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DISCUSSION OF “INFLUENTIAL FEATURE PCA FOR
HIGH DIMENSIONAL CLUSTERING” ∗

By T. Tony Cai and Linjun Zhang

University of Pennsylvania

We would like to congratulate the authors for an interesting paper and
a novel proposal for clustering high-dimensional Gaussian mixtures with a
diagonal covariance matrix. The proposed two-stage procedure first selects
features based on the Kolmogorov-Smirnov statistics and then applies a
spectral clustering method to the post-selected data. A rigorous theoretical
analysis for the clustering error is given and the results are supported by a
competitive performance in numerical studies.

The following discussion is divided into two parts. We will discuss a clus-
tering method based on the sparse principal component analysis (SPCA)
method proposed in [4] under mild conditions and compare it with the pro-
posed IF-PCA method. We then discuss the dependent case where the co-
variance matrix Σ is not necessarily diagonal. To be consistent, we will follow
the same notations used in the present paper.

1. A Clustering Method Based on the SPCA Procedure Given
in [4]. In Section 1.6 of the current paper, the authors showed numerically
that the proposed IF-PCA method outperforms a clustering method using
the SPCA algorithm introduced in [8]. However, the SPCA method in [8] is
not designed for the optimal control of principal subspace estimation error
and thus does not perform well in the subsequent clustering. The problem of
SPCA has been actively studied recently and several rate-optimal procedures
for estimating the principal components and principal subspaces have been
proposed. See, for example, [6, 4, 2, 5].

In this section, we first introduce a clustering algorithm in the setting
considered in the present paper using the SPCA procedure introduced in
[4], which was shown to be rate-optimal for estimating the principal sub-
space under a joint sparsity assumption. We then make a comparison of the
performance of this SPCA clustering procedure with that of the proposed
IF-PCA method both theoretically and numerically. The results show that
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this SPCA based clustering procedure yields a comparable bound for clus-
tering error rate with that of IF-PCA under mild assumptions and it also
performs well numerically.

Throughout this section we assume that the common covariance matrix
Σ is diagonal and K is of constant order. Recall that the normalized data
matrix W can be decomposed as:

(1.1) W = [LM + ZΣ−1/2]Λ +R = UDV > + ZΣ−1/2Λ +R,

where ZΣ−1/2 ∈ Rn×p has i.i.d. N(0, 1) entries, L ∈ Rn×K ,M ∈ RK×p,
and LM is a matrix where the i-th row is µk if and only if sample i ∈
Class k. In addition, UDV > is the singular value decomposition (SVD) of
LMΛ, with D ∈ R(K−1)×(K−1), and we assume λ ≤ λK−1(D) ≤ λ1(D) ≤
cλ for some λ and constant c. In addition R is a negligible term defined
in (2.7), and Λ, which is given in (2.7) of the paper, is a diagonal and
approximately identity matrix with ||Λ||2 ≤ 1. Note that µk (k = 1, ...,K)
are jointly sparse according to the assumptions in the current paper, and
µ1, ...µK−1 are linearly independent. These imply V ∈ G(s, p,K − 1), where
G(s, p,K − 1) = {V ∈ O(p,K − 1) : ||V ||w ≤ s} with ||V ||w := max ||V∗j ||0,
and O(p, r) denotes the set of all p by r matrix with orthonormal columns.

The above discussion shows the connection between (1.1) considered in
the present paper and the sparse PCA model studied in the literature. For
the sparse PCA model, a reduction scheme was proposed in [4] for estimating
the principal subspace span(V ) by transforming the original problem to a
high-dimensional multivariate linear regression problem with the orthogonal
design and group sparsity. The estimator V̂ ∈ Rp×K−1 is fully data-driven
and can be computed efficiently, and is proved to be adaptively minimax
rate-optimal. Once V̂ is available, the principal subspace span(U) can be
well estimated and applying k-means to the estimator Û leads to a cluster-
ing procedure. The following Algorithm 1 formalizes the procedure outlined
above by providing the detailed steps of the SPCA method introduced in
[4].

The estimation error of span(Û) and the clustering error of the result-
ing clustering procedure can be well bounded. The theoretical results are
summarized in the following theorem.

