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Rare/Weak signals in LSI

I Rare. Signals sparsely scatter across different
observation units; no priori where there are

I Weak. Signals are individually weak (new)

Box and Meyer (1986)
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A linear model

Y = Xβ + z , X = Xn,p, z ∼ N(0, In)

I p � n� 1

I β is sparse: many coordinates are 0
I Gram matrix G = X ′X

I has unit diagonals
I is sparse (few large coordinates in each row)
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Linkage Disequilibrium (LD)
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Idea

Jiashun Jin Graphlet Screening (GS) 5 / 36



Univariate Screening

Y = Xβ + z , X = Xn,p = [x1, x2, . . . , xp]

For a threshold t > 0, apply Hard-Thresholding:

β̂HT
j =

{
(Y , xj), |(Y , xj)| ≥ t,
0, otherwise
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Signal cancellation

Even if βj is large, E [(xj ,Y )] could be small

Denote the support of β by

S = S(β) = {1 ≤ j ≤ p : βj 6= 0}

(Y , xj) =

p∑
`=1

(x`, xj)β` + (z , xj)

= βj +
∑

`∈S(β)\{j}

(xj , x`)β` + N(0, 1),

‘signal cancellation’ may happen as

xj 6⊥ {x` : ` ∈ S(β) \ {j}}
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Exhaustive Multivariate Screening (EMS)

Fix m0 ≥ 1 and a small π0 > 0

I For m = 1, 2, . . . ,m0 and any subset

J = {j1, j2, . . . , jm}, j1 < j2 < . . . < jm

Project Y onto {xj1, xj2, . . . , xjm}:

Y 7→ PJY

I Retain the nodes in J if and only if

P
(
χ2
m(0) ≥ ‖PJY ‖2

)
≥ π0

I Fit the model with all retained nodes
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Rationale

Hope: maybe for some small-size set J ,

{xj : j ∈ J } ⊥ {x` : ` ∈ S(β) \ J };

Y =
∑
j∈J

βjxj +
∑

j∈S(β)\J

βjxj + z

I Possible ‘signal cancellation’ if we look at any
single projected coefficients (Y , xj)

I No ‘signal cancelation’ if look at the projected
coefficients {(Y , xj) : j ∈ J } together
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Problems

I Computationally infeasible:
m0∑
m=1

(
p

m

)
I Inefficiency: include too many candidates for

screening; signals need to be stronger than
necessary to survive the screening

Our proposal: Graphlet Screening (GS)
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Graph of Strong Dependence (GOSD)

Define GOSD as the graph G = (V ,E ):

I V = {1, 2, . . . , p}: each variable is a node

I Nodes i and j have an edge iff∣∣(xi , xj)∣∣ ≥ δ, (δ = 1
log(p) , say)

I G = X ′X sparse =⇒ G sparse
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Graphlet Screening (GS)

A(m0) = {All connected subgraphs of G; size ≤ m0}

GS: same as EMS, except for
I EMS exhaustively screens all

J = {j1, j2, . . . , jm}, j1 < j2 < . . . < jm

I GS screens J if and only if J ∈ A(m0)

Lemma. If d be the maximum degree of G, then

|A(m0)| ≤ Cp(ed)m0; e = 2.718
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Mutual orthogonality

G: there is an edge between i and j ⇐⇒ |(xi , xj)| ≥ 1/ log(p)

S = S(β) = {1 ≤ i ≤ p : βi 6= 0}

Restricting nodes to S forms a subgraph GS , and

GS = GS ,1 ∪ . . . ∪ GS ,M : GS ,`: components

By how G is defined, approximately,

{xj : j ∈ GS ,1} ⊥ {xj : j ∈ GS ,2} ⊥ . . . ⊥ {xj : j ∈ GS ,M}
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Maximum component size m∗0(β,G , δ)

Surprise. m∗0(β,G , δ) is small in many cases, where

m∗0(β,G , δ) = max
1≤`≤M

|GS ,`|

Lemma. If I{βj 6= 0} iid∼ Bernoulli(ε), then

P
(
m∗0(β,G , δ) > m

)
≤ p(edε)m+1, ∀ m > 1,

where d = d(G) is maximum degree of G
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Signal archipelago

I Signals split into many small-size disconnected islands

I Columns indexed by different islands: mutual orthogonal

I No ‘signal cancellation’ when we screen each island
individually
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Why GS works

A(m0) = {All connected subgraphs of G; size ≤ m0},
GS = GS,1 ∪ GS,2 . . . ∪ GS,M ; maximum size m∗

0(β,G , δ)

I GS screens a set J ⇐⇒ J ∈ A(m0)
I If m0 ≥ m∗0(β,G , δ)

GS ,` ∈ A(m0) : on our screen list!

