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ABSTRACT
Privacy-preserving data mining has concentrated on obtain-
ing valid results when the input data is private. An extreme
example is Secure Multiparty Computation-based methods,
where only the results are revealed. However, this still leaves
a potential privacy breach: Do the results themselves violate
privacy? This paper explores this issue, developing a frame-
work under which this question can be addressed. Metrics
are proposed, along with analysis that those metrics are con-
sistent in the face of apparent problems.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; H.2.7 [Database Management]: Database
Administration—Security, integrity, and protection

General Terms
Security

Keywords
Privacy, Inference

1. INTRODUCTION
There has been growing interest in privacy-preserving data

mining, with attendant questions on the real effectiveness of
the techniques. For example, there are discussions about
the effectiveness of adding noise to data: while adding noise
to a single attribute can be effective [3, 2], the adversary
could have much higher ability to recover individual val-
ues for multiple correlated attributes [12]. An alternative
encryption based approach was proposed in [14]: nobody
learns anything they didn’t already know, except the result-
ing data mining model. While [14] only discussed the case
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for two parties, it has been shown in [10] that this is also
feasible for many parties (e.g., rather than providing “noisy”
survey results as in [3], individuals provide encrypted sur-
vey results that can be used to generate the resulting data
mining model.) This is discussed further in Section 4.

However, though these provably secure approaches reveal
nothing but the resulting data mining model, they still leave
a privacy question open: Do the resulting data mining mod-
els inherently violate privacy?

This paper presents a start on methods and metrics for
evaluating the privacy impact of data mining models. While
the methods are preliminary, they provide a cross-section of
what needs to be done, and a demonstration of techniques
to analyze privacy impact. Work in privacy-preserving data
mining has shown how to build models when the training
data is kept from view; the full impact of privacy-preserving
data mining will only be realized when we can guarantee
that the resulting models do not violate privacy.

To make this clear, we present a “medical diagnosis” sce-
nario. Suppose we want to create a “medical diagnosis”
model for public use: a classifier that predicts the likelihood
of an individual getting a terminal illness. Most individuals
would consider the classifier output to be sensitive – for ex-
ample, when applying for life insurance. The classifier takes
some public information (age, address, cause of death of
ancestors), together with some private information (eating
habits, lifestyle), and gives a probability that the individual
will contract the disease at a young age. Since the classifier
requires some information that the insurer is presumed not
to know, can we state that the classifier does not violate
privacy?

The answer is not as simple as it seems. Since the classifier
uses some public information as input, it would appear that
the insurer could improve an estimate of the disease prob-
ability by repeatedly probing the classifier with the known
public information and “guesses” for the unknown informa-
tion. At first glance, this appears to be a privacy violation.
Surprisingly, as we show in Section 1.1, given reasonable
assumptions on the external knowledge available to an ad-
versary we can prove the adversary learns nothing new.

We assume that data falls into three classes:

• Public Data:(P ) This data is accessible to every one
including the adversary.

• Private/Sensitive Data:(S) We assume that this
kind of data must be protected: The values should
remain unknown to the adversary.



• Unknown Data:(U) This is the data that is not known
to the adversary, and is not inherently sensitive. How-
ever, before disclosing this data to an adversary (or
enabling an adversary to estimate it, such as by pub-
lishing a data mining model) we must show that it does
not enable the adversary to discover sensitive data.

1.1 Example: Classifier Predicting Sensitive
Data

The following example shows that for the “medical diag-
nosis” scenario above, it is reasonable to expect that pub-
lishing the classifier will not cause a privacy violation. Indi-
viduals can use the classifier to predict their own likelihood
of disease, but the adversary (insurer) does not gain any
additional ability to estimate the likelihood of the disease.

To simplify the problem, we assume that the classifier is
a “black-box”: the adversary may probe (use the classifier),
but cannot see inside. An individual can use the classifier
without any risk of disclosing either their private data or
their private result.1 This represents a best-case scenario:
If this classifier violates privacy, then no approach (short of
limiting the adversary’s access to the classifier) will provide
privacy protection.

