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Fisher’s Iris Data

Sir Ronald Fisher (1890-1962); Iris flower (50 samples, 4 features)
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Some LDA Background

I n training samples (Xi ,Yi)
I Xi ∼ N(Yi · µ, Σ): feature vectors in Rp

I Yi = ±1: class labels

I Goal. given test feature (X ), predict class
label Y = 1 or Y = −1
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Fisher’s Linear Classifier

L(X ) =

p∑
j=1

w(j) · X (j)

I w(j): feature weights determined by (Xi ,Yi)

I Classify Y =

{
1, L(X ) > 0
−1, L(X ) < 0

I Optimal weights: w ∝ Σ−1µ, approachable
when n� p
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Modern Challenges

Iconic examples: gene microarray
Data Name Source n, # samples p,# features
Colon cancer Alon et al. (99) 62(22, 40) 2000
Leukemia Golub et al. (99) 73(38,35) 7129
Prostate cancer Singh et al. (02) 102(50,52) 12600

Problem: Too few observations to estimate Σ−1 (p � n)
Response: use separable classifiers diag(Σ)−1µ

Problem: Many features, most useless, a few useful/weak
Response: feature selection

Outcome: Feature Selection + DLDA

e.g. Bickel and Levina (04), Fan &Fan (08), Tibshirani et al. (02)
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DLDA with Feature Selection
Step 1. Calculate training Z -vector

I Z = Group Mean Difference/
√

( 1
n1

+ 1
n2

)pooled variance

I Standardized by Z = [Z −mean(Z )]/SD(Z )
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Step 2. Feature Selection by thresholding Z

Feature weights: w t
?(j) =


sgn(Zj) · 1{|Zj |>t}, ? = clip
Zj · 1{|Zj |>t}, ? = hard
sgn(Zj)(|Zj | − t) · 1{|Zj |>t}, ? = soft

Step 3. Classification using LDA:

L?(X ; t) =

p∑
j=1

w t
?(j) ·

(X (j)

σ̂j

)
< > 0

Problem: What is the best threshold t?
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Threshold Choice

Commonly seen intuition:

I cross validation (CV)

I control feature FDR (many)

I control feature Lfdr (Efron & others)

I Sure Indep. Screening (SIS) (Fan & Lv 2008)

I threshold monotone with feature strength

For today:

I threshold choice by Higher Criticism (HC)

I optimality of this choice

I re-investigate the above ideas
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Higher Criticism (HC)

I a multiple testing notion by Tukey (1976)
I optimal in detecting very sparse Gaussian

mixture (Donoho & Jin 2004)
I useful in Cosmology/Genomics/Comp.Sensing

I Jin et al. (2005); Cayon et al. (2006)
I Goeman & Bulhmann (2007)
I Nowak et al. (2009)

I extended to many cases
I Meinshausen & Rice (2006); Cai et al. (2007)
I Jager & Wellner (2007)
I Hall & Jin (2008, 2009); Delaigle & Hall (2008)

I related ideas: Kendall & Kendall (1982), S.
Holm (1982)
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Tukey’s Stat411 Notes 1976
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Tukey’s Story (In Context of Multiple
Testing)

I Example: A young scientist administers 250
uncorrelated tests, out of which 11 were
significant at the 5% level.

I Question is: Is this surprising?

I Answer: No, we expect

250× 5% = 12.5

significance at 5% level
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Higher Criticism, Formalization by Tukey

I Higher Criticism statistics:

HC.05,p =
√

p

[
(Fraction Significant at .05)− .05√

.05× .95

]
and typically,

Reject H0 if and only if HC.05,p ≥ 2

I Solution to previous example:

Accept H0 : HC.05,p =
√

250
( 11

250)− 0.05
√
.05× .95

= −.43
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Higher Criticism Threshold (HCT)

DJ (2008, PNAS)

