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Abstract. In modern high-throughput data analysis, researchers perform a
large number of statistical tests, expecting to find perhaps a small fraction of
significant effects against a predominantly null background. Higher Criticism
(HC) was introduced to determine whether there are any nonzero effects;
more recently, it was applied to feature selection, where it provides a method
for selecting useful predictive features from a large body of potentially useful
features, among which only a rare few will prove truly useful.

In this article, we review the basics of HC in both the testing and feature
selection settings. HC is a flexible idea, which adapts easily to new situa-
tions; we point out simple adaptions to clique detection and bivariate outlier
detection. HC, although still early in its development, is seeing increasing
interest from practitioners; we illustrate this with worked examples. HC is
computationally effective, which gives it a nice leverage in the increasingly
more relevant “Big Data” settings we see today.

We also review the underlying theoretical “ideology” behind HC. The
Rare/Weak (RW) model is a theoretical framework simultaneously control-
ling the size and prevalence of useful/significant items among the useless/null
bulk. The RW model shows that HC has important advantages over better
known procedures such as False Discovery Rate (FDR) control and Family-
wise Error control (FwER), in particular, certain optimality properties. We
discuss the rare/weak phase diagram, a way to visualize clearly the class of
RW settings where the true signals are so rare or so weak that detection and
feature selection are simply impossible, and a way to understand the known
optimality properties of HC.

Key words and phrases: Classification, control of FDR, feature selection,
Higher Criticism, large covariance matrix, large-scale inference, rare and
weak effects, phase diagram, sparse signal detection.

1. INTRODUCTION

A data deluge is now flooding scientific and techni-
cal work [3]. In field after field, high-throughput de-
vices gather many measurements per individual; de-
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pending on the field, these could be gene expression
levels, or spectrum levels, or peak detectors or wavelet
transform coefficients; there could be thousands or
even millions of different feature measurements per
single subject.

High-throughput measurement technology automat-
ically measures systematically generated features and
contrasts; these features are not custom-designed for
any one project. Only a small proportion of the mea-
sured features are expected to be relevant for the re-
search in question, but researchers do not know in ad-
vance which those will be; they instead measure every

1

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/14-STS506
http://www.imstat.org
mailto:donoho@stanford.edu
mailto:jiahsun@stat.cmu.edu


2 D. DONOHO AND J. JIN

contrast fitting within their systematic scheme, intend-
ing later to identify a small fraction of relevant ones
post-facto.

This flood of high-throughput measurements is driv-
ing a new branch of statistical practice: what Efron [43]
calls Large-Scale Inference (LSI). For this paper, two
specific LSI problems are of interest:

• Massive multiple testing for sparse intergroup dif-
ferences. Here we have two groups, a treatment and
a control, and for each measured variable we test
whether the two groups are different on that mea-
surement, obtaining, say, a P -value per feature. Of
course, many individual features are unrelated to the
specific intervention being studied, and those would
be expected to show no significant differences—but
we do not know which these are. We expect that
even when there are true inter-group differences,
only a small fraction of measured features will be
affected—but, again, we do not know which features
they are. We therefore use the whole collection of P -
values to correctly decide if there is any difference
between the two groups.

• Sparse feature selection. A large number of features
are available for training a linear classifier, but we
expect that most of those features are in fact useless
for separating the underlying classes. We must de-
cide which features to use in designing a class pre-
diction rule.

Higher Criticism (HC) and its elaborations can be use-
ful in both of these LSI settings; under a particular
asymptotic model discussed below—the Asymptotic
Rare/Weak (ARW) model—HC offers theoretical op-
timality in selecting features. In this paper we will re-
view the basic notions of HC, some variations and set-
tings where it applies. HC is a flexible idea and can be
adapted to a range of new problem areas; we briefly
discuss three simple examples.

1.1 HC Basics

John Tukey [112–114] coined the term “Higher
Criticism”1 and motivated it by the following story.
A young scientist administers a total of 250 indepen-
dent tests, out of which 11 are significant at the level
of 5%. The youngster is excited about the findings and
plans to trumpet them until a senior researcher tells him
that, even in the purely null case, one would expect to

1In mid-twentieth century humanities studies, the term Higher
Criticism became popular to label a certain school of Biblical
scholarship.

have 12.5 significances. In that sense, finding only 11
significances is actually disappointing. Tukey proposes
a kind of second-level significance testing, based on the
statistic

HCN,0.05 = √
N(Fraction significant at 5% − 0.05)

/
√

0.05 × 0.95,

where N = 250 is the total number of tests. Obviously
this score has an interpretation similar to Z- and t-
statistics, so Tukey suggests that a value of 2 or larger
indicates significance of the overall body of tests. In
Tukey’s example,

HCN,0.05 = −0.43.

If the young researcher really “had something” this
score should be strongly positive, for example, 2 or
more, but here the score is negative, implying that the
overall body of the evidence is consistent with the null
hypothesis of no difference. Donoho and Jin [39] saw
that in the modern context of large N and rare/weak
signals, it was advantageous to generalize beyond the
single significance level α = 0.05. They maximized
over all levels α between 0 and some preselected upper
bound α0 ∈ (0,1). So generalize Tukey’s proposal and
set

HCN,α = √
N(Fraction significant at α − α)

/
√

α × (1 − α).

If the overall body of tests is significant, then we expect
HCN,α to be large for some α. Otherwise, we expect
HCN,α to be small over all α in a wide range. In other
words, the significance of the overall body of test is
captured in the following Higher Criticism statistic:

HC∗
N = max{0≤α≤α0}

HCN,α,(1.1)

where α0 ∈ (0,1) is a tuning parameter we often set at
α0 = 1/2.

Higher Criticism (HC) can be computed efficiently
as follows. Consider a total of N uncorrelated tests:

• For i = 1,2, . . . ,N , get the corresponding individ-
ual P -values πi , producing in all a body of P -values
π1, π2, . . . , πN .

• Sort the P -values in the ascending order:

π(1) < π(2) < · · · < π(N).

• The Higher Criticism statistic in (1.1) can be equiv-
alently written as follows:

HC∗
N = max{1≤i≤α0N} HCN,i,

(1.2)

HCN,i ≡ √
N

(i/N) − π(i)√
π(i)(1 − π(i))

.
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FIG. 1. Illustration of HC. The component score maximizing the
HC objective is located at the red line. Bottom panel: the HC ob-
jective function HCN,i versus i/N . Middle panel: the underlying
P -vales π(i) versus i/N . Top panel: the corresponding ordered
Z-scores z(i) versus i/N .

In words, we are looking at a test for equality of a
binomial proportion π(i) to an expected value i/N ,
maximizing this statistic across a range of i. We think
that the evidence against being purely null is located
somewhere in this range, but we cannot say in advance
where that might be. The computational cost of HC is
O(N log(N)) and is moderate.

Figure 1 illustrates the definition of Higher Criti-
cism. Consider an example where the (one-sided) P -
values πi are produced by Z-values zi through πi =
1 − �(zi), 1 ≤ i ≤ N , where � denotes the CDF
of N(0,1). The first panel shows the sorted Z-values
in the descending order, the second panel shows the
sorted P -values, and the last panel shows HCN,i . In
this example, HC∗

N = 7.1, reached by HCN,i at i =
0.0085 × N .

REMARK. Asymptotic theory shows that the com-
ponent scores HCN,i can be poorly behaved for i very
small (e.g., 1 or 2). We often recommend the following
modified version:

HC+
N = max{1≤i≤α0N : π(i)>1/N} HCN,i .

REMARK. As the last remark illustrates, small
variations on the above prescription will sometimes be
useful, for example, the modification of the underly-
ing Z-like scores, in (2.6)–(2.7) below. Moreover, sev-
eral other statistics such as Berk–Jones and Average
Likelihood Ratio offer cognates or substitutes; see Sec-
tion 2.7 below. The real point of HC is less the specific
definition (1.2) and more a viewpoint about the nature
of evidence against the null hypothesis, namely, that

although the evidence may be cumulatively substan-
tial, it is diffuse, individually very weak and affecting
a relatively small fraction of the individual P -values or
Z-scores in our study.

So HC can be viewed as a family of methods for
which the above definitions give a convenient entry
point. To make utterly clear, when needed we label def-
inition (1.2) the Orthodox Higher Criticism (OHC).

1.2 The Rare/Weak Effects Viewpoint and Phase
Diagram

Effect sparsity was proposed as a useful hypothesis
already in the 1980s by Box and Meyer [17]; it pro-
poses that relatively few of the observational units or
factorial levels can be expected to show any difference
from a global null hypothesis of no effect, and that a
priori we have no opinion about which units or levels
those might be.

The Effect weakness hypothesis assumes that indi-
vidual effects are not individually strong enough to be
detectable, once traditional multiple comparisons ideas
are taken into account.2

The Rare/Weak viewpoint combines both hypothe-
ses in analysis of large-scale experiments; it is intended
to be a flexible concept and to vary from one setting to
another.

The next section operationalizes these ideas in a spe-
cific model, where N independent Z-scores follow a
mixture with a fraction (1 − ε) which are truly null ef-
fects and so distributed N(0,1), while the remaining
ε fraction have a common effect size τ and are dis-
tributed N(τ,1). In this situation, the Rare/Weak view-
point studies the regime where ε is small, the locations
of the nonzero effects are scattered irregularly through
the scores and the effect size τ is, at moderate N , only
2 or 3 standard deviations.