Formally, suppose X = (P,U)T is distributed as N(0,Σ)
with

Σ =

„

1 r
r 1

«

, (1)

where −1 < r < 1 is the correlation between P and U . As-
sume that for n independent samples (x1, x2, . . . , xn) from
N(0,Σ), the sensitive data S = (s1, s2, . . . , sn) can be dis-
covered by a classifier C0 that compares the public data pi

and the unknown data ui:

si = C0(xi) =



1 if pi ≥ ui ,
0 otherwise;

, where: (2)

• each pi is a public data item that everyone can access,

• the data items denoted by ui are unknown to the ad-
versary; ui is only know to the i-th individual,

• each si is sensitive data we need to protect, and

• The adversary knows that X ∼ N(0,Σ), it may or may
not know r.

We now study whether publishing the classifier C0 violates
privacy, or equivalently, whether the adversary can get a
better estimate of any si by probing C0.

Given the public data pi for an individual i, the adver-
sary could try to probe the classifier C0 to get an estimate
of si as follows. It is reasonable to assume that the adver-
sary has knowledge of the (marginal) distribution that the
ui are sampled from; we can even assume that the adversary
knows the joint distribution that (pi, ui)

T are sampled from,
or equivalently Σ or r. (We will see soon that though the
adversary seems to know a lot, he doesn’t know anything
more about the si – this makes our example more surpris-
ing). Thus for each individual or for each pi, the adversary
could sample ũi from the conditional distribution of (U |P ),

he then can use the pairs (pi, ũi)
T to probe C0 and get an

estimate s̃i
△
= C0(pi, ũi). Assuming that the information P

1This is feasible, for examples see [9].

was correlated with S, this will give the adversary a better
estimate than simply taking the most likely result in S.

However, this assumes the adversary has no prior knowl-
edge. In our medical example, it is likely that the adversary
has some knowledge of the relationship between P and S.
For example, cause of death is generally public information,
giving the adversary a training set (Likely as complete as
that used to generate C0, as for some diseases – Creutzfeldt-
Jakob, Alzheimer’s until recently – an accurate diagnosis
required post-mortem examination, so the training data for
C0 would likely be deceased individuals.)

Given that the adversary has this knowledge, what does
the adversary know if we do not publish C0? Notice that

Pr{S = 1|P = p} = Φ(
1 − r√
1 − r2

p) (3)

=



≥ 1/2, if p ≥ 0,
< 1/2, otherwise,

(4)

where Φ(·) is the cdf of N(0, 1). According to (3), (or even
just based on symmetry), the best classifier the adversary
can choose in this situation is:

si =



1 if pi > 0
0 otherwise,

(5)

Let C1 denote this classifier.
Next, we study what the adversary knows if we publish

the classifier C0. We even allow the adversary to know r. In
this situation, the best classifier the adversary can use is the
Bayesian estimator C2, which is based on the probability of
Pr{U ≤ P |P = pi}:

si =



1 if Pr{U ≤ P |P = pi} > 1
2
,

0 otherwise.
(6)

However, notice that

Φ(
1 − r√
1 − r2

pi) = Pr{U ≤ P |P = pi}

compare this to (3), we conclude that C1 ≡ C2.
Thus in this situation, publishing C0 or even the key pa-

rameter r doesn’t give the adversary any additional capabil-
ity, as long as the adversary has no access to the ui. This
enables us to argue that even though C0 apparently reveals
sensitive information, it does not actually violate privacy.

1.2 Contribution of this Paper
As the above example demonstrates, determining if a data

mining model violates privacy requires knowing many things:
What information is sensitive? To whom is it sensitive?
What else is known? Whose privacy is at risk? What is an
acceptable tradeoff between privacy and the benefit of the
data mining result, and how do we measure this tradeoff?

In this paper, we suggest a framework where some of the
above questions can be answered. We give precise definitions
for privacy loss due to data mining results. A formal analysis
of those definitions are provided for some examples, as well
as empirical evaluations showing how the models could be
applied in real life.

Specifically, in Section 2, we present a model that enables
us to discuss these issues in the context of classification.
Section 3 presents a metric for privacy loss for one such
situation, including examples of when the metric would be
appropriate and how the metric could be calculated (ana-
lytically or empirically) in specific situations.