I Approximately, no ‘signal cancellation’ for

{xj : GS,`} ⊥ {xj : GS \ GS ,`}, approx.

Y =
∑
j∈GS,`

βjxj +
∑

j∈GS\GS,`

βjxj + z
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Summary

Method US EMS GS
Computation p

(
p
m0

)
Cp(ed)m0

Efficiency yes no yes
Robust to Signal Cancellation no yes yes
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Methods
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Application I: rank features

For feature j , find all J 3 j , calculate P-values; use
πj = minimum of all such P-values for ranking

Example.
I Rows of X = Xn,p are iid N(0,Ω)

I Ω block-wise diagonal, with building blocks(
1 ρ
ρ 1

)
I β: partitioned to blocks of 2,

(β2k−1, β2k) =


(0, 0), prob. (1− ε),
(0, τ), prob. ε/4,
(τ, 0), prob. ε/4,
(τ, τ), prob. ε/2
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ROC of US vs ROC of GS (m0 = 2)

p = 1000, n = 500, ε = 0.05
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ρ = −0.8, τ = 4
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ρ = 0.8, τ = 1.5
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SNP data (chromosome 21)

GS: m0 = 2; p = 3937, n = 16179. Left: (β2k−1, β2k) = (τ, τ), prob.
0.01. Right: (β3k−2, β3k−1, β3k) = (τ, τ, τ), prob. 0.01.
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pair signals, τ = 3

US
GS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

triplet signals, τ = 2.5
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Application II. Variable Selection

A two-stage screen and clean procedure:

I Apply GS, with small modifications

I Clean
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Screen step

I A(m0) = {All connected subgraphs of G with size ≤ m0}
I Arrange by size, ties breaking lexicographically:

A(m0) = {J1,J2, . . . ,JT}

I Initializing with S0 = ∅
I For t = 1, 2, . . . ,T , letting St−1 be the set of

retained indices in stage t − 1, update St−1 by

St =

{
St−1 ∪ Jt , if ‖PJtY ‖2 − ‖PJt∩St−1Y ‖2 ≥ 2q log(p),
St−1, otherwise

I Ŝ = ST : all retained nodes
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Clean step

Fixing tuning parameters (ugs , v gs),

I j /∈ Ŝ : set β̂gs
j = 0

I j ∈ Ŝ : decompose

GŜ = GŜ ,1 ∪ GŜ ,2 ∪ . . . ∪ GŜ ,M̂ ,

and estimate {βj : j ∈ GŜ ,`} by minimizing

‖PGŜ,`(Y −
∑
j∈GŜ,`

βjxj)‖2 + (ugs)2‖β‖0,

subject to either βj = 0 or |βj | ≥ v gs
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Tuning parameters of GS

I Feature ranking: need (δ,m0); choices of which
can be guided by G and computation capacity

I Variable selection: also need (q, ugs , v gs)
I q: flexible and insensitive
I ugs is relatively easy to estimate
I v gs is relatively hard to estimate
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Minimax Theory
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Sparse model

Y = Xβ + z , z ∼ N(0, In)

β = b◦µ, bi
iid∼ Bernoulli(ε), µ ∈M∗

p(τ, a)

I b ◦ µ ∈ Rp: (b ◦ µ)j = bjµj
I M∗

p(τ, a) = {µ ∈ Rp : τ ≤ |µj | ≤ a · τ}
I As p →∞, link (ε, τ) to p by fixed parameters:

ε = εp = p−ϑ, τ = τp =
√

2r log(p)
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Sparse model, II. Random design

Y = Xβ+z , X =

 X ′1
. . .
X ′n

 , Xi
iid∼ N(0,

1

n
Ω)

I Ω: unknown correlation matrix

I n = np = pθ and (1− ϑ) < θ < 1, so that

pεp � np � p
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Minimax Hamming distance