Zj : z-score for testing whether j-th feature is useful

1. Convert to P-values: πj = P{|N(0, 1)| > |Zj |}

2. Sort: π(1) < π(2) . . . < π(p)

3. HC obj. funct. HC ∗n,p = max1≤i≤α0·p
{√

p
( i

p
−π(i)√

i/p(1−i/p)

)}
4. HC-threshold (HCT): (new ingredient)

tHC = |Z |(̂i) corresponding to maximizing i

Note: (1). slightly different from the HC in DJ (2004, AoS)

(2). Hall et al 08 uses HC for classification without features selection
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Comparison with Popular Classifiers

Data: Leukemia/Colon/Prostate

I (2/3, 1/3) random split (Train,Test).

I average test errors across 50 replications

I regret = Cell value − Column min
Column max − Column min

All except that of HC is from Dettling’s paper.

Method Colon regret Leukemia regret Prostate regret Max. Regret Rank
Bagboost 16.10 .58 4.08 .59 7.53 0 .59 4
Boosting 19.14 1 5.67 1 8.71 .13 1.00 7.5
RanFor 14.86 .41 1.92 .02 9.00 .41 .41 2
SVM 15.05 .44 1.83 0 7.88 .04 .44 3
PAM ∗ 11.90 0 3.75 .50 16.54 1 1.00 7.5
DLDA 12.86 .13 2.92 .28 14.18 .74 .74 6
KNN 16.38 .62 3.83 .52 10.59 .34 .62 5

HCT-hard 13.77 .26 3.02 .31 9.47 .22 .31 1

∗ Tibshirani et al. posted very different figures.
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Comparison with Popular Classifiers, II

I Datasets ...

I standard in methodological lit. Dettling (2004).
I not selected by/for us

I HCT ...

I extremely simple and extremely fast.
I competitive in misclassification rate

I Other methods

I Require tuning,
I Require cross-validation,
I Internally very complex,
I .... but don’t outperform.

Comparison with simulated data: see DJ (2008, PNAS)
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Rare/Weak Features Model (RW)

I n training samples (Xi ,Yi): Xi ∼ N(Yi · µ, Σ),
Yi = ±1: class lables

I Z -vector: Z ∼ N(
√

n · µ, Σ)

I test feature: X ∼ N(±µ, Σ)

RW model:
I Σ = Ip
I ε = 1

p ·#{j : µj 6= 0}

I
√

n · µj =

{
τ, j-th feature is useful
0, j-th feature is useless

4 key parameters:

p � n, ε ≈ 0, τ small or moderately large
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Idea
DJ (2009, Phil. Trans. Roy. Soc. A)

Definition

I Optimal threshold: minimizes P{misclassified |t }

I Ideal threshold: minimizes a proxy of P{misclassified|t}

I HCT: maximizes HC objective function

I Ideal HCT: maximizes Ideal HC objective function

Key: in a broad situation (including RW Model)

Optima threshold ≈ Ideal threshold ≈ Ideal HCT ≈ HCT
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Insight I, Fisher’s Separation

Linear Classifier score L(X ) = w ′X .

SEP(L;µ) =
(Diff. of mean scores | µ)√

(Variance of scores | µ)
=

w ′µ

‖w‖2

I Clip: Lt(X ) =
∑

sgn(Zj) · 1{|Zj |≥t} · X (j) < > 0

I P{misclassified |t} = Eε,τEZ [Φ̄(SEP(Lt | µ))]

I IF order of “E” and “Φ̄” can be interchanged:

Eε,τEZ [Φ̄(SEP(Lt ;µ))] ≈ Φ̄(S̃EP(t))

where S̃EP(t) = (ELt(µ))/||EVar(Lt(X )|µ)||2

THEN Optimal threshold ≈ Ideal threshold
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Signal Detection Background

Positives: call a training z-score Zi a positive if

|Zi | ≥ t

Positive Rate (PR):

