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Massive Data

• Massive investment in data collection/processing,

many areas of science and business

• Massive datasets routinely generated:

– Genomics and proteomics

– Cosmology and astronomy

– Financial tick-by-tick data

– fMRI



High-dimensional Data Analysis

• Traditional statistical data

– Sample: human being

– Dimension: blood pressure, weight, height ....

– Ex. 20 samples, 3 dimensions

• Modern statistical data

– Sample: human being

– Dimension: vectors, curves, spectra, images ...

– Ex. 100 samples, 10, 000 dimensions



Large-scale multiple hypothesis testing

1. Many null hypotheses:

H1, H2, . . . ,Hn

2. Many test statistics (summary statistics, regression

coefficients, transform coefficients):

X1, X2, . . . , Xn

Terminology:

• If Hj is true, call Xj a null effect (noise, haystack)

• Otherwise, call Xj a non-null effect (signal, needle)



Two Types of Signal

1. Very strong signal:

• stand out for themselves

• relatively easier to tell “where”, e.g. thresholding

• relatively few in numbers

2. Moderately strong signal:

• not strong enough to stand out

• can’t be isolated or detected individually

• dominating in numbers



For Today

Estimating the proportion of signals:

εn =
#{j : Hj is untrue}

n

Focusing on faint/moderately strong signals:

• Signals not strong enough to be isolated individually

• Still possible to estimate the proportion



Example I: Lung Cancer CGH Array

Paired CGH profile (left) and mRNA profile (right)

CGH: Comparative Genomic Hybridization.



Example II: Kuiper Belt Object (KBO)

Taiwanese-American Occultation Survey (TAOS)

1010 − 1012 tests, only tens or hundreds contain KBO



Agenda

1. Proportion of nonzero normal means:

• Universal oracle equivalence

• Uniformly consistent estimators

• Extensions to heteroscedastic models

2. Comparison with other approaches

3. Applications to CGH array



Stein’s n-normal Means Setting

Charles Stein

• n data points, n parameters:

Xj = µj + εj , εj
iid∼ N(0, 1)

• A snapshot of an n-vector

• Caught a lot of enthusiasm

– captures the essence of

“high dimension” data

– handle many applications

– tractable



Estimating n-normal Means

Goal: Estimating µj ’s simultaneously

Xj ∼ µj + εj , εj
iid∼ N(0, 1), j = 1, . . . , n

• MLE: µ̂j = Xj

• Stein’s shrinkage

• Wavelets and non-parametric estimation:

– Y (t) = f(t) +W (t), 0 < t < 1

– Xj : WC of Y (t). WC: wavelet coefficients

– µj : WC of f(t)

– εj : WC of W (t)



Testing n-normal Means

• n test statistics

Xj ∼ µj + εj , εj
iid∼ N(0, 1), j = 1, . . . , n

• n hypotheses

µj = 0, if Hj is true

µj 6= 0, if Hj is untrue

• An insurgence of research interest

– Driven by development in multiple testing and

microarray

– Bridge for understanding more complicated

models



Proportion of nonzero Normal Means

Jin (2006), under review

Xj ∼ µj + εj , εj
iid∼ N(0, 1), j = 1, . . . , n

Goal:

• Estimating the proportion of nonzero normal means

εn(µ) =
#{j : µj 6= 0}

n

• Focusing on faint signals (i.e. µj are small)



Where is the Information?

1. Tukey’s wisdom: which part of the data contains

the information?

2. Where is the information of the proportion?

• Surprisingly, not in the spatial domain

(densities, cdfs, moments, data tails, etc.)

• Reason: proportion is scaling invariant

Xj = µj + εj , X̃j = ±3µj + εj , 1 ≤ j ≤ n



The Fourier Kingdom

• Function: nothing but superposition of waves

• A normal mixture is a mixture of waves

N(u, 1)
FT−→ e−

t2

2 · eiut ≡ Amplitude · Phase
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Left: Joseph Fourier (1768-1830). Right: u = 0, 1, 3



Reminiscent of Newton’s Prism

Goal: Isolating the null component (and so an estimate

of the proportion)

 

Normal 
mixture Null

}non-Null



Phase Functions

Empirical phase function:

ϕn(t) = ϕn(t;X1, . . . , Xn) =
1

n

n∑
j=1

e
t2

2 cos(tXj)

