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We offer below some constructive criticism that, we hope, will shed some
light, or least provide a different perspective, on different points touched in
the paper as regards to the problem of sparse clustering. We hope this will
stimulate a fruitful discussion of the topic.

Before that, we want to congratulate the authors for a tour de force in
mathematical technique. The authors went for the apparently unreachable
goal of obtaining a performance result — sharp to the multiplicative con-
stant — for a sophisticated method addressing a complex problem. This
continues an impressive line of papers by Jiashun Jin and his students,
postdocs and collaborators. Every time, the goal is extremely ambitious:
that of providing constant-sharp phase transition results for central prob-
lems in high-dimensional statistics. In fact, despite the fact that the paper
under discussion is quite substantial, it is only part of a larger program that
aims at precisely describing the phase transitions in the context of sparse
clustering — see (Jin et al., 2015, 2016) and also (Jin, 2015).

1. The review of the literature. The problem of sparse clustering
can be defined as that of clustering possibly high-dimensional (feature) vec-
tors in a setting where only a few features are useful. In their review of the
literature, the authors discuss two papers addressing the problem of sparse
clustering (Chan and Hall, 2010; Azizyan et al., 2013). They also cite ours
(Verzelen and Arias-Castro, 2014) somewhere in the middle of the paper.
These papers all appeared in the last few years and this may give the impres-
sion that the problem was only considered recently. This is in fact not the
case. Although minuscule relative to the literature on sparse regression and
classification, the literature on sparse clustering is nontrivial. Friedman and
Meulman (2004), in their impactful paper on the topic, cite papers from the
1980’s, e.g., (De Soete, 1986). Another important paper is that of Witten
and Tibshirani (2010).
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Not mentioning this literature, or discussing it properly, weakens the pa-
per in at least two respects. First, it has the potential of misleading the
non-expert reader into believing that the problem is new, which it is not,
and the same reader will not be able to appreciate the amount of novelty
offered here (more on this in the sections that follow). Second, it severely
limits the scope of the numerical experiments performed in the paper, as the
method proposed by the authors is only compared to methods that are not
tailored to sparse clustering, such as K-means and SpectralGEM. It seems
more reasonable to use COSA (Friedman and Meulman, 2004) or Sparse
K-means (Witten and Tibshirani, 2010) as benchmarks — not only on real
data but also in simulated data.

To tackle the problem of sparse clustering, the general strategy followed
by the authors is very natural:

1. Select the features that are useful for clustering.
2. Apply a clustering algorithm based only on the selected features.

In this contribution, the authors combine a new feature selection proce-
dure calibrated by higher-criticism thresholding with a spectral clustering
method. Although the mathematical analysis is really impressive, it is dif-
ficult to disentangle the respective merits of the different ingredients of the
procedure in the paper (IF-PCA):

i. Coordinate-wise normality testing by Kolmogorov-Smirnov (KS).
ii. Calibration by the higher criticism (HC).

iii. Spectral graph partitioning using a measure of similarity based on the
KS statistics.

For example, would the method perform as well if HC were replaced by the
Benjamini-Hochberg method for FDR control?

2. The selection step.

Robustness to non-normality. The selection step in IF-PCA is based on
computing, for each coordinate, the KS statistic with the standard normal
distribution as null distribution. This is done after each variable is stan-
dardized. This test will find significance when there is substantial departure
from normality even in useless features, for example, coordinates where the
data are strongly unimodal but not normal. There is no averaging — and
therefore no central limit theorem — that can help here so that this issue
persists even in the large-sample limit. Although the authors adjust the p-
values following the empirical null approach proposed by Efron (2004), we
do not see how this can correct this issue. It would be interesting to see how
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the method behaves when the data are not normal. The authors point to the
fact that their method does well on microarray data, but the sample sizes
are a bit small, and we believe that trying the method of larger simulated
datasets would be more revealing.

As a truly nonparametric method, we find the (coordinate-wise) procedure
of Chan and Hall (2010) appealing and possibly promising in some applica-
tions. The method is based on coordinate-wise testing for unimodality. It is
clear, however, that this method is substantially inferior to the KS normality
test in the normal setting considered in the paper under discussion.

Dependency of the rates with respect to the number of clusters K. (Here
we use the notation of Section 2 in the paper.) In (2.12), the authors assume
that for any relevant feature j

(1) τ(j) :=
√
n
∣∣ K∑
k=1

δkm
3
k(j)| &

√
log(p) .

This assumption drives the SNR required for successful detection

(2) mk(j) & (log(p)/n)1/6 ,

at least in some of the regimes — see Section 2.4. Deriving the moment of
W (j), we can provide another interpretation of this rate. Indeed, we have

E[W (j)] ≈ 0 , E[W 2(j)] ≈ 1 , E[W 3(j)] ≈
∑K

k=1 δkm
3
k(j)

[1 +
∑K

k=1 δkm
2
k(j)]3/2

,

where ≈ comes from the fact that W (j) is (only) empirically centered and
normalized. The feature detection procedure amounts to testing whether
W (j) follows a centered normal distribution. The detection rate is driven
by the skewness E[W 3(j)]/E[W 2(j)]3/2 of the distribution — and this is
implicitly what τ(j) is quantifying.