PR(t) ≡ 2(1− ε)Φ̄(t) + εΦ̄(t − τ) + εΦ̄(t + τ)

True Positive Rate (TPR)

TPR(t) = ε · [Φ̄(t − τ) + εΦ̄(t + τ)]

note: both are expected values
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Insight II, Intimacy of SEP and HC

I Neglect stochastic fluctuations, HC reduces to Ideal HC:

H̃C (t; ε, τ) =
ε · [Φ̄(t − τ) + Φ̄(t + τ)− 2Φ̄(t)]√

PR(t)(1− PR(t))

I Ideal Thresholding: maximize

S̃ep(t; ε, τ) =
ε · [Φ̄(t − τ)− Φ̄(t + τ)]√

PR(t)
≈ ε · TPR(t)√

PR(t)

I In RW Model, parameters ε ≈ 0, τ moderate to large, so

H̃C (t; ε, τ) ≈ S̃ep(t; ε, τ) ≈ ε · TPR(t)√
PR(t)

I Optimal threshold ≈ Ideal threshold ≈ Ideal HCT ≈ HCT
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A Surprising Connection to “ROC”

H̃C(t) ≈ S̃EP(t) ≈
ε · TPR(t)√

PR(t)

Taking derivative at maximizing value t:
TPR(t)

PR(t)
= 2×

TPR′(t)

PR′(t)
(twice rule)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Secant Tangent= 2 ×

PR

T
P

R

Jiashun Jin Higher Criticism Thresholding



Asymptotics

Recall RW model:

I training-Z -vector: Z ∼ N(
√
n · µ, Ip)

I test feature: X ∼ N(±µ, Ip)

I
√
n · µj =

{
τ, j-th feature is useful
0, j-th feature is useless

I Four key parameters

p � n, ε ≈ 0, τ small or moderately large

For asymptotic study,

I we link ε, τ, n to p through some parameters

I then let p →∞
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Asymptotic Rare/Weak Model (ARW)

Number of features p grows to ∞
I Linking rarity/weakness to p:

εp = p−β, 0 < β < 1

τp =
√

2r log p, 0 < r < 1

I Linking sample size n to p (3 types of growth):
I (No growth): n is fixed
I (Slow growth): 1� n� pθ, for any θ > 0
I (Regular growth): n = pθ for some θ ∈ (0, 1)
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Sparse Classification Boundary

J (2009, PNAS)

Define

ρ(β) =

 0, 0 < β < 1/2
(β − 1/2), 1/2 ≤ β < 3/4
(1−

√
1− β)2, 3/4 ≤ β < 1

Let

(?) : r =


n

n+1 · ρ(β), no growth
ρ(β), slow growth

(1− θ) · ρ( β
1−θ ), regular growth

Call (?) the classification boundary, which partitions
the β-r plane into Region of Possibility and
Region of Impossibility
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Phase Diagram
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Left: Classification Boundaries. Right: Phase diagram (slow growth)

ε = p−β , τ =
√

2r log p, 0 < β < 1, 0 < r < 1

Jiashun Jin Higher Criticism Thresholding



Region of Impossibility: All Classifiers Fail

I Fix a growth type and fix a point (β, r) in the
corresponding Region of Impossibility

I Consider a sequence of problems
ARW (r , β, np)

I Consider a sequence of classifier training
methods (perhaps also dependent on p)

Theorem 1. The misclassification error rate of the
resulting sequence of trained classifiers → 1/2 with
increasing p.
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Region of Possibility: HCT Classify
Successfully

I Fix a growth type and fix a point (β, r) in the
corresponding Region of Possibility

I Fix a sequence of problems ARW (r , β, np)

I Consider each of the three training classifiers
HCT-clip, HCT-soft, and HCT-hard

Theorem 2. The misclassification error rate → 0
with increasing p
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Phase Diagram (Slow Growth), II
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ε = p−β , τ =
√