Underlying phase function:

ϕ(t) = ϕ(t;µ, n) =
1

n

n∑
j=1

cos(tµj)

Idea:

• Neglect stochastic fluctuations: ϕn(t) ≈ ϕ(t)

• Use ϕ(t) to construct an oracle estimator



Averaging: A Way to tell whether µj = 0
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Phase : ϕ(t;µ, n) =
1

n

n∑
j=1

cos(tµj)

= [1− εn(µ)] +
1

n

∑
{j:µj 6=0}

cos(tµj)

Idea: average phase across a wide range of frequencies,

• the first term remains the same: 1− εn(µ)

• the second term ≈ 0



Good Density: Choice of Weights

Call ω(ξ) a good density if

• a density function over (−1, 1)

• symmetric, continuous, and bounded

• ω(ξ) = g(1− |ξ|); g: super-additive

Example: Triangle family with α ≥ 1

ω(ξ) =

 2
α+1 (1− |ξ|)α, |ξ| < 1

0, otherwise



Universal Oracle Equivalence

Weighted empirical phase and underlying phase:

ψn(t;ω) =

∫ 1

−1

ω(ξ)ϕn(tξ)dξ, ϕn(t) : empirical phase

ψ(t;ω) =

∫ 1

−1

ω(ξ)ϕ(tξ)dξ, ϕ(t) : underlying phase

Theorem 1 (Universal Oracle Equivalence). If ω is

good, then for any dimension n and normal means

vector µ,

εn(µ) = sup
t
{1− ψ(t;ω, µ, n)}



Interpretation

• Estimating the proportion reduces to estimating:

sup
t
{1− ψ(t;ω)} ≡ 1− lim

t→∞
ψ(t;ω)

• Where is the information?

Phase of high-frequency FT coefficients!

• Replacing ψ(t;ω) by ψn(t;ω) gives a real estimator:

1− ψn(t;ω) ≈ 1− ψ(t;ω) ≈ εn(µ)

• There is a trade-off in selecting t



Selecting t: Asymptotic Approach

• t =
√

2γ log n: γ ∈ (0, 1
2 ]

• ψn(t;ω): weighted empirical phase

Theorem 2 (Uniform Consistency). Suppose

1. (summable). 1
n

∑n
j=1 |µj | ≤ r

2. (not very sparse). true proportion ≥ nγ−1/2

3. (not very faint). all nonzero means ≥ log logn√
logn

Then except an event with algebraically small prob.,

limn→∞

(
sup{µ∈Θn(γ;r)}

∣∣∣∣ [1−ψn(t;ω)]
εn(µ) − 1

∣∣∣∣) = 0



Selecting t: Adaptive Approach

1. Want: approaches adaptive for ω and small n

2. Key: the estimator = 1
n

∑n
j=1[1− g(Xj ;ω)];

g(Xj ;ω) has the largest 2nd moment when µj = 0

3. Adaptive selection of t:

t∗n(ω) = max{t :
[
s2

0(t;ω) +
1

n

]
≤ αn}

• αn: specified tolerance for variance

• s2
0(t;ω): variance when µ = 0



Theorem 3 (Adaptive Control on Variance).

• For any n, ω, and normal means vector µ,

Var(ψ(t∗n(ω);ω)) ≤ αn

• Theorem 2 continues to hold if αn → 0 slowly

enough (i.e. t∗n(ω) �
√

log n)

Advantage:

• t∗n(ω) is non-stochastic, easy to calculate

• an adaptive control on variance (for n, ω, µ)



Extension to Heteroscedastic Gaussian Models

Xj ∼

 N(0, 1), Hj is true

N(µj , σ
2
j ), (µj , σj) 6= (0, 1), otherwise

• found in many applications (e.g. microarray, CGH)

• handle many interesting situations

• proportion of non-null effects:

εn =
#
{

(µj , σj) 6= (0, 1)
}

n



Identifiability

1. Too broad to be identifiable: any density ≈ a

Gaussian mixture (`1-metric)

2. Identifiable conditions

• Elevated variances (Efron (2004))

When Hj is untrue : σj ≥ 1

• Elevated means (CGH array):