For large N one can develop a precise theory; see
Section 6 below. There we develop the Asymptotic
Rare/Weak (ARW) model, a framework that assigns
parameters to the rare and weak attributes of a non-
null situation; a key phenomenon is that in the two-
dimensional parameter space there are three separate
regions (or phases) where an inference goal is rel-
atively easy, nontrivial but possible, and impossible
to achieve, correspondingly. The ARW phase diagram
offers revealing comparisons between HC and other
seemingly similar methods, such as FDR control.

2For example, Bonferroni-based family-wise error rate control.



4 D. DONOHO AND J. JIN

FIG. 2. Simulated Higher Criticism values. Top panel: simula-

tion under null hypothesis H
(N)
0 . Bottom panel: simulation under

alternative hypothesis H
(N)
1 .

2. HC FOR DETECTING SPARSE AND WEAK
EFFECTS

In [39] Higher Criticism was originally proposed for
detecting sparse Gaussian mixtures. Suppose we have
N test statistics Xi , 1 ≤ i ≤ N (reflecting many in-
dividual genes, voxels, etc.). Suppose that these tests
are standardized so that each individual test, under
its corresponding null hypothesis, would have mean 0
and standard deviation 1. We are interested in testing
whether all test statistics are distributed N(0,1) ver-
sus the alternative that a small fraction is distributed as
normal with an elevated mean τ . In effect, we want an
overall test of a complete null hypothesis:

H
(N)
0 : Xi

i.i.d.∼ N(0,1), 1 ≤ i ≤ N,(2.1)

against an alternative in its complement,

H
(N)
1 : Xi

i.i.d.∼ (1 − ε)N(0,1) + εN(τ,1),
(2.2)

1 ≤ i ≤ N.

To use HC for such a case, we calculate the (one-
sided) P -values by

πi = 1 − �(Xi), 1 ≤ i ≤ N.

We then apply the basic definition of HC to the collec-
tion of P -values.3

In Figure 2, we show the simulated HC values of
H

(N)
0 and H

(N)
1 based on 100 independent repeti-

tions, where the parameters are set as (N, ε, τ ) =
(106,10−3,2). It is seen that the simulated HC values
under H

(N)
1 are well separated from those under H

(N)
0 .

3If we thought that under the alternative the mean might be either
positive or negative, we would of course use two-sided P -values.

2.1 Critical Value for Using HC as a Level-α Test

Fix 0 < α < 1. To use HC as a level-α test, we must
find a critical value h(N,α) so that

P
H

(N)
0

{
HC∗

N > h(N,α)
} ≤ α.

HC∗
N can be connected with the maximum of a stan-

dardized empirical process; see Donoho and Jin [39].
Using this connection, it follows from [108], page 600,
that as N → ∞, bNHC∗

N − cN and bNHC+
N − cN con-

verge weakly to the same limit—the standard Gum-
bel distribution, where bN = √

2 log log(N) and cN =
2 log log(N) + (1/2)[log log log(N) − log(4π)]. As a
result, for any fixed α ∈ (0,1) and N → ∞,

h(N,α) ≈ hG(N,α)
(2.3)

=
√

2 log log(N)
(
1 + o(1)

)
,

where hG(N,α) = b−1
N [cN − log log( 1

1−α
)] (“G”

stands for Gumbel). When N is moderately large and
α is moderately small, the approximations may not
be accurate enough, and it is hard to derive an accu-
rate closed-form approximation (even in much simpler
cases; see [31] for nonasymptotic bound on extreme
values of normal samples). In such cases, it is prefer-
able to determine h(N,α) by simulations.

Table 1 displays hG(N,α) and h(N,α) [where α0 =
1/2 as in (1.1)] computed from 105 independent sim-
ulations. One sees that: (a) hG(N,α) approximate the
percentiles of HC∗

N poorly, but approximate those of
HC+

N reasonably well, especially when N get larger
and α get smaller; (b) the tail of HC∗

N is fat but that
of HC+

N is relatively thin; (c) the percentiles of HC+
N

and HC∗
N increase with N only very slowly, therefore,

the values of h(N,α) for a few selected N represent
those of a wide range of N . Very recently, Li and Sieg-
mund [90] proposed a new approximation to h(N,α)

which is more accurate when N is moderately large.

2.2 Two Gene Microarray Data Sets

In Sections 2.3.1 and 3.1, we use two standard
gene microarray data sets to help illustrate the use
of HC: the lung cancer data analyzed by Gordon et
al. [56], and the leukemia data analyzed by Golub
et al. [54] (for the latter, we use the cleaned version
published by Dettling [35], which contains measure-
ments for 3571 genes). Both data sets are available at
http://www.stat.cmu.edu/~jiashun/Research/software/.
See Table 2, where the partition of samples into the
training set and the test set is the same as in [56]
and [54], respectively.

http://www.stat.cmu.edu/~jiashun/Research/software/
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TABLE 1
Simulated values h(N,α) based on 105 repetitions. Numbers in brackets are hG(N,α)

N

Level Statistic 103 5 × 103 2.5 × 104 1.25 × 105

α = 0.05 HC+
N 3.17 (3.00) 3.22 (3.08) 3.26 (3.14) 3.30 (3.19)

HC∗
N 4.77 (3.00) 4.73 (3.08) 4.74 (3.14) 4.75 (3.19)

α = 0.01 HC+
N 3.95 (3.83) 3.97 (3.87) 3.96 (3.90) 3.99 (3.93)

HC∗
N 10.08 (3.83) 9.88 (3.87) 10.20 (3.90) 9.92 (3.93)

α = 0.005 HC+
N 4.29 (4.18) 4.28 (4.20) 4.26 (4.22) 4.28 (4.24)

HC∗
N 13.78 (4.18) 14.39 (4.20) 14.34 (4.22) 13.95 (4.24)

α = 0.001 HC+
N 5.03 (5.00) 5.02 (4.98) 4.98 (4.97) 4.98 (4.97)

HC∗
N 30.27 (5.00) 30.36 (5.02) 31.95 (4.97) 31.49 (4.97)

2.3 Detecting Rare and Weak Effects in Genomics
and Genetics

When the genomics revolution began 10–15 years
ago, many scientists were hopeful that the common
disease-common variant hypothesis [45] would apply.
Under this hypothesis, there would be, for each com-
mon disease, a specific gene that is clearly responsi-
ble. Such hopes were dashed over the coming years,
and, today, much research starts from the hypothesis
that numerous genes are differentially expressed in af-
fected patients [53], but with individually small effect
sizes [30, 69]. HC, with its emphasis on detecting rare
and weak effects, seems well suited to this new envi-
ronment.

2.3.1 Two worked examples. Let’s apply HC to the
two gene microarray data sets. For each in turn, let xij

denote the expression level for the ith sample and the
j th gene, 1 ≤ i ≤ n, 1 ≤ j ≤ p. Let C and D be the set
of indices of samples from the training set and the test
set, respectively. For notational consistency with later
sections, we only use the data in the training set, but
using the whole data gives similar results.

Write C = C1 ∪ C2, where C1 and C2 are the sets of
indices of the training samples from classes 1 and 2, re-
spectively. Fix 1 ≤ j ≤ p. Let x̄jk = 1

|Ck |
∑

j∈Ck
xij de-

note the average expression value of gene j for all sam-
ples in class k, k = 1,2, and s2

j = 1
(|C|−2)

[∑i∈C1
(xij −

x̄j1)
2 +∑

i∈C2
(xij − x̄j2)

2] the pooled variance. Define
the t-like statistic

z∗
j = 1√

1/|C1| + 1/|C2|
x̄j1 − x̄j2

sj
, 1 ≤ j ≤ p.

In the null case, if the data {xij }1≤i≤n,1≤j≤p are
independent and identically distributed across differ-
ent genes, and, for each gene j , {xij }ni=1 are nor-
mal samples with the same variance in each class,
then z∗

j has the Student’s t-distribution with df =
|C| − 2 when gene j is not differentially expressed.
Using this, we may calculate individual P -values for
each gene and apply HC. However, as pointed out in
Efron [42], a problem one frequently encounters in an-
alyzing gene microarray data is the so-called discrep-
ancy between the empirical null and theoretical null,
meaning that there is a gap between the aforemen-
tioned t-distribution and the empirical null distribu-
tion associated with {z∗

j }pj=1. This gap might be caused
by unsuspected between-gene variance components or
other factors. We follow Efron’s suggestion and stan-
dardize z∗

j :

Zj = z∗
j − z̄∗

sd(z∗)
, 1 ≤ j ≤ p,(2.4)

where z̄∗ and sd(z∗) represent the empirical mean
and standard deviation associated with {z∗

j }pj=1, re-

TABLE 2
MPM: malignant pleural mesothelioma. ADCA: adenocarcinoma. ALL: acute lymphoblastic leukemia. AML: acute myelogenous leukemia

Data name # training samples # test samples # genes

Leukemia 27 (ALL), 11 (AML) 20 (ALL), 14 (AML) 3571
Lung cancer 16 (MPM), 16 (ADCA) 15 (MPM), 134 (ADCA) 12,533
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FIG. 3. Left column: histogram (top) and qq-plot (bottom) of Z = (Z1,Z2, . . . ,Zp)′ for the lung cancer data set. Right: corresponding
plots for the leukemia data set.

spectively. We call Z1,Z2, . . . ,Zp the standardized Z-
scores, and believe that in the purely null case they
are approximately normally distributed. In Figure 3,
we show the histogram (top) and the qq-plot (bottom)
associated with the standardized Z-scores. The figure
suggests that, for both data sets, the standardization in
(2.4) is effective.