2r log p, 0 < β < 1, 0 < r < 1

Note: Phase diagram of “success”/“failure” of HCT coincides with the

“possibility” /“impossibility” phase diagram.
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Comparison with Bayesian Classifier
Threshold (BCT)

Bayesian classifier threshold:

tp =
β + r

2r
τp, (τp : feature strength in training-Z -vector)

I tp: 50% selected features are true features

I τp: 50% chance for a true feature to be selected

I BCT depends on unknown parameters (β, r)

Surprise: Ideal HCT ∼ min{2 · τp, Bayes thresh.}
I elevated threshold by the “twice rule”

I HCT is not monotone in feature strength
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Comparison with Threshold Choice by
Controlling Feature-FDR (FDRT)

For any threshold t,

Feature-FDR(t) =
#{Falsely Selected Features}
#{Total Selected Features}

FDRT:

I fix a tolerance parameter 0 < q < 1 (e.g. q = .05)

I FDRT(q): smallest t such that FDR(t) ≤ q

I similarly, threshold choice by controlling feature-Lfdr, feature-MDR

Challenge: optimal q subtly depends on unknown
parameters (β, r)
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Phase Diagram of FDR/MDR/Lfdr
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ε = p−β , τ =
√

2r log p, 1/2 < β < 1, 0 < r < 1

Three numbers: FDR/MDR/Lfdr

Note “twice rule”: (1 + FDR) = 2× Lfdr
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Comparison with Cross-Validation
Threshold Choice (CVT)

CVT widely used, believed to offer ’optimal threshold’ ... but

I Consistency theory does not apply (n small)

I In simulations at representative n,p,

I CVT highly variable

I CVT computationally much more expensive that HCT

Ex. Shrunken Centroids (Tibshirani et al. (02))

I Soft Thresholding

I CVT threshold selector
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Comparison to Shrunken Centroids (SC)
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p = 104, n = 40;
100 useful features generated from N(τ/

√
n, 1), τ ∈ [1, 3];
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HCT: Finer Asymptotics

ε = p−β, 1/2 < β < 1

τ =
√

2r log p, 0 < r < 1

n = pα

In the success region:

I Bias: max{τ
2
p

n , p−δ1(β,r ,α)}
I Deviation (SD): p−δ2(β,r ,α)

I For appropriately small α,
√

MSE ≈ Bias ∼ τ 2
p/n� SD
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Key Technical Result

Fix (β, r) ∈ (0, 1)2 with r > ρ(β). Let εp = p−β and τp =
√

2r log p.
Suppose n = np satisfies τp/

√
n→ 0 and SEP(t0)/

√
n ≥ 1.

|t0−t∗| ≤ C


√

log p(η0 + SEP−1(t0) + η1(t0)
η0

τ 2
p

n ), Region I,

1√
log p

(η0 + SEP−1(t0) +
τ 2
p

n ), Region II,

1√
log p

(η1 + 1√
pη0

(x−2
0 + η0

η1
+ (τ 2

p /n)2 +
τ 2
p

n ), Region III.

t0 : ideal threshold; t∗: optimal threshold
η0 : Φ̄(t0); η1 : εpΦ̄(t0 − τp); η2 : εpΦ̄(t0 + τp)

x0 :
√
p · (τp/

√
n) · (η1 − η2)/

√
η0 + η1 + η2
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Take-home messages

I New threshold for feature selection when useful features are rare
and weak (RW) in the large-p, small-n setting

I Optimal classification performance

I Very different from fashionable FDRT

I Can replaced CVT with lower cost and better performance

I Competitive on standard real datasets
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Website

www.stat.cmu.edu/̃ jiashun/Research/

Available: DJ (2008, PNAS): definition, heuristics, practical results
J (2009, PNAS): region of possibility/impossibility
DJ (2009, PTRS-A): phase diagram, first order asymptotics

In preparation: full achievability, extensions, second order asymptotics
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