When Hj is untrue : µj > 0



Main Results on Heteroscedastic Models

1. Elevated variances (Jin and Cai, JASA in press)

• theoretic results successfully extended

• applied to breast cancer microarray

2. Elevated means (Jin, Peng, and Wang, manuscript)

• to accommodate heteroscedasticity, replace

i =
√
−1 by

√√
−1

N(u, σ2)
FT−→ e

− ut√
2 · ei(

σ2

2 + u√
2
u)

• applied to lung cancer CGH array



• Empirical FT coefficients ≈ underlying FT

coefficients

• In high-frequency underlying FT coefficients: null

component sticks out∣∣∣∣ 1n
n∑
j=1

e
−
µjt√

2 e
[i(

σ2j t
2

2 +
µjt√

2
)]

∣∣∣∣
=

∣∣∣∣e− it22 ·{[1− εn] +
1

n

∑
{j:µj 6=0}

e
−
µjt√

2 · ei[
(σ2j−1)t2

2 +
µjt√

2
]

}∣∣∣∣
≈[1− εn]



Other Works on Estimating the Proportion

• Schweder (82), Storey (02), Genovese and

Wasserman (04), Meinshausen and Rice (06)

• Langaas (05), Swanepoel (99)

• Only consistent under the purity condition



Purity Condition

• Introduced in Genovese and Wasserman (2004)

• Xj
iid∼ (1− εn)f0 + εnf

– f0: N(0, 1), marginal density of null effects

– f : marginal density of non-null effects

• Purity condition

inf
−∞<x<∞

{
f(x)

f0(x)

}
= 0

• For the sake of identifiability



Comparisons

Meinshausen and Rice type approaches

• Use fully non-parametric models

• Consistent only in the purity regime

Our approaches:

• Use Gaussian models

• Remove the hurdle of identifiability

• Successful beyond the purity regime



Comparisons Using Simulated Data

• Fix n = 105 and εn = 0.2

• Pick a = 1
4 × 2, 3, 4, 5

• Conduct 100 simulation cycles

1. Generate n(1− εn) null effects Xj ∼ N(0, 1)

2. Generate nεn non-null effects Xj ∼ N(µj , 1)

– |µj |
iid∼ Uniform(a, a+ 1)

– sgn(µj)
iid∼ {−1, 1}

3. Implement our adaptive approach with

α = 0.015 (ω: triangle density)

4. Implement Meinshausen and Rice’s approach
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• n = 105, εn = 0.2, a = 1
4 × 2, 3, 4, 5

• Each cycle: n(1− εn) null effects Xj ∼ N(0, 1)

nεn non-null effects Xj ∼ N(µj , 1)

|µj |
iid∼ Uniform(a, a+ 1), sgn(µj)

iid∼ {−1, 1}



Applications to Lung Cancer CGH array

Paired CGH profile (left) and mRNA profile (right)

CGH: Comparative Genomic Hybridization.



Abstraction

• 23 tumor cells, same set of 25736 genes

• Nj : log-intensity of CGH profile, measures DNA

copy number alternation; j: j-th gene

• Rj : log-intensity of mRNA profile, measures RNA

expression level

Interested in:

• proportion of genes where Nj and Rj are correlated

• conjectured to be large (2/3)



Amplification and Deletion

Terminology:

• Nj : DNA copy number alternation of j-th gene

• Call DNA copy number amplification, deletion, or

no alternation if Nj > 0, < 0, or = 0

Accordingly, genes split into two groups:

• Amplification (13356 genes). ≥ 1 amplifications

across 23 cells

• Deletion (11283 genes). ≥ 1 deletion across 23 cells



Multiple Testing Setup (Amplification)

• n hypotheses:

Hj : Nj and Rj not correlated

equivalent to (roughly)

Hj : (Rj |Nj > 0) =d (Rj |Nj = 0)

• n test statistics:

Xj = Φ̄−1(pj) pj : p-value based on rank test

• (Elevated mean). If Hj is true: Xj ∼ N(0, 1)

Otherwise: Xj ∼ N(µj , σ
2
j ), µj > 0



Jin, Peng, Wang MR Efron/GR/Storey

Amplificatioin 0.585 0.466 0.406

Deletion 0.539 0.464 0.418



Take Home Messages

1. Constructed universal oracle equivalence of the

proportion

2. Developed estimators which are uniformly

consistent over a wide class of parameters.

3. Applied to lung cancer CGH array
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