Theorem 1. Let ŷSPCA be the estimated label vector obtained by Algo-
rithm 1, with the initial estimator V̂0 satisfying σr(V̂

>
0 V ) ≥ 1/2, and |supp(V̂0)| ≤

s′, with s′ = p1−v + p1−q + log p. Under the conditions of Theorem 2.2
in the present paper, suppose ρ2(L,M) . ||κ||2, p1−v log p . n, and λ ≤
λK−1(D) ≤ λ1(D) ≤ cλ for some λ &

√
log p
n and constant c, then the
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Algorithm 1 SPCA clustering method
Input: The normalized data matrix W , parameters α, β, δ > 0.
Output: The estimated class labels ŷSPCA ∈ {1, 2, ...,K}n.
1: Generate an independent n × p matrix Z̃ with i.i.d. N(0,1) entries, and form two

samples W i = W + (−1)iZ̃ (i = 0, 1).
2: Use the sample W 0 to compute an initial estimator V̂0 ∈ Rp×(K−1), where the proce-

dure is discussed in Theorem 2.
3: Form B = W 0V̂0 and let its SVD be B = QCR> with Q ∈ Rn×(K−1) and C ∈

R(K−1)×(K−1), then let Y = 1√
2
(W 1)>W 0V̂0RC

−1.

4: Define pen(Θ) = pen(|supp(Θ)|), where supp(Θ) is the index of nonzero rows of Θ,
and pen(k) = (1 + δ)2 ∑k

i=1 ti with ti = K − 1 +
√

2(K − 1)β log ep
i

+ β log ep
i

.

5: Let Θ̂ = arg maxΘ∈Rp×K−1 ||Y −Θ||2F + pen(Θ).

6: Construct V̂ by orthonormalizing the columns of Θ̂.
7: Construct Û ∈ Rn×(K−1) by orthonomalizing the columns of WV̂ .
8: ŷSPCA is constructed by performing the k-means to the rows of Û , assuming there are
K − 1 clusters.

clustering error rate of ŷSPCA satisfies

E[
1

n
Hamm∗p(ŷ

SPCA, y)] ≤ Lperrp,

where as in the present paper,

Hamm∗p(ŷ
SPCA, y) = min

π
{
n∑
i=1

I(ŷSPCA 6= π(yi))},

with π being any permutation of {1, 2, ...,K}, and

errp = ρ2(L,M)[
1 +

√
p1−v∧q

n

||κ||
+ p−

(
√
r−√q)2+

2K +

√
pv−1 +

p(v−q)+

n

√
ρ1(L,M)].

Proof: Using an analogous argument to the proof of Theorem 6 in [4], to-
gether with (C.70) in the current paper, Θ̂ in Step 5 of Algorithm 1 satisfies

E[||Θ̂−Θ||2F ] ≤ Ks′ + s′ log
ep

s′
+ p(v−q)+ ||κ||2ρ1(L,M),

and consequently there exists H ∈ O(K − 1,K − 1), such that

E[||V̂ − V H||2F ] .
(λ+ 1

nλ2

(
Ks′ + s′ log

ep

s′
+ p(v−q)+ ||κ||2ρ1(L,M)

))
∧K.
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The left singular vectors U ∈ Rn×(K−1) in Step 7 of Algorithm 1 is esti-
mated by orthonomalizing the columns of WV̂ . Since

WV̂ =(UDV > + Z + 1n(µ̄− X̄)>)V̂

=UDH + UD(V >V̂ −H) + (Z + 1n(µ̄− X̄)>)V̂ ,

it then follows from Wedin’s sin-theta Theorem that there is H̃ ∈ O(K −
1,K − 1) satisfying

E[||Û − UH̃||F ] ≤
√
K E[

||UD(V >V̂ −H) + (Z + 1n(µ̄− X̄)>)V̂ ||2
λ

]

≤
√
K E[

||UD(V >V̂ −H)||2 + ||(Z + 1n(µ̄− X̄)>)V̂ ||2
λ

]

.E[||V̂ − V H||F ] + E[
||(Z + 1n(µ̄− X̄)>)V̂ ||2

λ
]

≤E[||V̂ − V H||F ] + Lpρ2(L,M)[
1 +

√
s′

n

||κ||
],

where Lp denotes a poly-log p term.
Recall that λ � ||κ||2/ρ2(L,M) (by Lemma 2.1 in the current paper),

s′ = p1−v + p1−q + log p and ρ2(L,M) . ||κ||2, then

E[||Û − UH||F ] .

√( ||κ||2ρ2(L,M) + ρ2
2(L,M)

n||κ||4
· (s′Lp + p(v−q)+ ||κ||2ρ1(L,M))

)
∧K + Lperrp

≤ Lperrp.

Using a similar argument to the one given in the proof of Theorem 2.2 in
the present paper and applying the k-means method to Û lead to a matched
clustering error rate:

E[
1

n
Hamm∗p(ŷ

SPCA, y)] ≤ Lperrp.

This clustering error rate matches the rate given in Theorem 2.2 of the
present paper.