2. THE MODEL FOR PRIVACY IMPLICA-
TIONS OF DATA MINING RESULTS

To understand the privacy implications of data mining re-
sults, we first need to understand how data mining results
can be used (and misused). As described previously, we as-
sume data is either Public, Unknown, or Sensitive. We now
discuss additional background leading toward a model for
understanding the impact of data mining results on privacy.

We assume an adversary with access to Public data, and
polynomial-time computational power. The adversary may
have some additional knowledge, possibly including Unknown
and Sensitive data for some individuals. We want to ana-
lyze the effect of giving the adversary access to a classifier
C; specifically if it will improve the ability of the adversary
to accurately deduce Sensitive data values for individuals
that it doesn’t already have such data for.

2.1 Access to Data Mining Models
If the classifier model C is completely open (e.g., a decision

tree, or weights in a neural network), the model description
may reveal sensitive information. This is highly dependent
on the model.

Instead, we model C as a “black box”: The adversary
can request that an instance be classified, and obtain the
class, but can obtain no other information on the classifier.
This is a reasonable model: We are providing the adversary
with access to C, not C itself. For example, for the pro-
posed CAPPSII airline screening module, making the clas-
sifier available would give terrorists information on how to
defeat it. However, using cryptographic techniques we can
provide privacy for all parties involved: Nothing is revealed
but the class of an instance[9]. (The party holding the clas-
sifier need not even learn attribute values.)

Here, we will only consider the data mining results in the
form of classification models. We leave the study of other
data mining results as future work.

2.2 Basic Metric for Privacy Loss
While it is nice to show that an adversary gains no privacy-

violating information, in many cases we will not be able to
say this. Privacy is not absolute; most privacy laws provide
for cost/benefit tradeoffs when using private information.
For example, many privacy laws include provisions for use
of private information “in the public interest”[6]. To trade-
off the benefit vs. the cost of privacy loss, we need a metric
for privacy loss.

One possible way to define such a metric for classifier ac-
curacy is using the Bayesian classification error. Suppose
for data (x1, x2, . . . , xn), we have classification problems in
which we try to classify xi’s into m classes which we labeled
as {0, 1, . . . , m− 1}. For any classifier C:

xi 7→ C(xi) ∈ {0, 1, . . . ,m− 1}, i = 1, 2, . . . , n,

we define the classifier accuracy for C as:

m−1
X

i=0

Pr{C(x) 6= i|z = i}Pr{z = i}. (7)

Does this protect the individual? The problem is that
some individuals will be classified correctly: If the adversary
can predict those individuals with a higher certainty than
the accuracy, then the privacy loss for those individuals is
worse than expected. Tightening such bounds requires that

the adversary have training data, i.e., individuals for which
it knows the sensitive value.

2.3 Possible Ways to Compromise Privacy
The most obvious way a classifier can compromise privacy

is by taking Public data and predicting Sensitive values.
However, there are many other ways a classifier can be mis-
used to violate privacy. We break down the possible forms a
classifier that could be (mis)used by the adversary can take.

1. P → S: Classifier that produces sensitive data given
public data. Metric based on accuracy of classification.

sup
i

„

Pr{C(X) 6= Y |Y = i} − 1

ni

«

(8)

2. PU → S: Classifier taking public and unknown data
into sensitive data. Metric same as above.

3. PS → P : Classifier taking public and sensitive data
into public data. Can adversary determine value of
sensitive data. (May also involve unknown data, but
this is a straightforward extension.)

4. The adversary has access to Sensitive data for some
individuals. What is the effect on privacy of other
individuals of classifiers as follows.

(a) P → S: Can the adversary do better with such a
classifier because of their knowledge, beating the
expectations of the metric for 1.

(b) P → U : Can giving the adversary a predictor
for Unknown data improve its ability to build a
classifier for Sensitive data?

We gave a brief example of how we can analyze problem 2
in Section 1.1. The rest of the paper looks at item 4b above,
giving both analytical and empirical methods to evaluate
the privacy impact of a classifier that enables estimation of
unknown values.

3. CLASSIFIER REVEALING UNKNOWNS
A classifier reveals a relationship between the inputs and

the predicted class. Unfortunately, even if the class value
is not sensitive, such a classifier can be used to create un-
intended inference channels. Assuming the adversary has
t samples from a distribution (P, S), it can build a clas-
sifier C1 using those t samples. Let a1 be the prediction
accuracy of the classifier C1. Assume a “non-sensitive” clas-
sifier C : P → U is made available to the adversary. Using
C, and the t samples, the adversary can build a classifier
C2 : P,C(P ) → S. Let a2 be the accuracy of the C2. If a2

is better than a1, then C compromises the privacy of S.