Measuring errors with Hamming distance:

Hp(β̂, εp, µ; Ω) = E

[ p∑
j=1

1
{
sgn(β̂j) 6= sgn(βj)

}]
Minimax Hamming distance:

Hamm∗p(ϑ, θ, r , a,Ω) = inf
β̂

sup
µ∈M∗

p(τp,a)

Hp(β̂, εp, µ; Ω)

Jiashun Jin Graphlet Screening (GS) 27 / 36



Exponent ρ∗j = ρ∗j (ϑ, r ,Ω)
Define ω = ω(S0, S1; Ω) = infδ

{
δ′Ωδ

}
where

δ ≡ u(0) − u(1) :

{
u
(k)
i = 0, i /∈ Sk

1 ≤ |u(k)
i | ≤ a, i ∈ Sk

, k = 0, 1

Define

ρ(S0, S1;ϑ, r , a,Ω) =
|S0|+ |S1|

2
ϑ +

ωr

4
+

(|S1| − |S0|)2ϑ2

4ωr

Minimax rate critically depends on the exponents:

ρ∗j = ρ∗j (ϑ, r ; Ω) = min
(S0,S1):j∈S0∪S1

ρ(S0, S1, ϑ, r , a,Ω)

I not dependent on (θ, a) (mild regularity cond.)
I computable; has explicit form for some Ω
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Asymptotic minimaxity of GS

I Assume
∑p

j=1 |Ω(i , j)|γ ≤ C , γ ∈ (0, 1), 1 ≤ i ≤ p

I Screen-step: q is a properly small number

I Clean-step: set ugs =
√

2ϑ log p, and v gs = τp

Theorem GS achieves optimal rate of convergence:

sup
µ∈M∗

p(τp,a)

Hp(β̂gs , εp, µ,Ω) ≤ Lp

[( p∑
j=1

p−ρ
∗
j
)

+ p1−(m0+1)ϑ

]
≤ Lp

[
Hamm∗p(ϑ, θ, r , a,Ω) + p1−(m0+1)ϑ

]
where Lp is a generic multi-log(p) term
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L0-penalization method

Donoho and Starck (1989)

‖Y − Xβ‖2 + λ‖β‖0 : λ > 0: tuning parameter

Idea: Where there is no noise

I Infinite solutions to Y = Xβ

I But only one is very sparse

I Hope: the sparsest solution
is the truth (Occam’s Razor)

Noiseless   Strong  noise  
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L0/L1-penalization methods

L1-solution ≈ L0-solution ≈ truth

Method L0/L1-penalization CASE
Regime Rare/Strong Rare/Weak

Loss I{sgn(β̂) 6= sgn(β)} Hamm(sgn(β̂), sgn(β)) †
Optimality Not Yes
Motivation Imaging/Engineering Genetics/Genomics
Design Controllable/Nice Uncontrollable/Bad
Key idea One-stage global method Multi-stage local method

† Hamm: Hamming distance

Donoho and Stark (1989), Tibshiraini (1996), and many others
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Phase Diagram
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A Corollary

Suppose the conditions of the theorem hold. If
additionally, |Ω(i , j)| ≤ 4

√
2− 5, ∀ i 6= j , then

Hamm∗p(ϑ, θ, r , a,Ω)

pεp
=

{
1 + o(1), r < ϑ,

Lpp
− (ϑ−r)2

4r , 1 < r
ϑ < 3 + 2

√
2

Right hand side: rate when Ω = Ip; 4
√

2− 5 ≈ 0.66
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Phase Diagram
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Simulation comparison
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p = 5000, n = 4000, pεp = 250; τp = 6, 7, . . . , 12. Left to right: G is
block-wise, penta-diagonal, randomly generated (‘sprandsym’ in matlab).
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Take-home messages

I GS is a computationally feasible approach that
overcomes the challenge of ‘signal cancellation’

I Key insight:
I GS splits into different small-size signal islands GS ,`,

and {xj : j ∈ GS ,`} are mutual orthogonal (approx).
I minimax rate depends on X ‘locally’ so we have to

act ‘locally’

I Optimal in variable selection, while penalization
methods are not

I A flexible idea and that is useful in many
different situations
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