of lists. Otherwise a warning is given (unless n.chains=1) that multiple chains
have the same initial values.
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– n.iter=2000: the total number of MCMC iterations per chain. This number
includes burn-in iterations and non-saved iterations (if n.thin>1).

– n.burnin=n.iter/2: the number of initial iterations that are discarded as burn-
in.

– n.thin: the thinning rate. Only one of every n.thin iterations is saved and the
rest are discarded.

– n.sims: (see bugs() documentation; I recommend using n.iter, n.burnin, and
n.thin instead of n.sims)

– bin: the number of saved (not burnin and not thinned) iteration before each
disk write. Warning: currently this overrides all of the above, so setting it too
large may produce a very lengthy run.

– debug=FALSE: sets the debug state of bugs(). Generally there is no benefit
to setting debug=TRUE, because rube() will read the state of bugs() if it
fails. Sometimes rube() will recommend turning debug=TRUE on if the state
of bugs() is not readable. This parameter does not affect JAGS.

– modelCheck=”always”: the conditions under which model checking is per-
formed. The default is “always”. The “never” option can speed up multiple
simulations, but culling is not available, and model checking information is not
available on failure. The “onFail” option runs full model checking only when
the MCMC fails, but always runs simplified checking to the degree necessary
to perform culling, if culling is requested.

– cullData=TRUE: a logical flag indicating whether or not culling of unused data
is performed. (If un-referenced data are passed to WinBUGS or JAGS it will
fail.)

– cullInits=TRUE: a logical flag indicating whether or not culling of unused
initializations of stochastic parameters is performed. (If un-referenced initial-
izations are passed to WinBUGS or JAGS it will fail.)

– cullPts=TRUE: a logical flag indicating whether or not culling of parame-
ters.to.save is performed. (If un-referenced parameters.to.save are passed to
WinBUGS or JAGS it will fail.)

– cullWarn=TRUE: a logical flag indicating whether or not culling should gen-
erate a warning message.

– DIC=TRUE: a logical flag indicating whether or not DIC should be calculated

– digits=5: the number of significant digits in the output

– codaPkg=FALSE: (see bugs() documentation) Rube won’t fully work with
codaPkg=TRUE.

– subs=NULL: a named list of substitutions for default values of the form “NAME=VALUE”
in the model code
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– cases=NULL: a string vector of case variables that will be defined as TRUE,
then used to evaluate IFCASE() and ELSEIFCASE() pseudo-functions in the
model code

– varList=NULL: a named vector of model formulas (right hand side only) for
substitution into the LC(), FOR(), and BASE() pseudo-functions in model
code

– bugs.directory: the location of WinBUGS. This defaults to C:\\Program Files\WinBUGS14
or the contents of the Windows environmental variable BUGSDIR if it exists.

– useWINE, WINE, newWINE, WINEPATH: (see bugs() documentation) untested
in rube

– program=”auto”: the MCMC program. Under auto, jags is used if package
R2jags is loaded, otherwise WinBUG is used. Set to ”WinBugs” or ”jags” to
override ”auto”. (OpenBugs is untested.)

– parallel=FALSE: with jags, parallel=TRUE runs jags in parallel if the inits=
value is a function.

– progress.bar=”gui” sets the jags (non-parallel) progress bar (see jags documen-
tation)

– RNGname=”Wichmann-Hill” set the jags random number generator (see jags
documentation)

– wd=getwd(): the current working directory. This is the location that files
are read from and written to. It is easiest to run rube from the directory
containing your data files and model files. The default is for rube to first check
the environmental variable BUGSWD, which becomes the working directory if
it is defined and ’wd’ is not specified. On some networks WinBUGS may not be
able to see the getwd() directory (e.g., if the getwd() return value starts with
four slashes). In that case specify a normal Windows directory starting with
a drive letter and a colon. The symptom of this problem is that WinBUGS
starts but hangs instead of running your model.

– bugs.seed, over.relax: (see bugs() documentation)

– dataParams=list(): a named list of arguments to be passed to the data gener-
ating function when “data” is a function

– initsExtra=NULL: a names list of arguments to be passed to the initialization
function when “inits” is a function

– warnUseless=FALSE: a logical flag to indicate whether useless “varList” and
“subs” elements should generate a warning.

– modelFile=”tempModel.txt”: the name of the file that contains the processed
model after all pseudo-functions are processed. This file will be produced in
the working directory and passed to WinBUGS or JAGS by name. Examining
this file is a good way to see all of the results of model pre-processing.
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– ignore=NULL: a string vector of partial error messages to be ignored. This
is a “safety valve”: if rube() list problems and indicates that it will not run
WinBUGS or JAGS, you can include (part of) the error message(s) in the
ignore vector to force rube() to call WinBUGS or JAGS.

• Special features of data generating functions make it easier to run simulation
studies. When simulating data to test a Bayesian model, you might want to make
a data generating function that has several parameters that specify custom data
generation options and then create a data.frame that has columns for the options
with one row for each data setup you want to simulate. With such a setup, code
like

result = rube(mdl, datFun, initFun, PTS, dataParams=myDtf[i,])

in a for loop would run each simulation.

To accommodate hierarchical models with ragged arrays using the indexing approach
(see unlister(), above) the unlister() function is run on the data whenever an
”unlist” element is present. This option exists because it is often useful to keep the
data in the ragged array format except when used as MCMC data, e.g., for plotting
the data or for data-based initialization functions.

There is a mechanism for including additional ”housekeeping” information in a data
object. Anything stored in a list element named ”drop” will be removed from the
data, and then added to the final rube object as an ”extra” element. This is useful
in simulation studies, e.g., to store true parameters values with the data, which are
then available for viewing in the final rube object along with the MCMC results.

• Special features of inits functions make them very flexible. The inits() func-
tion is used to create a named list of initial values for model parameters. The
function may have no arguments or any combination of “data”, “cases”, and “ex-
tra”. Rube() will supply its data, cases, and initsExtra arguments as needed when
it runs the inits function. The function will be run once for each MCMC chain (as
specified by the n.chains argument to rube()).

Here is an example that assumes that the data contain ”x” and ”score” values,
that a switch to a log scale is indicated by a ”LOGSCALE” value in the cases
vector (presumably also used in IFCASE(LOGSCALE) in the model code), and with an
optional specification of OVERDISPERSE=TRUE in the rube() ”initsExtra” argument.

initReg = function(data, cases, extra) {

y <- data$score

if ("LOGSCALE" %in% cases) {

y <- log(y)

}
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RMSE = summary(lm(y ~ data$x))$sigma

sd <- 0.2

if (!is.null(extra$OVERDISPERSE)) sd <- 2

return(list(sigma=max(0.02, rnorm(1, RMSE, sd)), mu=rnorm(1, 0, sd)))

}

So some alternate typical calls might be:

rube(myModel, myData, initReg, myParameters, cases="LOGSCALE",

initsExtra=list(OVERDISPERSE=TRUE))

rube(myModel, myData, initReg, myParameters)

rube(myModel, myData, initReg, myParameters, cases="LOGSCALE")

rube(myModel, myData, initReg, myParameters, initsExtra=list(OVERDISPERSE=TRUE))

7 Problems/Suggestions

Please try this package out, and let me know of any problems or suggestions using the
email address hseltman at cmu.edu.
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