We apply HC to {Zj }pj=1 for both the leukemia and
the lung cancer data, where the individual (two-sided)
P -values are obtained assuming Zj ∼ N(0,1) if the
j th gene is not differentially expressed. The resulting
HC scores are 6.1057 and 13.3025 in two cases. The
P -values associated with the scores (computed by nu-
merical simulations) are ≈ 5 × 10−5 and < 10−5, re-
spectively. They suggest the definite presence of sig-
nals, sparsely scattered in the Z-vector. And, indeed,
the qqplots exhibit a visible “curving away” from the
identity lines.

An alternative approach to computing these two P -
values uses random shuffles. Denote the data matrix
by X = (xij )1≤i≤n,1≤j≤p . First, we randomly shuf-
fle the rows of X, independently between different
columns. For the permuted data, we follow the steps
above and calculate the standardized Z-vector. Due to
our shuffling, the signals wash out and the Z-vector
can be viewed as containing no effect signals. Next,
apply HC to the Z-vector, obtaining an HC statistic
specific to that shuffle. Repeat the whole process for
1000 independent shuffles. As a result, we have 1001
HC scores: one, based on the original data matrix; all
others, based on shuffles. The shuffles are used to cal-
culate the P -value of the original HC score. For the

(training) leukemia data and the (training) lung cancer
data, the resultant P -values are approximately 0.01 and
< 0.001, respectively. Both data sets have standardized
Z-vectors exhibiting very subtle departures from the
null hypothesis, but still permit reliable rejection of the
null hypothesis.

2.3.2 Applications to genome-wide association stu-
dy. By now the literature of Genome-wide associa-
tion studies (GWAS) has several publications apply-
ing HC or its relatives. Parkhomenko et al. [101] used
HC to detect modest genetic effects in a genome-wide
study of rheumatoid arthritis. It was further suggested
in Martin et al. [92] that the implementation of HC in
GWAS may provide evidence for the presence of ad-
ditional remaining SNPs modestly associated with the
trait.

Sabatti et al. [106] used HC in a GWAS for metabolic
traits. HC enabled the authors to quantify the strength
of the overall genetic signal for each of the nine
traits (Triglycerides, HDL, . . .) they were interested in,
where, to deal with the possible dependence caused
by Linkage Disequilibrium (LD) between SNPs, they
computed individual P -values by permutations. See
also De la Cruz et al. [37] where the authors consid-
ered the problem of testing whether there are associ-
ated markers in a given region or a given set of mark-
ers, with applications to analysis of a SNP data set on
Crohn’s disease.

Wu et al. [120] adapted HC for detecting rare and
weak genetic signals using the information of LD. He
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and Wu [63] used HC and innovated HC for signal de-
tection for large-scale exonic single-nucleotide poly-
morphism data, and suggested modifications of HC in
such settings.

Motivated by GWAS, Mukherjee et al. [96] consid-
ered the signal detection problem using logistic re-
gression coefficients rather than 2-sample Z-scores,
and discovered an interesting relationship between
the sample size and the detectability when both re-
sponse variable and design variables are discrete. See
Section 2.10 for more discussion on signal detection
problems associated with regression models. To ad-
dress applications in GWAS, Roeder and Wasserman
[103] made an interesting connection between HC and
weighted hypothesis testing.

2.3.3 Applications to DNA copy number varia-
tion. Computational biology continues to innovate and
GWAS is no longer the only game in town. DNA Copy
Number Variation (CNV) data grew rapidly in impor-
tance after the GWAS era began, and today provide an
important window on genetic structural variation. Jeng
et al. [72, 73] applied HC-style thinking to CNV data
and proposed a new method called Proportion Adap-
tive Segment Selection (PASS). PASS can be viewed
as a two-way screening procedure for genomic data,
which targets both the signal sparsity across differ-
ent features (SNPs) and the sparsity across different
subjects—so-called rare variation in genomics.

2.4 Applications to Cosmology and Astronomy

HC has been applied in several modern experiments
in Astronomy and Cosmology, where typically the ex-
periment produces data which can be interpreted as
images (of a kind) and where there is a well-defined
null hypothesis, whose overthrow would be considered
a shattering event.

Studies of the Cosmic Microwave Background
(CMB) offer several examples. CMB is a relic of ra-
diation emitted when the Universe was about 370,000
years old. In the simplest “inflation” models, CMB
temperature fluctuations should behave as a realiza-
tion of a zero-mean Gaussian random variable in each
pixel. The resulting Gaussian field (on the sphere) is
completely determined by its power spectrum. In re-
cent decades, a large number of studies have been de-
voted to the subject of detecting non-Gaussian signa-
tures (hot spots, cold spots, excess kurtosis, . . .) in the
CMB.

Jin et al. [83], and Cayon et al. [27] (see also
[26, 29]), applied HC to standardized wavelet coeffi-
cients of CMB data from the Wilkinson Microwave

Anisotropy Probe (WMAP). HC would be sensitive
to a small collection of such coefficients departing
from the standard null, without requiring that individ-
ual coefficients depart in a pronounced way. Compared
to the kurtosis-based non-Gaussianity detector (widely
used in cosmology when the departure from Gaussian-
ity is in the not-very-extreme tails), HC showed supe-
rior power and sensitivity, and pointed, in particular,
to the cold spot centered at galactic coordinate (longi-
tude, latitude) = (207.8◦,−56.3◦). In [115], Vielva re-
views the cold spot detection problem and shows that
HC rejects Gaussianity, confirming earlier detections
by other methods.

Gravitational weak lensing calculations measure the
distortion of background galaxies supposedly caused
by intervening large-scale structure. Pires et al. [102]
applied many non-Gaussianity detectors to weak lens-
ing data, including the empirical Skewness, the empir-
ical Kurtosis and HC, and showed that HC is compet-
itive, while of course being more specifically focused
on excess of observations in the tails of the distribution.

Most recently, Bennett et al. [11] applied the HC
ideas to the problem of Gravitational Wave detection.
They use HC as a second-pass method operating on
F -statistic and C-statistics (see [11] for details) for
a monochromatic periodic source in a binary system;
such statistics contain a large number of relatively
weak signals spread irregularly across many frequency
bands. They use a modified form of HC, which is both
sensitive and robust, and offer a noticeable increase in
the detection power (e.g., a 30% increase in detectabil-
ity for a phase-wandering source over multiple time in-
tervals).

2.5 Applications to Disease Surveillance and Local
Anomaly Detection

In disease surveillance, we have aggregated count
data ci representing cases of a certain disease (e.g.,
influenza) by the ith spatial region (e.g., zip code),
1 ≤ i ≤ N . When disease breaks out, the counts will
have elevated values in one or a few small geographical
regions. Neill and Lingwall [98, 99] use HC for disease
surveillance and spatio-temporal cluster detection: they
suppose we have historical counts for each spatial loca-
tion measured over time t = 1,2, . . . , T . The P -value
of ci is calculated by (di + 1)/(T + 1), where di is
the number of historical counts larger than ci at the ith
location.

Disease outbreak detection is a special case of lo-
cal anomaly detection as studied in Saligrama and
Zhao [107]. Suppose we have a graph G = (V ,E)
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with usual graph metric, where a random variable is
associated with each node. A simple scenario of local
anomaly they consider assumes that, for all nodes out-
side the anomaly, the associated random variables have
the same density f0, and, for nodes inside the anomaly,
the associated density is different from f0. Saligrama
and Zhao [107] investigate several models and statis-
tics for local anomaly detection; HC is found to be
competitive in this setting.

2.6 Estimating the Proportion of Non-Null Effects

As presented so far, HC offers a test statistic. In
the setting of Section 2, we sample Xi from the two-
component mixture

Xi
i.i.d.∼ (1 − ε)N(0,1) + εN(τ,1),

(2.5)
1 ≤ i ≤ N.

The detection problem which HC addresses involves
testing H

(N)
0 : ε = 0 versus H

(N)
1 : ε > 0. Alternatively,

one could estimate the mixing proportion ε. Motivated
by a study of Kuiper Belt Objects (KBO) (e.g., [95]),
Cai et al. [23] (see also [95]) developed HC into an
estimator for ε, focusing on the regime where ε > 0 is
very small.4

In the growing literature of large-scale multiple test-
ing, the problem of estimating the proportion of non-
null effects has attracted considerable attention in the
past decade, though sometimes with different goals.
For example, rather than knowing the true proportion
of nonzero effects, one might only want to estimate
the largest proportion within which the false discov-
ery rate can be controlled. The literature along this line
connects to the work of Benjamini and Hochberg [10]
on controlling False Discovery Rate (FDR), and Efron
[42] on controlling the local FDR in gene microarray
studies. See [22, 77, 79] and references therein.

2.7 Statistics with HC-Like Constructions

HC can be viewed as a measure of the goodness of
fit between two distributions, namely, between the dis-
tribution FN of the empirical P -values and the model

4Among the many competing methods, we mention just [8]. Let
πi = 1−�(Xi) be as in model (2.5); then πi are i.i.d. samples from
the density fε,τ (x) = (1 − ε) + εgε,τ (x), where gε,τ (x) is mono-
tone decreasing in 0 < x < 1 and is unbounded at 0. Balabdaoui et
al. [8] studied the behavior of the maximum likelihood estimator of
fε,τ (x) at 0, and used it to derive an alternative estimator for ε.

uniform distribution F0. In this viewpoint, HC is effec-
tively computing the distance measure

μ1(FN,F0)
(2.6)

= √
N · N

max
i=1

|FN(i/N) − F0(i/N)|√
F0(i/N)(1 − F0(i/N))

(or, more properly, a restricted form, where i = 1 and
i > α0N are omitted in the maximum) or the reverse

μ2(FN,F0)
(2.7)

= √
N · N

max
i=1

|i/N − F0(π(i))|√
F0(π(i))(1 − F0(π(i)))

.

