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Abstract. Associate to each subset of the integers its almost sure limiting relative fre-
quency under the Bernouilli random walk, if it has one. The resulting probability space
is purely finitely additive, and uniform in the sense of residue classes and shift-invariance.
However, it is not uniform in the sense of limiting relative frequency.
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1. Finitely Additive Probability

Zellner (1971) was particularly interested in priors that are not proper (see Example 2.2
on p. 20, for instance) following Jeffreys (1961). There are two approaches in the literature
to understand these mathematically. The first, explored by Renyi (1970) and Hartigan
(1983), work directly with integrating measures that are σ-finite, but possibly integrate
to infinity. However, these lack probabalistic intuition, and have been criticized as falling
prey to the marginalization paradox (Dawid et al., 1973).

The second approach is to give up countable additivity and allow probabilities that are
only finitely additive. In this approach, the usual axiom,

If A1, A2, . . . , An are disjoint, then P (∪∞i=1Ai) =
∞∑
i=1

P (Ai) (1)

is replaced by the weaker assumption

If A1, A2, . . . , An are disjoint, then P (∪ni=1Ai) =

n∑
i=1

P (Ai). (2)

DeFinetti (1970, 1974) championed this approach, and showed that both a betting argu-
ment and a method through Brier scoring led to (2), but not (1). Dubins and Savage (1965)
found finite additivity mathematically convenient in their study of the gambling game “red
and black.”

It turns out that even on a simple infinite set like the integers, there is more than one
way to express the idea of a uniform distribution. In particular, Schirokauer and Kadane
(2007), following Kadane and O’Hagan (1995) study three senses of uniformity on the line,
namely
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(1) residue classes: Each residue class mod k has probability 1/k.
(2) shift-invariance: If A has probability p, then A+ 1 and A− 1 (equal, respectively

to {x | x− 1εA} and {x | x+ 1εA}) also have probability p.

(3) relative frequency: If limn→∞
{x|xεA,−n≤A≤n}

2n+1 exists, and equals p, then P (A) = p.

The results of Shirokauer and Kadane show that these are in order of strictness (thus
relative frequency is the most restrictive, and residue classes the least restrictive) and,
by example, that the inclusions are strict. The examples offered to show strict inclusion
are number-theoretic in character, and hence unfamiliar to statisticians, probabalists and
econometricians. The purpose of this note is to give an example that satisfies (1) and (2)
but not (3) above, and is much more familiar.

2. Almost sure limiting relative frequency

Consider an arbitrary discrete stochastic process w on an arbitrary space Ω. Suppose
wiεΩ indexes a countably infinite sequence of w’s. Then a set A is said to have almost
sure limiting relative frequency (aslrf) p just in case ∃NA such that P{NA} = 0, and for
all ω 6∈ NA,

lim
n→∞

n∑
i=1

IA(ωi)/n (3)

exists and equals p.

Proposition 1. Suppose A and B are disjoint sets with aslrf a and b respectively. Then
A ∪B has aslrf a+ b.

Proof: Since A and B have aslrf’s, ∃NA and NB such that P{NA} = P{NB} = 0,
satisfying (3). If we let NA∪B = NA ∪NB, then P{NA∪B} = 0 and ∀ω 6∈ NA∪B,

lim
n→∞

n∑
i=1

IA∪B(ωi)/n

= lim
n→∞

n∑
i=1

(IA(ωi) + IB(ωi))/n [A and B are disjoint]

= lim
n→∞

n∑
i=1

IA(ωi)/n+ lim
n→∞

n∑
i=1

IB(ωi)/n [all summands are non-negative]

= a+ b [by definition]

�
By induction, the same result applies to a finite number of disjoint sets. This proposition
is not special to random walks, but rather applies to every stochastic process.

Let A be the collection of sets A that have a limiting relative frequency, and assign
the limit as the probability measure of set A. Such an assignment satisfies the first two
requirements of a probability measure: P (Ω)−1 and P (A) ≥ for all AεA. By Proposition 1
and its inductive extension, it satisfies finite addivity as well.
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3. Bernouilli Random Walks

Consider now the special stochastic process on the integers defined as follows: Let Xi, i =
1, . . . be identically distributed independent random variables, with

P{Xi = 1} = p and P{X1 = −1} = q = 1− p. (4)

Then Sn =
∑n

i=1 xi is a Bernouilli random walk.
It is well-known that under a Bernouilli random walk each integer has an aslrf of zero

(see e.g. Durrett (1996). However, the disjoint countable union of all integers has aslrf
one. Hence this probability space is not countably additive.