In Section 2.4, the authors observe that Assumption (2.12) may fail in
very simple settings such as symmetric mixtures (K = 2 and δ1 = δ2), in
which case all τ(j) are equal to zero. In that symmetric case, they argue
that the detection rates will be driven by τ4(j) :=

∑K
k=1 δkm

4
k(j) — the

fourth power instead of the third power as in (1) — and this will result in
the following condition on the SNR

mk & (log(p)/n)1/8 ,

which is obviously stronger than (2). Just like τ(j) appears in the third power
of W (j), τ4(j) occurs in the fourth moment E[W 4(j)] so that, by the same
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reasoning, the detection rate is driven by the kurtosis W (j) compared to the
one of a normal distribution. (This phenomenon is carefully analyzed in our
own work (Verzelen and Arias-Castro, 2014).) Interestingly, the Kolmogorov-
Smirnov statistic seems to adapt to these moment conditions!

Going one step further, for some choices of parameters, the moments of
W (j) coincide with those of a normal distribution up to order 2K−1. Indeed,
this construction is equivalent to a partial moment problem — see (Karlin
and Studden, 1966). We can speculate that the detection rate will then be
driven by τ2K(j) :=

∑K
k=1 δkm

2K
k (j) which we believe will results in the

condition
mk & (log(p)/n)1/4K .

This exponential dependency of the rates with respect to the number of
clusters K is in line with recent results of Moitra and Valiant (2010) (among
others) on parameter estimation for Gaussian mixtures.

Although the authors did not conduct the analysis of their procedure in
this regime, it is likely that their IF-PCA adapts to this situation. The two
main points we want to make are:

• The detection (and clustering rates) are much worse than (log(p)/n)1/6

when Assumption (2.12) is not satisfied.
• IF-PCA may be able to adapt to the minimax rate regardless.

3. The clustering step.

Spectral algorithms. The authors call their clustering routine ‘PCA’, which
they equate with the SpectralGEM algorithm of Lee et al. (2010). Our under-
standing is that this may not true to the letter. In a nutshell, their clustering
routine (after feature selection) is as follows:

i. Project the standardized observations onto their top K − 1 principal
components.

ii. Apply Lloyd’s algorithm1 for K-means.

This amounts to forming the affinity matrix A = WW> = (Aii′ : i, i′ ∈ [n]),
where2 Aii′ = 〈Wi,Wi′〉, and performing spectral clustering directly on A,
for example, as in (Lei and Rinaldo, 2015). This has been standard for a
while, although working with some form of graph Laplacian seems to be
more popular (Von Luxburg, 2007).

1This is what the kmeans function of Matlab does.
2〈·, ·〉 denotes the inner product.
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The latter is essentially what SpectralGEM does. SpectralGEM is indeed
very similar to, but not quite the same as applying the spectral graph parti-
tioning of Ng et al. (2002) to the affinity matrix B = (Bii′ : i, i′ ∈ [n]), where
Bii′ =

√
max(〈Wi,Wi′〉, 0). (A minor detail: SpectralGEM uses Ward’s al-

gorithm for K-means. It also includes a step for estimating the number of
clusters based on the eigengap.)

Beyond common covariance matrices. Throughout this paper, it is as-
sumed that all the components share the same diagonal covariance matrix Σ.
It is perhaps possible to modify this procedure to allow different covariance
matrices Σk = Diag(σ2k(1), . . . , σ2k(p)), k = 1, . . . ,K. The coordinate-wise
KS test will still be able to distinguish coordinates j whose correspond-
ing marginal distribution of X(j) is normal, that is σ21(j) = . . . = σ2K(j)
and µ1(j) = . . . = µK(j), from relevant coordinates j whose corresponding
marginal distribution of Xj is a non-trivial Gaussian mixture. It is not clear
to us whether constant-sharp bounds can be derived in this setting, but (up
to multiplicative constants) rates seem within reach. As for the clustering
step, simple spectral methods (such as ‘PCA’) will fail to recover the clusters
when the covariances are different. Nevertheless, there exists an important
body of work on provably consistant learning methods for this problem (see
e.g., Vempala and Wang, 2004; Achlioptas and McSherry, 2005; Kannan
et al., 2005) that one could plug into the feature selection step.

A tribute to Peter Hall. Peter Hall passed away very recently (early Jan-
uary, 2016). His legendary prolific contribution to mathematical and method-
ological statistics, as well as probability theory, includes some work related
to the paper under discussion, in particular (Chan and Hall, 2010), and also
extensive work on the higher criticism (Hall et al., 2008, 2010; Delaigle et al.,
2011; Delaigle and Hall, 2009; Hall et al., 2014), the bulk of it with Jiashun
Jin.
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