We call these the theoretically standardized and empir-
ically standardized goodness of fit, respectively.

To understand HC, then, one might consider how it
differs from other measures of the discrepancy between
two distributions. HC includes the element of standard-
ization, which for many readers will suggest compari-
son to the Anderson–Darling statistic [4]:

A(FN,F0) = N ·
∫ |FN(x) − F0(x)|2

F0(x)(1 − F0(x))
dx.

HC, however, involves maximization rather than inte-
gration, which makes it a kind of weighted
Kolmogorov–Smirnov statistic. Jager and Wellner [70]
investigated the limiting distribution of a class of
weighted Kolmogorov statistics, including HC as a
special case.

Another perspective is to view the P -values under-
lying HC as obtained from the normal approximation
to a one-sample test for a known binomial propor-
tion, and to consider instead the exact test based on
likelihood ratios, or asymptotic tests based instead on
KL divergence between the binomial with parameter
πi and the binomial with parameter i/N . This per-
spective reveals a similarity of HC to the Berk–Jones
(BJ) statistic [12]. The similarity was carefully studied
in [39], Section 1.6; see details therein. Using the diver-
gence D(p0,p1) = p0 log(p0/p1) + (1 − p0) log((1 −
p0)/(1 − p1)), the Berk–Jones statistic can be written
as

BJ = N
max
i=1

N · D(πi, i/N).

Wellner and Koltchinskii [118] derive the limiting dis-
tribution of the Berk–Jones statistic, finding that it
shares many theoretical properties in common with
HC.

In [71], Jager and Wellner introduced a new family
of goodness-of-fit tests based on the φ-divergence, in-
cluding HC as a special case, and showed all such tests
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achieve the optimal detection boundary in [39] (see the
discussion below in Section 6).

Reintroducing the element of integration found in
the Anderson–Darling statistic, Walther [116] pro-
posed an Average Likelihood Ratio (ALR) approach.
If LRi,N denotes the usual likelihood ratio for a one-
sided test of the binomial proportion, ALR takes the
form

ALR =
α0N∑
i=1

wi,NLRi,N ;

LRi,N ≡ exp
(
N max

{
D(πi, i/N),0

})
,

with weights wi,N = (2i log(N/3))−1. Walther shows
that ALR compares favorably with HC and BJ for finite
sample performance, while having similar asymptotic
properties under the ARW model discussed below. See
[39, 112] for more discussions on the relative merits of
HC, BJ and ALR.

Additionally, as a measure of goodness of fit, HC is
closely related to other goodness-of-fit tests, motivated,
however, by the goal of optimal detection of presence
of mixture components representing rare/weak signals.
We remark that the pontogram of Kendall and Kendall
[86] is an instance of HC, applied to a special set of
P -values.

Gontscharuk et al. [55] introduced the notion of
local levels for goodness-of-fit tests and studied the
asymptotic behavior when applying the framework to
one version of HC; for HC, the local level associated
with HCN,i and a critical value χ roughly translates to
P [HCN,i ≥ χ ].
2.8 Connection to FDR-Controlling Methods

HC is connected to Benjamini and Hochberg’s (BH)
False Discovery Rate (FDR) control method in large-
scale multiple testing [10]. Given N uncorrelated tests
where π(1) < π(2) < · · · < π(N) are the sorted P -
values, introduce the ratios

rk = π(k)/(k/N), 1 ≤ k ≤ N.

Given a prescribed level 0 < q < 1 (e.g., q = 5%), let
k = kFDR

q be the largest index such that rk ≤ q . BH’s
procedure rejects all tests whose P -values are among
the kFDR

q smallest, and accepts all others. The proce-
dure controls the FDR in that the expected fraction of
false discoveries is no greater than q .

The contrast between FDR control method and HC
can be captured in a few simple slogans. We think of
the BH procedure as targeting rare but strong signals,

with the main goal to select the few strong signals em-
bedded in a long list of null signals, without making
too many false selections. HC targets the more deli-
cate regime where the signals are rare and weak. In
the rare/weak setting, the signals and the noise may be
almost indistinguishable; and while the BH procedure
still controls the FDR, it yields very few discoveries. In
this case, a more reasonable goal is to test whether any
signals exist without demanding that we properly iden-
tify them all; this is what HC is specifically designed
for. See also Benjamini [9].

HC is also intimately connected to the problem of
constructing confidence bands for the False Discovery
Proportion (FDP). See Cai et al. [23], Ge and Li [51],
and de Una-Alvarez [32].

2.9 Innovated HC for Detecting Sparse Mixtures in
Colored Noise

So far, the underlying P -values were always as-
sumed independent. Dai et al. [30] pointed out the im-
portance of the correlated case for genetics and ge-
nomics; we suppose many other application areas have
similar concerns. Hall and Jin [58] showed that directly
using HC in such cases could be unsatisfactory, es-
pecially under strong correlations. Hall and Jin [59]
pointed out that correlations (when known or accu-
rately estimated) need not be a nuisance or curse, but
could sometimes be a blessing if used properly. They
proposed Innovated Higher Criticism, which applies
HC in a transformed coordinate system; in analogy to
time series theory, Hall and Jin called this the inno-
vations domain. Innovated HC was shown to be suc-
cessful when the correlation matrix associated with the
noise entries has polynomial off-diagonal decay.

2.10 Signal Detection Problem Associated with
Regression Models

Suppose we observe an n × 1 vector Y which satis-
fies a linear regression model

Y = Xβ + z, z ∼ N(0, In),

where X is the n × N design matrix, β is the N ×
1 vector of regression coefficients, and z is the noise
vector. The problem of interest is now to test whether
all regression coefficients βi are 0 or a small fraction
of them is nonzero. The setting considered in [58, 59]
is a special case, where the number of variables N is
the same as the sample size n.

Arias-Castro et al. [6] and Ingster, Tsybakov and
Verzelen [68] considered the more general case where
N is much larger than n. The main message is that,
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under some conditions, what has been previously es-
tablished for the Gaussian sequence model extends
to high-dimensional linear regression. Motivated by
GWAS, Mukherjee et al. [96] considered a similar
problem with binary response logistic regression. They
exposed interesting new phenomena governing the de-
tectability of nonnull β when both response variable
and design variables are discrete.

Meinshausen [93] considers the problem of variable
selection associated with a linear model. Adapting HC
to the case of correlated noise with unknown variance,
he uses the resultant method for hierarchical testing of
variable importance. Charbonnier [28] generalizes HC
from a one-sample testing problem to a two-sample
testing problem. It considers two linear models and
tries to test if the regression coefficient vectors are
the same. Also related is Suleiman and Ferrari [109],
where the authors use constrained likelihood ratios for
detecting sparse signals in highly noisy 3D data.

2.11 Signal Detection when Noise Distribution is
Unknown/Non-Gaussian

In models (2.1)–(2.2), the noise entries are i.i.d. sam-
ples from N(0,1). In many applications, the noise dis-
tribution is unknown and is probably non-Gaussian. To
use HC for such settings, we need an approach to com-
puting P -values πi , 1 ≤ i ≤ N .

Delaigle and Hall [33] and Delaigle et al. [34] ad-
dressed this problem in the settings where the data are
arranged in a 2-D array {X(i, j)}, 1 ≤ i ≤ n, 1 ≤ j ≤
N . In this array, different columns are independent,
and entries in the j th column are i.i.d. samples from
a distribution Fj which is unknown and presumably
non-Gaussian. We need to associate a P -value with
each column. A conventional approach is to compute
the P -value using the Student’s t-statistic. However,
when Fj are non-Gaussian, the P -values may not be
accurate enough, and the authors propose to correct
the P -values with bootstrapping. A similar setting is
considered by Greenshtein and Park [57] and by Liu
and Shao [91]. The first paper proposes a modified
Anderson–Darling statistic and shows that, in certain
settings, the proposed approach may have advantages
over HC in the presence of non-Gaussianity. The sec-
ond paper proposes a test based on extreme values of
Hotelling’s T 2, and studies the case where the sparse
signals appear in groups and the underlying distribu-
tions are not necessarily normal.

2.12 Detecting Sparse Mixtures more Generally

More generally, the problem of detecting sparse mix-
tures considers hypotheses

H
(N)
0 : Xi

i.i.d.∼ F, vs.

H
(N)
1 : Xi

i.i.d.∼ (1 − ε)F + εG,

where ε ∈ (0,1) is small and F and G are two distribu-
tions that are presumably different; (ε,F,G) may de-
pend on N . In Donoho and Jin [39], F = N(0,1) and
G = N(τ,1) for some τ > 0.

Cai et al. [21] considered the case where F =
N(0,1) and G = N(τ,σ 2), so the mixture in the al-
ternative hypothesis is not only heterogeneous but also
heteroscedastic, and σ models the heteroscedasticity.
They found that σ has a surprising phase-change effect
over the detection problem. The heteroscedastic model
is also considered in Bogdan et al. [16] and Bogdan et
al. [15] from a Bayesian perspective. Park and Ghosh
[100] gave a nice review on recent topics on multiple
testing where HC is discussed in detail.