3.1 Formal Definition
Given a distribution (P, U,S), with P public data that ev-

eryone including the adversary can access, S sensitive data
we are trying to protect (but known for some individuals),
and U is data not known by the adversary. A “black-box”
classifier C is available to the adversary that can be used
to predict U given P . Assume that t samples ((p1, s1),
. . . , (pt, st)) are already available to adversary, our goal is
to test whether revealing C increases the ability of the ad-
versary to predict the S values for unseen instances.



First, assume attributes P and U are independent, or
more generally, though P and U are dependent, C only con-
tains the marginal information of P . In such cases, classifier
C wouldn’t be much help to the adversary: as C contains
no valuable information of U , we expect that C wouldn’t be
much more accurate than random guess, and as a result, we
expect that the adversary is unable to improve his estimate
about S by using C, or formally, the Bayes error for all clas-
sifiers using P only should be the same as the Bayes error
for all classifiers using (P,C(P )).

However, it is expected that C contains information on
the joint distribution of P and U (or equivalently the condi-
tional information of (U |P )), otherwise C would be uninter-
esting (no better than a random guess.) The adversary can
thus combine C or C(P ) with already known information of
P to create an inference channel for S, and the prediction
accuracy of the newly learned classifier violates privacy.

Formally, given C and t samples from P, S, letting

ρ(t) = ρ{t;P,S}, ρ(t;C) = ρ{t;P,C(P ),S}

be the Bayes error for classifiers using P only and using
P, C(P ) respectively; also, letting

ρ̄ = lim
t→∞

ρ(t), ρ̄(C) = lim
t→∞

ρ(t;C),

we have the following definition:

Definition 1. For 0 < p < 1, we call the classifier C (t, p)-
privacy violating if ρ(t;C) ≤ ρ(t)− p, and the classifier C is
(∞, p)-privacy violating if ρ̄(C) ≤ ρ̄− p.

The important thing to notice about the above definition
is that we measure the privacy violation with respect to
number of available samples t. An adversary with many
training instances will probably learn a better classifier than
one with few training instances.

In this case, the release of the C1 has created a privacy
threat. The main difference between this example and the
one given in the Section 1 is that we put a limitation on the
number of available examples to the adversary.

3.2 Analysis for Mixture of Gaussians
We now give a formal analysis of such an inference in the

case of Gaussian mixtures. Although we gave our defini-
tions for a classifier C, in the case of the Gaussian mixtures,
the sensible way to model C is the conditional distribution
of some particular attribute based on the other attributes.
Note that C can also be viewed as a “black box”.

Suppose X = (P,U)T is distributed as a n-dimensional
2-point mixture (1 − ǫ)N(0,Σ) + ǫN(µ,Σ), where

µ =

„

µ1

µ2

«

, Σ =

„

Σ11 Σ12

Σ′
12 Σ22

«

. (9)

For a set of t realizations X = (x1, x2, . . . , xt) (here xi =

(pi, ui)
T ), t sensitive data S = (s1, s2, . . . , st) are generated

according to the rule:

si =



1, if xi is generated from N(0,Σ),
0, if xi is generated from N(µ,Σ).

(10)

Assume:

• The adversary has access to pi, and know the marginal
distribution of P in detail (this is possible for example
for sufficiently large sample size t),

• The adversary has no access to ui,

• The adversary knows that xi are from the above 2-
point mixture, he knows n, ǫ, µ1, and Σ11, which can
be obtained through the marginal of P , but not µ2

or any other entries in Σ that can not be obtained
through the marginal of P .

We are concerned the following two questions.

1. What is the privacy loss by releasing ui? In other
word, what is the Bayes error when we limit the ad-
versary’s to the knowledge to the above assumption.

2. What is the privacy loss by allowing the adversary to
know the conditional distribution of (U |P )?

Before answering these questions, we work out the Bayes
error when only pi are available and when both pi and ui

are available. Notice here that, by symmetry, the Bayes
error for t samples is the same of univariate Bayes error.