4. Residue Classes

A residue class r mod k consists of all integers s such that s = r+ kn, where 0 ≤ r < k
and n is an integer, or put differently, it is the set of all integers spaced k apart that includes
r. For each k, there are k of these sets, and they are disjoint. The next proposition shows
that under a Bernouilli random walk, each residue class mod k has aslrf 1/k.

Proposition 2. The almost sure limiting relative frequencies of the residue class mod k
of the general (symmetric or asymmetric) Bernoulli random walk on the line exist and are
1/k.

Proof: For k = 1 there is nothing to prove. For k = 2, the random walk is alternatively
even and odd, and hence the residue classes mod 2 have limiting relative frequencies of
1/2. For k > 2, we separate the cases of k even and odd.

First, suppose that k is odd, and consider the Markov Chain where the states are the
residue classes mod k. This Markov chain has transition probability matrix

P =


0 q 0 . . . . . . p
p 0 q 0 . 0 . . . 0
0 p 0 q . . . . . .

p 0 q
q 0 0 p 0

 .

This chain is irreducible, and, because k is odd, aperiodic. Therefore, it has a unique left
eigen-vector associated with the eigenvalue 1. Because the column sums are identically 1,
this eigenvector has the same probability in each co-ordinate. Since there are k of them,
each has probability 1/k. Since the stationary distribution is this eigenvector, the residue
classes mod k almost surely have limiting relative frequency 1/k.

Now we consider the case of k even. Then the chain described above is periodic
with period 2. Consider then the Markov Chain on the even numbered residue classes
0, 2, . . . , (k/2) − 1 generated by two steps of the random walk. This chain has transition
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probability matrix

P ′ =


2pq q2 0 . . . . 0 p2

p2 2pq q2 0 0 0
0 p2 2pq q2

q2 p2 2pq

 .

This chain is irreducible and aperiodic. Furthermore, its column sums are again 1. Thus
by the argument above, its stationary distribution is again uniform, here on k/2 states,
so each has limiting relative frequency, in the two-step process, of 2/k. In the one-step
process the odd numbered steps cannot result in an even number, so the limiting relative
frequency of each of the even numbered residue classes mod k is (1/2)(2/k) = 1/k.

The analysis for the odd numbered cylinder sets 1, 3, . . . , (k/2)− 1 is exactly the same,
with the same two-step matrix P ′. Hence each of them has almost sure limiting relative
frequency 1/k. �

5. Shift invariance

Suppose a set A has aslrf a. The question to be addressed is whether Sy(A) = {x + y |
x ∈ A} also has aslrf a.

Let x be an integer, and let Px be the law of the random walk starting at x. Consider
the function

fA(x) = Px(limn→∞

n∑
k=0

IA(Xk)/n = limn→∞

n∑
k=0

IA(Xk)/n = a).

When A has aslrf a, fA(0) = 1. The function fA(x) satisfies the following equation:

fA(x) =
∑
y

fA(x + y)pt(y) for each finite t (5)

where pt(y) is the probability that the chain moves from x to y in t steps. This equation
holds because the first t steps of the random walk are irrelevant to the aslrf. But this is the
functional equation of the Choquet-Deny Theorem (see, for example, Rao and Shanbhag
(1991)), and warrants the conclusion that fA(x) = fA(x+y) for all y visited by the random
walk starting from x with positive probability. Recalling fA(0) = 1, we have fA(x) = 1 for
all x visited by the random walk starting at 0.

In summary, we have shown:

Proposition 3. For each x visited with positive probability by starting at x0 = 0, if A has
aslrf a, then so does Sx(A).

6. Relative frequency

The set B of positive integers has limiting relative frequency 1/2. When p > 1/2 in (4),
the random walk has positive drift, and B has aslrf equal to 1. Similarly, if p < 1/2, the
drift is negative, and B has aslrf equal to 0. Hence, this random walk violates the relative
frequency sense of uniformity.
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7. Conclusion and Open Questions

Bernouilli random walks offer a familiar example of a process that satisfies the residue
class and shift-invariance senses of uniformity of a finitely-additive probability, but not the
relative-frequency sense. We had hoped that more general random walks on the line, or in
the space of d-tuples of integers might provide an example that satisfied the residue-class
criterion, but not shift-invariance However, this turned out not to be the case. Conse-
quently, the discovery of a simple such example is an open question. More generally,
improving our understanding the mathematics of even the simplest cases of uniform prob-
ability distributions on unbounded spaces is just in its infancy.
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