Cai and Wu [25] extend the study to the more general
case where F = N(0,1) and G is a Gaussian location
mixture with a general mixing distribution, and study
the detection boundary as well as the detectability of
HC.

Arias-Castro and Wang [7] investigate the case
where F is unknown but symmetric, and develop
distribution-free tests to tackle several interesting prob-
lems, including that of testing of symmetry.

In addition, Gayraud and Ingster [50] consider the
problem of detecting sparse mixtures in the functional
setting, and show that the HC statistic continues to be
successful in the very sparse case. Laurent et al. [89]
considered the problem of testing whether the samples
Xi come from a single normal or a mixture of two nor-
mals with different means (both means are unknown).

In a closely related setting, Addario-Berry et al. [1]
and Arias-Castro et al. [5] considered structured sig-
nals, forming clusters in geometric shapes that are un-
known to us. The setting is closely related to the one
considered in [59], Section 6. Haupt et al. [61, 62] con-
sidered a more complicated setting where an adaptive
sample scheme is available, where we can do inference
and collect data in an alternating order.

3. HIGHER CRITICISM FOR FEATURE SELECTION

Higher Criticism has applications far beyond the
testing of a global null hypothesis.
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Consider a classification problem where we have
training samples (Xi, Yi), 1 ≤ i ≤ n, from two differ-
ent classes. We denote Xi by the feature vectors and
Yi = ±1 the class labels. For simplicity, we assume
two classes are equally likely and the feature vectors
Xi ∈ Rp are Gaussian distributed with identical covari-
ances, so that, after a standardizing transformation, the
feature vector Xi ∼ N(Yi · μ, Ip), with vector μ be-
ing the contrast mean and Ip the p ×p identity matrix.
Given a fresh feature vector X, the goal is to predict
the associated class label Y ∈ {−1,1}.

We are primarily interested in the case where p � n

and where the contrast mean vector μ is unknown but
has nonzero coordinates that are both rare and weak.
That is, only a small fraction of coordinates of μ is
nonzero, and each nonzero coordinate is individually
small and contributes weakly to the classification deci-
sion.

In the classical p < n setting, consider traditional
Fisher linear discriminant analysis (LDA). Letting
w = (w(j),1 ≤ j ≤ p) denote a sequence of feature
weights, Fisher’s LDA takes the form

L(X) =
p∑

j=1

w(j)X(j).

It is well known that the optimal weight vector w ∝
μ, but unfortunately μ is unknown to us and in the
p > n case can be hard to estimate, especially when
the nonzero coordinates of μ are rare and weak; in that
case, the empirical estimate X̄ is noisy in every coor-
dinate, and only a few coordinates “stick out” from the
noise background.

Feature selection (i.e., selecting a small fraction of
the available features for classification) is a standard
approach to attack the challenges above. Define a vec-
tor of feature scores

Z = 1√
n

n∑
i=1

(Yi · Xi);(3.1)

this contains the evidence in favor of each feature’s sig-
nificance. We will select a subgroup of features for our
classifier, using hard thresholding of the feature scores.
For a threshold value t > 0 still to be determined, de-
fine the hard threshold function

wt(z) = sgn(z) · 1{|z|>t},
which selects the features having sufficiently large ev-
idence and preserves the sign of such feature scores.
The post-feature-selection Fisher’s LDA rule is then

Lt(X) =
p∑

j=1

wt(j)X(j),

and we simply classify Y as ±1 according to Lt(X) ≷
0. This is related to the modified HC in [122], but there
the focus is on signal detection instead of feature selec-
tion.

How should we set the threshold t? Consider HC fea-
ture selection, where a simple variant of HC is used
to set the threshold. To apply HC to feature selection,
we fix α0 ∈ (0,1/2] and follow three steps (to be con-
sistent with OHC described in Section 1.1, we switch
back from p to N ; note that N = p in this section):

• Calculate a (two-sided) P -value πj = P {|N(0,1)| ≥
|Z(j)|} for each 1 ≤ j ≤ N .

• Sort the P -values into ascending order: π(1) <

π(2) < · · · < π(N).
• Define the Higher Criticism feature scores by

HC(i;π(i)) = √
N

i/N − π(i)√
(i/N)(1 − i/N)

,

(3.2)
1 ≤ i ≤ N.

Obtain the maximizing index of HC(i;π(i)):

îHC = argmax
{1≤i≤α0·N}

{
HC(i, π(i))

}
.

The Higher Criticism threshold (HCT) for feature
selection is then

t̂HC
N = t̂HC

N (Z1,Z2, . . . ,ZN ;α0, n) = |Z|
îHC .

In modern high-throughput settings where a priori rel-
atively few features are likely to be useful, we set
α0 = 0.10.5,6 See [41] for explanation.

Once the threshold is decided, LDA with HC feature
selection is

LHC(X) =
p∑

j=1

wHC(j)X(j),

where wHC(j) = sgn
(
Z(j)

)
1
{∣∣Z(j)

∣∣ ≥ t̂HC
p

}
,

and the HCT trained classification rule will classify
Y = ±1 according to LHC(X) ≷ 0.

The classifier above is a computationally inexpen-
sive approach, especially when compared to
resampling-based methods (such as cross-validations,
boosting, etc.). This gives HC a lot of computational
advantage in the now very relevant “Big Data” settings.

5In practice, HCT is relatively insensitive to different choices
of α0.

6Note the denominator of the HC objective function is different
from the denominator used earlier, in testing, although the spirit
is similar. The difference is analogous to the one between the two
goodness-of-fit tests (2.6) and (2.7).
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FIG. 4. Top row: plot of feature scores HCN,i versus i/N for lung cancer data (left) and leukemia data (right). Bottom row: enlargements
of plots in the top row.

3.1 Applications to Gene Microarray Data

We now apply the HCT classification rule to the two
microarray data sets discussed earlier. Again, Zj is the
standardized Z-score associated with the j th gene, us-
ing all samples in the training set C.

First, we apply HC to Z = (Z1,Z2, . . . ,Zp)′ to ob-
tain the HC threshold; this will also determine how
many features we keep for classification. The scores
HCN,i are displayed in Figure 4. For the lung can-
cer data, the maximizing index is îHC = 182, at which
the HC score is 6.112, and we retain all 182 genes
with the largest Z-scores (in absolute value) for clas-
sification (equivalently, a gene is retained if and only
if the Z-score exceeds t̂HC

p = 2.65). For the leukemia

data, îHC = 54, with HC score 3.771 and the threshold
t̂HC
p = 2.68.

Next, for each sample Xi in the test set D, we cal-
culate the HCT-based LDA score. Recall that for any
i ∈ C, the data associated with the ith sample is Xi =
{xij }pj=1. The HCT-based LDA score ldai = lda(Xi) is
given by

ldai =
p∑

j=1

wHC(j)

(
xij − x̄j

sj

)
,

where we recall wHC(j) = sgn(Zj )1{|Zj | ≥ t̂HC
p }, and

(x̄j , sj ,wHC(j)) only depend on the training samples
in C. The scores {ldai}ni=1 are displayed in Figure 5,
where we normalized each score by a common fac-

tor of 1/
√

îHC for clarity. The scores corresponding to
class 1 are displayed in the top row in green (ADCA
for lung cancer data and ALL for leukemia), and the
scores for class 2 are displayed in the bottom row in
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FIG. 5. Top row: histogram of the test scores corresponding to class 1. Bottom row: class 2. Left column: lung cancer data. Right column:
leukemia data.

red (the left column displays lung cancer data and the
right column displays leukemia data). For lung can-
cer data, LDA–HCT correctly classifies each sample.
For leukemia data, LDA–HCT correctly classifies each
sample, with one exception: sample 29 in the test set
(number 67 in the whole data set).

We employed these two data sets because they gave
such a clear illustration. In our previous paper [40], we
considered each data in Dettling’s well-known com-
pendium, which includes the colon cancer data and
the prostate data. The results were largely as good as
or better than other classifiers, many involving much
fancier-sounding underlying principles.

3.2 Threshold Choice by HC: Applications to
Biomarker Selection

Wehrens and Fannceschi [117] used HC threshold-
ing for biomarker selection to analyze metabolomics
data from spiked apples. They considered P -values
that are calculated from Principal Component scores
and reported a marked improvement in biomarker se-
lection, compared to the standard selection obtained
by existing practices. The paper concludes that HC
thresholds can differ considerably from current prac-
tice, so it is no longer possible to blindly apply the
selection thresholds used historically; the data-specific
cutoff values provided by HC open the way to objec-
tive comparisons between biomarker selection meth-
ods, not biased by arbitrary habitual threshold choices.

3.3 Comparison to Other Classification
Approaches

The LDA–HCT classifier is closely related to other
threshold-based LDA feature selection rules: PAM by

Tibshirani et al. [111] and FAIR by Fan and Fan [46].
HCT picks the threshold based on feature Z-scores
by Higher Criticism, while the other methods set this
threshold differently. For the same data sets we dis-
cussed earlier, the error rates for PAM and FAIR were
reported in [46, 111]; as it turns out, LDA–HCT has
smaller error rates.

Comparisons with some of the more popular “high-
tech” classifiers (including Boosting [36], SVM [19]
and Random Forests [18]) were reported in [40]. More
complex methods usually need careful tuning to per-
form well, but HCT–LDA is very simple, both concep-
tually and computationally. When used on the ensem-
ble of standard data sets published in Dettling, HCT–
LDA happens to be minimax-regret optimal: it suffers
the least performance loss, relative to the best method,
across the ensemble.