By direct calculation, the Bayes error with only pi’s is:

ρ(ǫ, µ1,Σ11) = (1 − ǫ)Pr{CB(pi) = 1|si = 0}
+ ǫPr{CB(pi) = 0|si = 1}

where CB is the Bayesian classifier. The Bayes error can be
rewritten as:

ρ(ǫ, µ1,Σ11) (11)

= (1 − ǫ)Φ̄

„

a+ µT
1 Σ−1

11 µ1
q

µT
1 Σ−1

11 µ1

«

+ ǫΦ̄

„

a− µT
1 Σ−1

11 µ1
q

µT
1 Σ−1

11 µ1

«

(12)

where a = log( 1−ǫ

ǫ
) and Φ̄(·) is the survival function of

N(0, 1).
In comparison, the Bayes error with both pi’s and ui’s is:

ρ(ǫ, µ,Σ) = (1 − ǫ)Pr{CB(pi, ui) = 1|si = 0}
+ ǫPr{CB(pi, ui} = 0|si = 1).

This can be rewritten as:

(1 − ǫ)Φ̄

„

a+ µ′Σ−1µ
p

µ′Σ−1µ

«

+ ǫΦ̄

„

a− µ′Σ−1µ
p

µ′Σ−1µ

«

.

We can now answer question 1:

Lemma 3.1. Let ψ(z)
△
= (1 − ǫ)Φ̄( a+z√

z
) + ǫΦ̄( a−z√

z
). Then

1. ψ(z) strictly decreases in z.

2. µT
1 Σ−1

11 µ1 ≤ µT Σ−1µ with equality if and only if µ2 =
ΣT

12Σ
−1
11 µ1.

3. As a result, ρ(ǫ, µ,Σ) ≤ ρ(ǫ, µ1,Σ11), with equality if
and only if µ2 = ΣT

12Σ
−1
11 µ1.

The proof of Lemma 3.1 is omitted. Lemma 3.1 tells us
that, in general, releasing ui’s or any classifier that predicts
ui’s will compromise privacy. This loss of privacy can be
measured by Bayes error, which has an explicit formula and
can be easily evaluated through the function ψ(z).

Next, for question 2, we claim that from the privacy point
of view, telling the adversary the detailed conditional distri-
bution of (U |P ) is equivalent to telling the adversary all the
ui, in other words, the privacy loss for either situation are ex-
actly the same. To see this, notice that when the adversary
knows the conditional distribution of (U |P ), he knows the



distribution of S in detail since he already knew the marginal
distribution of P . Furthermore, he can use this conditional
distribution to sample ui based on each pi, the resulting data
si = (pi, ũi)

T is distributed as (1 − ǫ)N(0,Σ) + ǫN(µ,Σ);
though si’s are not the data on our hand, but in essence the
adversary has successfully constructed an independent copy
of our data. In fact, the best classifier for either case is the
Bayesian rule, which classifies si’s to 1 or 0 according to

ǫf(x;µ,Σ) ≥ (1 − ǫ)f(x; 0,Σ), (13)

here we use f(x;µ,Σ) to denote the density function of
N(µ,Σ). Thus there won’t be any difference if the adversary
know any ui’s of our data set, or just know the conditional
distribution of (U |P ). This suggests that when S is highly
correlated with U , revealing any good method to predict U
may be problematic.

3.3 Practical Use
For most distributions it is difficult to analytically evalu-

ate the impact of a classifier on creating an inference chan-
nel. An alternative heuristic method to test the impact of a
classifier is described in Algorithm 1. We now give experi-
ments demonstrating the use, and results, of this approach.

Algorithm 1 Testing a classifier for inference channels

1: Assume that S depends on only P,U , and the adversary
has at most t data samples of the form (pi, si).

2: Build a classifier C1 on t samples (pi, si).
3: To evaluate the impact of releasing C, build a classifier
C2 on t samples (pi, C(pi), si).

4: If the accuracy of the classifier C2 is significantly higher
than C1, conclude that revealing C creates a inference
channel for S.