As discussed in [4], the initialization V̂0 in Algorithm 1 needs to satisfy

(1.2) |supp(V̂0)| ≤ s′ and σr(V̂
>

0 V ) ≥ 1/2,

where s′ is defined in Theorem 1.
The diagonal thresholding method in the initialization procedure in [4]

is designed specifically for the special case where Σ = I. In this case, (1.2)
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holds for the initialization procedure in [4] when the diagonal thresholding
method is applied to the normalized data matrix W = X − 1nX̄

>, where
X̄ = 1

n

∑n
i=1Xi, and 1n ∈ Rn is the n-dimensional vector with elements

equal to 1. However, the performance of the diagonal thresholding method is
not guaranteed when Σ is a general diagonal covariance matrix as considered
in the present paper. We replace this feature selection step by the PCA-1 step
in the IF-PCA procedure, and denote the corresponding initial estimator as
V̂0. The following theorem shows that (1.2) holds for V̂0.

Theorem 2. Under the conditions of Theorem 1, and suppose ||κ||∞ →
0. The initial estimator V̂0 is the left singular vectors on W Ŝ with Ŝ being
the set of features selected by the PCA-1 procedure. With probability at least
1− o(p−2)− o(n−1),

|supp(V̂0)| ≤ s′ and σr(V̂
>

0 V ) ≥ 1/2.

Proof: For simplicity, we assume Ŝ and Z are independent. (We can achieve
this by sample splitting, or avoid this assumption by the similar argu-
ment in the present paper). Note that (C.61) in the current paper implies
|supp(V̂0)| ≤ s′. We thus focus on the second inequality in (1.2).

According to (2.18) in the present paper,

W Ŝ =LMΛ + L(M Ŝ −M)Λ + (ZΣ−1/2 + ZΣ−1/2(Λ− I) +R)Ŝ

=UDV > + L(M −M Ŝ)Λ + (ZΣ−1/2)Ŝ + (ZΣ−1/2(Λ− I) +R)Ŝ

:=S + E1 + EŜ2 + EŜ3 .

This follows

(W Ŝ)>W Ŝ =(S + E1 + EŜ2 + EŜ3 )>(S + E1 + EŜ2 + EŜ3 )

=S>S + (E1 + EŜ2 + EŜ3 )>S + S>(E1 + EŜ2 + EŜ3 )

+ (E1 + EŜ2 + EŜ3 )>(E1 + EŜ2 + EŜ3 )

=V D2V > + (E1 + EŜ2 + EŜ3 )>S + S>(E1 + EŜ2 + EŜ3 )

+ (E1 + EŜ2 + EŜ3 )>(E1 + EŜ2 + EŜ3 )

=V (D2 + nI Ŝp )V > + (E1 + EŜ2 + EŜ3 )>S + S>(E1 + EŜ2 + EŜ3 )

+ (E1 + EŜ3 )>(E1 + EŜ3 ) + (EŜ2 )>(E1 + EŜ3 ) + (E1 + EŜ3 )>EŜ2 +
(
(EŜ2 )>EŜ2 − nI Ŝp

)
.

The rest of the proof is divided into three steps.
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Step 1. Bounds for ||E1||2, ||EŜ2 ||2, and ||EŜ3 ||2.
Lemma 2.2 in the current paper yields that with probability at least

1− o(p−2),

||E1||2 . ||κ||
√
n[s−1/2

√
ρ1(L,M)

√
log p+ p−[(

√
r−√q)+]2/2K ],

and it follows from the Bai-Yin law that with probability at least 1− 2e−n,

||EŜ2 ||2 .
√
n+
√
s′.

In addition, by (C.70) in the current paper, with probability at least
1− o(p−3),

||RŜ ||2 . [
√

log p+
√
s′ log p+ ||κ||s−1/2

√
s′ρ1(L,M) log p],

and
||ZΣ−1/2(Λ− I)||2 ≤ ||ZΣ−1/2||2 · ||Λ− I||2 ≤

√
n||κ||∞.

Combining these two inequalities leads to

||EŜ3 ||2 ≤ [
√

log p+
√
s′ log p+ ||κ||s−1/2

√
s′ρ1(L,M) log p] +

√
n||κ||∞.

Step 2. ||S>EŜ2 ||2 ≤
√
s||S||2 and ||(EŜ2 )>EŜ2 − nI Ŝp || ≤ n ·

√
s
n =
√
ns.