Hall et al. [60] apply HC for classification in a dif-
ferent manner. They view HC as a goodness-of-fit di-
agnostic. Their method first uses the training vectors
to obtain the empirical distributions of each class, and
then uses HC to tell which of these distributions best
fits each test vector. They classify each test vector us-
ing the best-fitting class distribution. While this rule is
sensible, it turns out that in a formal asymptotic analy-
sis using the rare/weak model, it is outperformed sub-
stantially by HCT–LDA.

3.4 Connection to Feature Selection by Controlling
Feature-FDR

False Discovery Rate control methods offer a pop-
ular approach for feature selection. Fix 0 < q < 1.
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FDRTq selects features in a way so that

feature-FDR ≡ E

[
#{Falsely selected features}

#{All selected features}
]

≤ q.

In the simple setting considered in Section 3, this can
be achieved by applying Benjamini–Hochberg’s FDR
controlling method to all feature P -values. The ap-
proach appeals to the common belief that, in order to
have optimal classification behavior, we should select
features in a way so that the feature-FDR stays small.

However, such beliefs have theoretical support only
when signals are rare/strong. In principle, the optimal
q associated with the optimal classification behavior
should depend on the underlying distribution of the sig-
nals (e.g., sparsity and signal strength); and when sig-
nals are rare/weak, the optimal FDR level turns out to
be much larger than 5%, and in some cases is close to 1.
In [41], we studied the optimal level in an asymptotic
rare/weak setting and derived the leading asymptotics
of the optimal FDR. In Section 6.2 below we give more
detail.

In several papers [2, 87, 88], Strimmer and collab-
orators compared the approach of feature selection by
HCT with both that of control of the FDR and that of
control of the False non-Discovery Rate (FNDR), an-
alytically and also with synthetic data and several real
data sets on cancer gene microarray. In their papers,
they also compared the EBayes approach of Efron [44],
which presets an error rate threshold (say, 2.5%) and
targets a threshold where the prediction error falls be-
low the desired error rate. Their numerical studies con-
firm the points explained above: HCT adapts well to
different sparsity level and signal strengths, while the
methods of controlling FNDR and EBayes do not per-
form as well (in the misclassification sense); and HC
typically selects more false features than other ap-
proaches. The goal of the HC feature selection, as we
will see, is to optimize the classification error, not to
control the FDR. In fact, [87], Table 2, found that HCT
had the best classification performance for the cancer
microarray data sets they investigated.

3.5 Feature Selection by HCT When Features Are
Correlated

Above, we assumed the feature vector Xi ∼ N(Yi ·
μ, Ip) for Yi = ±1. A natural generalization is to as-
sume Xi ∼ N(Yi · μ,�), where � = �p,p is a un-
known covariance matrix. Two problems arise: how to
estimate the precision matrix � = �−1 and how to in-
corporate the estimated precision matrix into the HCT
classifier. In the latter, the key is to extend the idea of

threshold choice by HCT to the setting where not only
the features are correlated, but the covariance matrix is
unknown and must be estimated.

The authors of [64] address the first problem by
proposing Partial Correlation Screening (PCS) as a
new row-wise approach to estimating the precision ma-
trix. PCS starts by computing the p × p empirical
scatter matrix S = (1/n)

∑n
i=1 XiX

′
i . Assume the rows

of � are relatively sparse. To estimate a row of �,
the algorithm only needs to access relatively few rows
of S. For this reason, the method is able to cope with
much larger p (say, p = 104) than existing approaches
(e.g., Bickel and Levina [13], glasso [49], Neighbor-
hood method [94] and CLIME [24]). [47] addresses
the second problem by combining the ideas in Donoho
and Jin [40] on threshold choices by HCT with those
in Hall and Jin [58] on Innovated HC. This combina-
tion injects an estimate of � into the HCT classification
method; it is asymptotically optimal if � is sufficiently
sparse and we have a reasonably good estimate of �

(e.g., [24]).

4. TESTING PROBLEMS ABOUT A LARGE
COVARIANCE MATRIX

In this section and the next, we briefly develop styl-
ized applications of HC to settings which may seem
initially far outside the original scope of the idea. In
each case, HC requires merely the ability to compute a
collection of P -values for a collection of statistics un-
der an intersection null hypothesis. This allows us to
easily obtain HC-tests in diverse settings.

Consider a data matrix X = Xn,p , where the rows of
X are i.i.d. samples from N(0,�). We are interested
in testing � = Ip versus the hypothesis that � con-
tains a sub-structure. First, we consider the case where
the substructure is a small-size clique. In Section 4.1,
we approach the testing problem by applying HC to
the whole body of pairwise empirical correlations and
to the maximum row-wise correlation (for each vari-
able, this is the maximum of each variable’s correla-
tions with all other variables). Second, in Section 4.2,
we consider the case where the matrix � = I + H fol-
lows the so-called spiked covariance model [84], a low-
rank perturbation of the identity matrix. We apply HC
to the eigenvalues of the empirical covariance matrix.

4.1 Detecting a Possible Clique in the Covariance
Matrix

In this section, the global null hypothesis is � = Ip ,
while the alternative is that � contains a small clique.
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Formally, � can be written as � = �0
′, where 

is a permutation matrix, and, for an integer 1 ≤ k < p

and a ∈ [0,1),

�0(i, j)
(4.1)

=
{

1{i = j} + a{i �= j}, max{i, j} ≤ k,

1{i = j}, max{i, j} > k.

The parameter a can take negative values as long as �0
remains positive definite.

We suggest two different approaches for detecting
the cliques using HC. In each of the two approaches,
the key is to obtain P -values.

In the first approach, we obtain individual P -values
from pairwise correlations. In detail, write the data ma-
trix X = Xn,p as

X = [x1, x2, . . . , xp].
The pairwise correlation between the ith and j th vari-
able is

ρij = (xi, xj )

‖xi‖‖xj‖ .

Recall that tk(0) denotes the central Student’s t-
distribution with df = k. The following lemma sum-
marizes some basic properties of ρij [105].

LEMMA 4.1. Suppose � = Ip . If i �= j , then for
any ρ ∈ (−1,1), P(ρij ≥ ρ) = P(tn−1(0) ≥ √

n − 1ρ/√
1 − ρ2), Also, if (i, j) �= (k, �), then ρij and ρk� are

independent.

This says that the collection of random variables

{ρij : 1 ≤ i ≤ j ≤ p}
are pairwise independent (but not jointly independent).
It can be further shown that the correlation matrix be-
tween different ρij is very sparse, so a simple but rea-
sonable approach is to apply OHC to {ρij : 1 ≤ i ≤ j ≤
p} directly. Numerically, the correlation between dif-
ferent ρij will not significantly affect the performance
of OHC. On the other hand, since the correlation ma-
trix between ρij can be calculated explicitly, a slightly
more complicated method is to incorporate the correla-
tion structures into HC, following the idea of Innovated
HC [59].

In the second approach, we obtain P -values from the
maximum correlation in each row:

ρ∗
i = max

j �=i
ρij , 1 ≤ i ≤ p.

LEMMA 4.2. Suppose � = Ip . For 1 ≤ i ≤ p and
ρ ∈ (−1,1),

P
(
ρ∗

i ≤ ρ
) =

[
P

(
tn−1(0) ≤

√
(n − 1)ρ√
1 − ρ2

)]p−1

≡ Fp,n(ρ).

For a proof, see [105], for example. Let π∗
i =

Fp,n(ρ
∗
i ), so under the global null, π∗

i ∼ Unif(0,1).
We simply use these P -values in the standard HC
framework.7

We conducted a small-scale simulation as follows.
Fix (p,n) = (1000,500). We consider 5 different
combinations of (k, a): {(1,0), (5,0.25), (15,0.2),

(45,0.1), (135,0.05)}. For each combination, define
�0 as in (4.1). Note that, for the first combination,
� = Ip . Also, since the OHC is permutation invari-
ant, we take  = Ip for simplicity so that � = �0. For
each �, we generate n samples X1,X2, . . . ,Xn from
N(0,�) and obtain ρij for all 1 ≤ i < j ≤ p.

In the first approach, we sort all N = p(p − 1)/2
different P -values {πij : 1 ≤ i < j ≤ p} in ascending
order and write them as follows:

π(1) < π(2) < · · · < π(N), N = p(p − 1)/2.

We then apply the Orthodox Higher Criticism (OHC)
and obtain the HC score

OHC+
N = max

i : 1/N≤π(i)≤1/2

√
N

[
(i/N) − π(i)

]
(4.2)

/
√

π(i)(1 − π(i)).

In the second approach, we sort all p different P -
values π∗

j , 1 ≤ j ≤ p, in the ascending order and de-
note them by

π∗
(1) < π∗

(2) < · · · < π∗
(p).

We then apply the HC by (4.2), but with π(i) replaced
by π∗

(i).

The histograms of OHC+
N based on 100 repeti-

tions are displayed in Figure 6, which suggests that
OHC yields satisfactory detection. For all four types
of cliques, the OHC applied in the second approach
has smaller power in separation than that in the first
approach.

7π∗
i are equi-correlated: for any 1 ≤ i �= j �= p, Cov(π∗

i , π∗
j ) =

c0(n,p) for a small constant c0(n,p) that does not depend on i or j

and can be calculated numerically. It can be shown that c0(p,n) =
O(1/p), and the equi-correlation does not have a major influence
asymptotically. Numerical study confirms that correcting for the
equi-correlation only has a negligible difference, so we only report
results without the correction.
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FIG. 6. Simulated scores of OHC applied to pairwise correlations (left column) and maximum correlations (right column). The top panel
represents the case of no cliques. The others represent cliques with various size and strength (introduced in the text). In comparison, OHC
applied to maximum correlations has smaller power than OHC applied to pairwise correlations.