We tested this approach on several of the UCI datasets[4].
We assumed that the class variable of each data set is pri-
vate, treat one attribute as unknown, and simulate the effect
of access to a classifier for the unknown. For each nominal
valued attribute of each data set, we ran six experiments.
In the first experiment, a classifier was built without using
the attribute in question. We then build a classifier with the
unknown attribute correctly revealed with probability 0.6,
0.7, 0.8, 0.9, and 1.0. For example, for each instance, if 0.8
is used, the attribute value is kept the same with probability
0.8, otherwise it is randomly assigned to an incorrect value.
The other attributes are unchanged.

In each experiment, we used C4.5 with default options
given in the Weka package [17]. Before running the exper-
iments, we filtered the instances with unknown attributes
from the training data set. Ten-fold cross validation was
used in reporting each result.

Most of the experiments look like the one shown in Fig-
ure 1 (the credit-g dataset). Giving an adversary the ability
to predict unknown attributes does not significantly alter
classification accuracy (at most 2%). In such situations, ac-
cess to the public data may be enough to build a good clas-
sifier for the secret attribute; disclosing the unknown values
to the adversary (e.g., by providing a “black box” classifier
to predict unknowns) does not really increase the accuracy
of the inference channel.

In a few data sets (credit-a, kr-vs-kp, primary-tumor,
splice, and vote) the effect of providing a classifier on some
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Figure 2: Effect of classification with varying quality
estimate of one attribute on “credit-a” data (repre-
sentative of five UCI data sets.)

attribute increased the prediction accuracy significantly. We
discuss the “credit-a” data set as an example of these. If the
adversary does not have an access to the 9th(A9) attribute
(a binary attribute), it can build a decision tree that infers
the secret (class) attribute with 72% accuracy – versus 86%
if given all data. This holds even if the adversary is given a
classifier (C) that predicts A9 with 60% accuracy. However,
as shown in Figure 2, if C has accuracy 80% or greater, the
adversary can do a significantly better job of predicting the
secret (class) attribute.

4. RELATED WORK
Privacy implications of data mining have been pointed

out, a survey is given in [8]. To our knowledge, none gave
precise definitions for privacy loss due to data mining results.

Considerable research has gone into privacy-preserving
data mining algorithms. The goal is to learn a data mining
model without revealing the underlying data. There have
been two different approaches to this problem. The first is
to alter the data before delivery to the data miner so that



real values are obscured, protecting privacy while preserving
statistics on the collection. Recently data mining techniques
on such altered data have been developed for constructing
decision trees[3, 2] and association rules[15, 7]. While [2]
touched on the impact of results on privacy, the emphasis
was on ability to recover the altered data values rather than
inherent privacy problems with the results.

The second approach is based on secure multiparty com-
putation: privacy-preserving distributed data mining[14, 5,
11, 16, 13]. The ideas in this paper compliment this line
of work. Privacy-preserving data mining tries to guarantee
that nothing is revealed during the data mining process. In
our case, we want to make sure that even a limited access
to the data mining result does not cause a privacy threat.

The inference problem due to query results has also been
addressed in a very different context: Multi-level secure
databases. A survey of this work can be found in [1]. This
does not address the privacy threat due to the data mining
result, and does not directly apply to our problem.

5. CONCLUSIONS
Increases in the power and ubiquity of computing resources

pose a constant threat to individual privacy. Tools from
privacy-preserving data mining and secure multi-party com-
putation make it possible to process the data without with
disclosure, but do not address the privacy implication of the
results. We have defined this problem and explored ways
that data mining results can be used to compromise privacy.
We gave definitions to model the effect of the data mining
results on privacy, analyzed our definitions for a Mixture
of Gaussians for two class problems, and gave a heuristic
example that can be applied to more general scenarios.

We have looked at other situations, such as a classifier that
takes sensitive data as input (can sampling the classifier with
known output reveal correct values for input?) and privacy
compromise from participating in training data. We are
working to formalize analysis processes for these situations.

We plan to test our definitions in many different contexts.
Possible plans include a software tool that automatically as-
sesses the privacy threat due to the data mining result based
on the related training instances and the private data. We
also want to augment existing privacy-preserving algorithms
so that the output of data mining is guaranteed to satisfy
the privacy definitions, or the algorithm terminates without
generating results. Finally, we want to be able extend the
formal analysis to more complex data models using tools
from statistical learning theory.
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