Let Ẽi be the i-th column of EŜ2 . Since EŜ2 = (ZΣ−1/2)Ŝ has i.i.d. N(0, 1)
entries, Yi = U>Ẽi ∼ NK−1(0, IK−1). Let Y ∈ R(K−1)×s′ with the i-th
column being Yi. By the Bai-Yin law, with probability at least 1− e−s′ ,

||Y ||2 .
√
K +

√
s′.

This implies

||S>EŜ2 ||2 ≤ ||V DU>EŜ2 ||2 ≤ ||D||2||Y ||2 .
√
s′||S||2.

In addition, since the entries of EŜ2 are i.i.d. N(0, 1), then according to
[7],

||(EŜ2 )>EŜ2 − nI Ŝp || ≤ n ·
√
s

n
=
√
ns.

Step 3. σr(V̂
>

0 V ) ≥ 1
2 .
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By Davis-Kahan sin-theta Theorem, there exists H ∈ O(K − 1,K − 1)
such that

||V̂0 − V H||F ≤
n||κ||√

s
||κ||/ρ2(L,M)

√
ρ1(L,M)

√
log p

n||κ||2/ρ2
2(L,M)

≤
√
ρ1(L,M)

√
log p√

s/ρ2(L,M)

≤p−C → 0,

where the last inequality follows from (2.15) in the current paper.
In conclusion, if we let ∆ = V̂0 − V H, then ||∆||2 ≤ p−C . This indicates

that when p is sufficiently large, the r-th largest singular value of V̂ >V
satisfies

σr(V̂
>

0 V ) = σr((V H + ∆)>V ) = σr(H
>V >V + ∆>V )

≥1− ||∆>V ||2 ≥ 1/2.

We now compare the numerical performance of the SPCA method with
the IF-PCA method in the same settings considered in the simulation section
of the current paper with p = 4000 and n = 145. Σ is nearly an identity
in their settings, so we use the initial estimator in [4] with the data matrix
normalized by centering only, and the simulation results suggest a robust
performance of this SPCA clustering method.

Recall that r indicates the strength of the signal, and the sparsity is p1−v.
We calculate the clustering error rates of IF-PCA and SPCA for the com-
binations {r, v} = {0.25, 0.35, 0.5, 0.65} × {0.6, 0.7, 0.8} with K = 2. The
simulation results are summarized in Table 1. The results show that the
clustering method based on the SPCA procedure introduced in [4] outper-
forms IF-PCA in most cases. The numerical results are consistent with the
theoretical results given in Theorem 1.

In addition, we compare the IF-PCA and SPCA clustering methods in
the six gene microarray data sets considered in the current paper. In this
comparison, the tuning parameters in SPCA are fixed at α = 1 for the
initialization, and β = 1, δ = 0.2 for all six cases. Under this setting, the re-
sults given Table 2 and Figure 1 indicate that the SPCA clustering method
is competitive with the IF-PCA method. We believe that an SPCA proce-
dure with optimally tuned parameters would further improve the numerical
results.

The above theoretical and numerical analyses indicate that the SPCA
based clustering method has similar performance as that of the IF-PCA
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Table 1
Clustering error rate of IF-PCA and SPCA for each {r, v} combination.

v

r Method 0.8 0.7 0.6

0.25 IF-PCA 0.4541 0.4045 0.1369
SPCA 0.4234 0.3396 0.0124

0.35 IF-PCA 0.4417 0.3917 0.1000
SPCA 0.4176 0.2200 0.0031

0.5 IF-PCA 0.4217 0.2683 0.0245
SPCA 0.4252 0.1834 0.0013

0.65 IF-PCA 0.4072 0.2290 0.0452
SPCA 0.4266 0.0959 0.0017

Table 2
Clustering error for 6 gene microarray data sets introduced in the current paper.

Data set K n p IF-PCA SPCA

Brain 5 42 5597 0.262 0.190

Leukemia 2 72 3571 0.069 0.028

Lung Cancer (1) 2 181 12533 0.033 0.083

Prostate Cancer 2 102 6033 0.382 0.422

SRBCT 4 63 2308 0.444 0.508

Lymphoma 3 62 4026 0.065 0.016

Fig 1. Comparison of the clustering errors of the IF-PCA and SPCA methods for the six
gene microarray datasets. ‘Others’ stands for the minimum of the error rates of all other
methods (except the IF-PCA method) in the current paper.
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method. It is important to note that both the IF-PCA and SPCA methods
require the assumption that Σ is a diagonal matrix. We will discuss this
assumption in the next section.

2. General Covariance Structure. The present paper focuses on the
special case where the common covariance matrix Σ among the mixture
components is diagonal. This assumption is quite restrictive but it is essential
for the success of the IF-PCA procedure. We now consider the dependent
case with a general covariance matrix Σ that is not necessarily diagonal
and demonstrate that the screening step may adversely affect the efficiency
of the subsequent clustering method, even if all the “useless features” are
correctly screened out. In this sense, the IF-PCA procedure is specifically
design for the case of diagonal Σ.