4.2 Detecting Low-Rank Perturbations of the
Identity Matrix

Now we test whether � = Ip or instead we have a
low-rank perturbation � = I + H , where the rank r

of H is relatively small compared to p.8 Consider the
spectral decomposition

� = Q�Q′,
where Q is a p × p orthogonal matrix and � is a di-
agonal matrix, with the first r entries 1 + hi , hi > 0,
1 ≤ i ≤ r , and other diagonal entries 1. We assume the
eigenbasis Q is unknown to us. In a “typical” eigen-
basis, the coordinates of Q will be “uniformly small,”
so that even if some of the eigenvalue excesses hi are
nonzero 0, the matrix � can be close to the correspond-
ing coordinates of Ip . Therefore, the pairwise covari-
ances may be a very poor tool for diagnosing departure
form the null.

Instead we work with the empirical spectral decom-
position and apply HC to the sorted empirical eigen-
values. Denote the empirical covariance matrix by

Sn = (1/n)X′X,

and let

λ1 > λ2 > · · · > λn

8The model I + H is an instance of the so-called spiked covari-
ance model [84]; there are of course hypothesis tests specifically
developed for this setting using random matrix theory. We thought
it would be interesting to derive what the HC viewpoint offers in
this situation.

be the (nonzero) eigenvalues of Sn arranged in the de-
scending order. The sorted eigenvalues play a role anal-
ogous to the sorted P -values in the earlier sections,
since the perturbation of Ip by a low-rank matrix H

will inflate a small fraction of the empirical eigenval-
ues, similar to the way the top few order statistics are
inflated in the rare/weak model. We define our approxi-
mate Z-scores by standardizing each λi using its mean
and standard deviation under the null. The resulting t-
like statistics, which we call the eigenHC, are

eigenHCn,i = (λi − E0[λi])
SD0(λi)

, 1 ≤ i ≤ p,(4.3)

where E0[λi] and SD0(λi) are the mean and standard
deviation of λi evaluated under the null hypothesis
� = Ip , respectively. Note that E0[λi] and SD0(λi)

can be conveniently evaluated by Monte-Carlo simu-
lations.9

In Figure 7, we present a realization of {eigenHCn,i :
1 ≤ i ≤ p} in the case of n = p = 1000. The figure
looks vaguely similar to realizations of a normalized
uniform empirical process, which suggests that the nor-
malization in (4.3) makes sense. We consider the test

9Since these are the eigenvalues of a standard Wishart matrix,
much existing analytic information is applicable. For example, un-
der the null distribution, the top several eigenvalues are dependent
and non-Gaussian; Johnstone [84] showed that the distribution of
the top eigenvalue is Tracy–Widom. Here we do not use such re-
fined mathematical analyses, but only Monte-Carlo simulations.
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FIG. 7. Left column: x-axis is i/n, y-axis is eigenHCn,i . Right column: simulated scores of eigenHC∗
n. The top panel represents the

unperturbed case. The others represent contamination with different ranks (introduced in text).

statistic

eigenHC∗
n = max

1≤i≤α0n
{eigenHCn,i},

where α0 is a tuning parameter we set here to 1/2.
We conducted a small-scale simulation experiment,

with (p,n) = (1000,1000). For each of the 5 dif-
ferent combinations of (r, h) = (0,0), (5,1), (15,0.5),

(45,0.2), (135,0.05), we let � be the p × p diagonal
matrix with first r coordinates equal to (1 + h) and re-
maining coordinates all 1. We then randomly generated
a p×p orthogonal matrix Q (according to the uniform
measure on orthogonal matrices) and set

� = Q�Q′.
Note that when (r, h) = (0,0), � = Ip . Next, for

each �, we generated data X1,X2, . . . ,Xn
i.i.d.∼ N(0,

�) and applied eigenHC∗
n to the synthetic data. Sim-

ulated results for 100 such synthetic data sets are re-
ported in Figure 7, illustrating that HC can yield satis-
factory results even for small r or h.10

Testing hypotheses about large covariance matrices
has received much attention in recent years. For exam-
ple, Arias-Castro et al. [5] tested that the underlying
covariance matrix is the identity versus the alternative
where there is a small subset of correlated components.

10Our point here is not that HC should replace formal methods
using random matrix theory, but instead that HC can be used in
structured settings where theory is not yet available. A careful com-
parison to formal inference using random matrix theory—not pos-
sible here—would illustrate the benefits of theoretical analysis of a
specific situation—as exemplified by random matrix theory, in this
case—over the direct application of a general procedure like HC.

The correlated components may have a certain com-
binatorial structure known to the statistician. Butucea
and Ingster [20] consider testing the null model that
the coordinates are i.i.d. N(0,1) against a rare/weak
model where a small fraction of them has significantly
nonzero means. Muralidharan [97] is also related; it
adapts HC to test column dependences in gene mi-
croarray data.

5. SPARSE CORRELATED PAIRS AMONG MANY
UNCORRELATED PAIRS

Suppose we observe independent samples (Xi, Yi),
1 ≤ i ≤ n, from a bivariate distribution with zero
means and unit variances, which is generally unknown
to us. Under the null hypothesis, the (Xi) are indepen-
dent of the corresponding (Yi) (and each other); but
under the alternative, for most pairs (Xi, Yi), indepen-
dence holds, while for a small fraction (Xi, Yi), the two
coordinates may be correlated and each may have an
elevated mean. In short, some small collection of the
pairs is correlated, unlike the bulk of the data.

Since the underlying distribution of the pairs (Xi, Yi)

is unknown to us, we base our test statistics on ranks
(ri, si) of the data (Xi, Yi). Our strategy is to compare
the number of rank-pairs in the upper right corner to the
number that would be expected under independence.

For 1 ≤ k ≤ n, let

Sk = #
{
1 ≤ i ≤ n : min{ri, si} ≥ k

}
=

n∑
i=1

1
{
min{ri, si} ≥ k

}
.
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FIG. 8. Plot of pairHCn,k versus k/n under the null (left) and under the alternative [right; (ε, τ, ρ) = (0.05,1,0.25)]. x-axis is k/n

(n = 1000).

Under the null, we have P(min{ri, si} ≥ k) = P(ri ≥
k)P (si ≥ k) = (1 − k/n)2, so

E[Sk] = P(ri ≥ k)P (si ≥ k) = n(1 − k/n)2

and

Var(Sk) = n
[
(1 − k/n)2(

1 − (1 − k/n)2)]
.

Therefore, the HC idea applies as follows. Define

pairHCn,k = √
n

Sk/n − (1 − k/n)2√
(1 − k/n)2(1 − (1 − k/n)2)

and

pairHC∗
n = max

(1−α0)n≤k≤n
pairHCn,k.

Here, α0 is a tuning parameter and is set to 1/2 below.
To illustrate this procedure, suppose that (Xi, Yi),

1 ≤ i ≤ n, are i.i.d. samples from a mixture of two bi-
variate normals

(1 − ε)N(0, I2) + εN(τ12,�),

12 =
(

1
1

)
, � =

(
1 ρ

ρ 1

)
,

where (ε, τ, ρ) are parameters. In Figure 8, we show a
plot of pairHCn,k for n = 1000 and k = 1,2, . . . , n un-
der the null and under the alternative where (ε, τ, ρ) =
(0.05,1,0.25).

We conducted a small simulation experiment as fol-
lows:

• Fix n = 1000 and define 5 different settings where
(ε, τ, ρ) = (0,0,0), (0.02,0,2.5), (0.02,0.50,2),
(0.01,0.50,2.5) and (0.01,0.25,3). Note that the
first setting corresponds to the null case.

• Within each setting, conduct 100 Monte-Carlo repe-
titions, each time generating a synthetic data set with
the given parameters and applying pairHC∗

n.

The results are reported in Figure 9, which suggests
that HC yields good separation even when the signals
are relatively rare and weak.

6. ASYMPTOTIC RARE/WEAK MODEL

In this section we review the rare/weak signal model
and discuss the advantages of HC in this setting.

Return to the problem (2.1)–(2.2) of detecting a
sparse Gaussian mixture. We introduce an asymptotic
framework which we call the Asymptotic Rare/Weak
(ARW) model. We consider a sequence of problems,
indexed by the number N of P -values (or Z-scores,
or other base statistics); in the N th problem, we again
consider mixtures (1 − ε)N(0,1) + εN(τ,1), but now
we tie the behavior of (ε, τ ) to N , in order to honor
the spirit of the Rare/Weak situation. In detail, let ϑ ∈
(0,1) and set

ε = εN = N−ϑ,

so that, as N → ∞, the nonnull effects in H
(N)
1 be-

come increasingly rare. To counter this effect, we let
τN tend to ∞ slowly, so that the testing problem is
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FIG. 9. Simulated scores of pairHC∗
n. The top panel represents the null case. The others represent the alternative cases with different

(ε, τ, ρ), introduced in the text (n = 1000).

(barely) solvable. In detail, fix r > 0 and set

τN =
√

2r log(N).

With these assumptions the Rare/Weak setting corre-
sponds to ϑ > 1/2, rare enough that a shift in the over-
all mean is not detectable, and r < 1, weak enough that
a shift in the maximum observation is not detectable.

The key phenomenon in this model is a threshold
for detectability. As a measure of detectability, con-
sider the best possible sum of Types I and II errors of
the optimal test. Then, there will be a precise thresh-
old separating values of (ϑ, r), where the presence of
the mixture is detectable from those where it is not de-
tectable.

Let

ρ(ϑ) =
{

ϑ − 1/2, 1/2 < ϑ ≤ 3/4,(
1 − √

(1 − ϑ)
)2

, 3/4 < ϑ < 1.

When r > ρ(ϑ), the hypotheses separate asymptoti-
cally: the best sum of Types I and II errors tends to
0 as N tends to ∞. On the other hand, when r < ρ(ϑ),
the sum of Types I and II errors of any test cannot get
substantially smaller than 1. The result was first proved
by Ingster [65, 66], and then independently by Jin [75,
76].

In other words, in the two-dimensional ϑ-r phase
space, the curve r = ρ(ϑ) separates the bounded re-
gion {(ϑ, r) : 1/2 < ϑ < 1,0 < r < 1} into two separate
subregions, the detectable region and the undetectable
region. For (ϑ, r) in the interior of the detectable re-
gion, two hypotheses separate asymptotically and it is

possible to separate them. For (ϑ, r) in the undetectable
region, two hypotheses merge asymptotically, and it is
impossible to separate them. Hence, the phase diagram
splits into two “phases”; see Figure 10 for illustration.

Fix (ϑ, r) in the detectable region. Suppose we reject
H

(N)
0 if and only

HC∗
N ≥ h(N,αN),

where αN tends to 0 slowly enough so that h(N,αN) =
O(

√
2 log log(N)). Then when H

(N)
1 can be detected

by the optimal test, HC also detects it, as N → ∞.
Since HC can be applied without knowing the under-

lying parameter (ϑ, r), we say HC is optimally adap-

FIG. 10. Phase diagram for the detection problem. The detection
boundary separates the ϑ -r plane into the detectable region and the
undetectable region. In the identifiable region, it is not only able to
reliably tell the existence of nonzero coordinates, but also possible
to identify individual nonzero coordinates.
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FIG. 11. Left: curves r = ρθ (ϑ) for θ = 0,0.15,0.3. Two dashed black lines are r = ϑ and r = ϑ/3, respectively. For θ = 0.15, the most
interesting region is represented by the rectangular box. Right: enlargement of the rectangular box. The curve r = ρθ (ϑ) (θ = 0.15) splits
the box into two subregions: Failure (cyan) and Success (white and yellow). The two lines r = ϑ and r = ϑ/3 further split Region of Success
into three subregions, I, II and III, where the leading terms of q ideal(ϑ, r,p) in (6.1) are shown. In the yellow region, it is not only possible to
have successful classifications, but is also possible to separate useful features from useless ones.

tive. HC thus has an advantage over the Neyman–
Pearson likelihood ratio test (LRT), which requires pre-
cise information about the underlying ARW parame-
ters. The HC approach can be applied much more gen-
erally; it is only for theoretical analysis that we focus
on the narrow ARW model.

A similar phase diagram holds in a classification
problem considered in Section 3, provided that we
calibrate the parameters appropriately. Consider a se-
quence of classification problems indexed by (n,p),
where n is the number of observations and p the num-
ber of features available to the classifier. Suppose that
two classes are equally likely so that P(Yi = 1) =
P(Yi = −1) = 1/2 for all 1 ≤ i ≤ n. For Z in (3.1),
recall that Z ∼ N(

√
nμ, Ip). We calibrate with

√
nμ(j)

i.i.d.∼ (1 − ε)ν0 + εντ ,

where νa denotes the point mass at a. Similarly, we use
an ARW model, where we fix (ϑ, r, θ) ∈ (0,1)3 and let

ε = εp = p−ϑ, τ = τp =
√

2r log(p),

n = np = pθ .

Note that when p → ∞, np grows with p, but is
still much smaller than p. We call such growth regu-
lar growth. The results below hold for other types of
growth of n; see Jin [78], for example.

It turns out that there is a similar phase diagram asso-
ciated with the classification problem. Toward this end,
define

ρθ(ϑ) = (1 − θ)ρ

(
ϑ

1 − θ

)
, 0 < ϑ < (1 − θ).

Fix θ ∈ (0,1). In the two-dimensional phase space, the
most interesting region for (ϑ, r) is the rectangular re-
gion {(ϑ, r) : 0 < ϑ, r < (1 − θ)}. The region partitions
into two subregions:

• (Region of success). If r > ρθ(ϑ), then the HC
threshold t̂HC

p /t ideal
p → 1 in probability; t ideal

p is the
ideal threshold that one would choose if the under-
lying parameters (ϑ, r) are known. Note that HCT
is driven by data, without the knowledge of (ϑ, r).
Also, the classification error of an HCT-trained clas-
sification rule tends to 0 as p → ∞.

• (Region of failure). When r < ρθ(ϑ), the classifica-
tion error of any trained classification rule tends to
1/2, as p → ∞.

See Figure 11. The above includes the case where
np → ∞ but np/pa → 0 for any fixed a > 0 as the
special case of θ = 0. See more discussion in [40, 41,
78]. Ingster et al. [67] derived independently the classi-
fication boundary, in a broader setting than that in [40,
41, 78], but they did not discuss HC.

The conceptual advantage of HC lies in its ability
to perform optimally under the ARW framework—
without needing to know the underlying ARW parame-
ters: HC is a data-driven nonparametric statistic that is
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not tied to the idealized model we discussed here, and
yet works well in this model.

The phase diagrams above are for settings where the
test statistics or measured features Xi are independent
normals with unit variances (the normal means may be
different). In more complicated settings, how to derive
the phase diagrams is an interesting but nontrivial prob-
lem. Delaigle et al. [34] studied the problem of detect-
ing sparse mixtures by extending models (2.1)–(2.2) to
a setting where Xi are the Student’s t-scores based on
(possibly) non-Gaussian data, where the marginal den-
sity of Xi is unknown but is approximately normal. Fan
et al. [47] extended the classification problem consid-
ered in Section 3 to a setting where the measured fea-
tures are correlated; the covariance matrix is unknown
and must be estimated. In general, the approximation
errors (either in the underlying marginal density or the
estimated covariance matrix) have a negligible effect
on the phase diagrams when the true effects are suf-
ficiently sparse and a nonnegligible yet subtle effect
when the true effects are moderately sparse; see [34,
47].

6.1 Phase Diagram in the Nonasymptotic Context

The phase diagrams depict an asymptotic situation; it
is natural to ask how they behave for finite N . This has
been studied in [41], Figure 4, Sun [110], Blomberg
[14] and [104]. In principle, for finite N , we would
not experience “perfectly sharp” phase transition as
visualized in Figures 10 and 11. However, numeric
studies reveal that, for reasonably large N , the tran-
sition zone between the region where inference can
be rather satisfactory and the region where inference
is nearly impossible is comparably narrow, increas-
ingly so as N increases. Sun [110] used such ideas
to study a GWAS on Parkinson’s disease, and argued
that standard designs for GWAS are inefficient in many
cases. Xie [121] and Wu [119] used the phase dia-
gram as a framework for sample size and power cal-
culations.

6.2 Phase Diagram for FDR-Controlling Methods

Continuing the discussion in Section 3.4, we in-
vestigate the optimal FDR control parameter q in the
rare/weak setting. Suppose we select features by apply-
ing Benjamini–Hochberg’s FDR-controlling method
to the ARW. The “ideal” FDR control parameter
q ideal(ϑ, r,p) is the feature-FDR associated with t ideal

p

(i.e., we have a discovery if and only if the feature
Z-score exceeds t ideal

p in magnitude). In Donoho and

Jin [41], it is shown that, as p → ∞,

q ideal(ϑ, r,p)
(6.1)

=

⎧⎪⎪⎨
⎪⎪⎩

o(1), r > ϑ,
ϑ − r

2r
+ o(1), ϑ/3 < r < ϑ,

1 − o(1), ρθ (ϑ) < r < ϑ/3,

which gives an interesting 3-phase structure: see Re-
gions I, II, III in Figure 11. Somewhat surprisingly,
the optimal FDR is very close to 1 in one of the three
phases (i.e., Region III); in this phase, to obtain opti-
mal classification behavior, we set the feature selection
threshold very low so that we include most of the useful
features; but when we do this, we necessarily include
many useless features, which dominate in numbers
among all selected features. Similar comments apply
when replacing Benjamini–Hochberg’s FDR control
by the local FDR (Lfdr) approach of Efron [44]; see
[41] for details.

6.3 Phase Diagrams in Other Rare/Weak Settings

Phase diagrams offer a new criterion for measuring
performance in multiple testing in the rare/weak effects
model.

This framework is useful in many other settings.
Consider a linear regression model Y = Xβ + z, z ∼
N(0, In), where X = Xn,p and p ≥ n. The signals in
the coefficient vector β are rare and weak, and the
goal is variable selection (different from that in Sec-
tion 2.10). In a series of papers [52, 74, 82, 85], we
use the Hamming error as the loss function for variable
selection and study phase diagrams in settings where
the matrices X get increasingly “bad” so the problem
get increasingly harder. These studies propose several
new variable selection procedures, including UPS [74],
Graphlet Screening [82] and CASE [85]. The study is
closely related to [38] on Compressed Sensing.

References [80, 81] present ARW phase diagrams
for sparse spectral clustering, and [48] presents phase
diagrams for computer privacy and confidentiality.
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