Let us first consider an oracle setting where the number of mixture com-
ponents K = 2 (the case where K ≥ 3 can be similarly considered [3]),
and the true parameters µ̄, µk(k = 1, ...,K), and Σ are known. We further
assume Xi|yi = k ∼ Np(µ̄+ µk,Σ), and P (yi = k) = δk. The goal is to clus-
ter the sample data given these true parameters. In this case, the optimal
clustering procedure is Fisher’s linear discriminant rule:

ψ(Z) = 1 + I{(Z−µ)′Σ−1∆≥log(δ1/δ2)},

where µ = µ̄ + (µ1 + µ2)/2, ∆ = µ1 − µ2, and this rule labels the data
point Xi ∈ Rp to class ψ(Xi). This classifier is the Bayes rule with the prior
probabilities δ1 and δ2 for classes 1 and 2 respectively, and is thus optimal
in such an ideal setting.

The misclassification error rate of Fisher’s rule [1] is give by

RFisher = 1− Φ
(√

∆′Σ−1∆
)
,

which is the best possible performance when all the parameters are known
in advance.

To see that the screening step, which is solely based on the means, is not
always desirable, write

∆ =

(
∆1

∆2

)
=

(
µ11 − µ21

µ21 − µ22

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where ∆1 is a s-dimensional vector, Σ11 is s×s, Σ12 is s× (p−s) and Σ22 is
(p− s)× (p− s). Let ∆1 6= 0 and ∆2 = 0. That is, ∆1 contains all the useful
features and ∆2 corresponds to the set of all “useless features”. Suppose we
correctly screen out all the p− s “useless features” and clustering the data
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based on the first s features. The next inequality shows that Fisher’s rule in
the oracle setting based on all the features outperforms Fisher’s rule based
only on the useful features:

∆′Σ−1∆ = ∆′1Σ−1
11 ∆1 + (∆2 − Σ−1

22 ∆1)Σ−1
22·1(∆2 − Σ−1

22 ∆1) ≥ ∆′1Σ−1
11 ∆1,

where the inequality follows from the fact that Σ22·1 = Σ22−Σ21Σ−1
11 Σ21 ≥ 0.

This inequality implies

Φ(∆′Σ−1∆)− Φ(∆′1Σ−1
11 ∆1) ≥ 0.

We now consider the data-driven IF-PCA procedure. Denote ŷIF−all and
ŷIF−u as the IF-PCA clustering method based on all features and useful
features respectively, and similarly for ŷFisher−all and ŷFisher−u. Recall the
clustering error for the IF-PCA method defined in the current paper is

L(ŷIF, y) =
1

n
min
π
{
n∑
i=1

I(ŷIF 6= π(yi))},

where π is any permutation of {1, 2, ...,K}.
According to the optimality of Fisher’s rule,

E[L(ŷIF−u, y)] = E[
1

n

n∑
i=1

I(ŷIF−u 6= yi)] = E[I(ŷIF−u 6= yi)]

≥ E[I(ŷFisher−u 6= yi)]

= E[I(ŷFisher−all 6= yi)]− (Φ(∆′Σ−1∆)− Φ(∆′1Σ−1
11 ∆1))

= E[I(ŷIF−all 6= yi)] + Err− (Φ(∆′Σ−1∆)− Φ(∆′1Σ−1
11 ∆1)),

where Err = (E[I(ŷFisher−all 6= π(yi))]−E[I(ŷIF−all 6= π(yi))]) is the statisti-
cal error which goes to zero as the sample size n goes to infinity. Therefore,
there exists µ1, µ2,Σ, n, such that Err− (Φ(∆′Σ−1∆)− Φ(∆′1Σ−1

11 ∆1)) < 0,
and then

E[L(ŷIF−u, y)] > E[L(ŷIF−all, y)].

The above discussion suggests that, when Σ12 6= 0, screening based on the
means alone may in fact increase the clustering error even if it identifies all
the “useless features”. Whether or not a feature is useless not only depends
on the difference in the two means but also depends on the covariance struc-
ture. The optimality achieved by IF-PCA in the independent case, where
Σ is diagonal, thus no longer holds in the general case due to the screening
procedure.
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It is an interesting future research project to study if the IF-PCA method
can be generalized to achieve good clustering results without the diagonality
assumption on Σ. It appears that a good screening step based on both
the means and covariances is essential for the success of such a two-step
procedure.
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