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Consider a two-class classification problem when the number of
features is much larger than the sample size. The features are masked
by Gaussian noise with zero means and a covariance matrix Σ, where
the precision matrix Ω = Σ−1 is unknown but is presumably sparse.
The useful features, also unknown, are sparse and each contributes
weakly (i.e., rare and weak) to the classification decision.

By obtaining a reasonably good estimate of Ω, we formulate the
setting as a linear regression model. We propose a two-stage clas-
sification method where we first select features by the method of
Innovated Thresholding (IT), and then use the retained features and
Fisher’s LDA for classification. In this approach, a crucial problem is
how to set the threshold of IT. We approach this problem by adapting
the recent innovation of Higher Criticism Thresholding (HCT).

We find that when useful features are rare and weak, the limiting
behavior of HCT is essentially just as good as the limiting behavior
of ideal threshold, the threshold one would choose if the underlying
distribution of the signals is known (if only!). Somewhat surprisingly,
when Ω is sufficiently sparse, its off-diagonal coordinates usually do
not have a major influence over the classification decision.

Compared to recent work in the case where Ω is the identity ma-
trix [15, 16], the current setting is much more general, which needs a
new approach and much more sophisticated analysis. One key com-
ponent of the analysis is the intimate relationship between HCT
and Fisher’s separation. Another key component is the tight large-
deviation bounds for empirical processes associated with data with
sparse but unconventional correlation structure, where the separabil-
ity of sparse graphs plays an important role.

Keywords: Fisher’s LDA, Fisher’s separation, phase diagram, precision ma-
trix, rare and weak model, separability of sparse graphs, sparse graph.

AMS 2000 subject classifications: Primary 62G05; secondary 62G32.

1. Introduction. Consider a two-class classification problem, where
we have n labeled training samples (Xi, Yi), 1 ≤ i ≤ n. Here, Xi are p-
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dimensional feature vectors and Yi ∈ {−1, 1} are the corresponding class
labels. For simplicity, we assume two classes are equally likely, and the data
are centered so that

(1.1) Xi ∼ N(Yi · µ, Σp,p),

where µ is the contrast mean vector between two classes, and Σp,p is the
p× p covariance matrix. Given a fresh feature vector

(1.2) X ∼ N(Y · µ, Σp,p),

the goal is to train (Xi, Yi) to decide whether Y = −1 or Y = 1. We denote
Σ−1
p,p by Ωp,p, and whenever there is no confusion, we drop the subscripts

‘p, p’ (and also that of any estimator of them, say, Ω̂p,p).
We are primarily interested in the so-called ‘p & n’ regime. In many

applications where p & n (e.g., genomics), we observe the following aspects.

• Signals are rare. Due to large p, the useful features (i.e., the nonzero
coordinates of µ) are rare. For example, for a given type of cancer or
disease, there are usually only a small number of relevant features (i.e.,
genes or proteins). When we measure increasingly more features, we
tend to include increasingly more irrelevant ones.

• Signals are individually weak. The training data can be summarized
by the z-vector

(1.3) Z =
1√
n

n∑

i=1

YiXi ∼ N(
√
nµ, Σ).

Due to the small n, signals are weak in that, individually, the nonzero
coordinates of

√
nµ are small or moderately large at most.

• Precision matrix Ω is sparse. Take Genetic Regulatory Network (GRN)
for example. The feature vector X = (X(1), . . . ,X(p))′ represents the
expression level of p different genes, and is approximately distributed
as N(µ,Σ). For any 1 ≤ i ≤ p, it is believed that for all except a few
j, 1 ≤ j ≤ p, the gene pair (i, j) are conditionally independent given
all other genes. In other words, each row of Ω has only a few nonzero
entries and so Ω is sparse [12].

In many applications, Ω is unknown and has to be estimated. In many other
applications such as complicate disease or cancer, decades of biomedical
studies have accumulated huge databases which are sometimes referred to
as “data-for-data” [33]. Such databases can be used to accurately estimate
Ω independently of the data at hand, and so Ω can be assumed as known.
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In this paper, we investigate both the case where Ω is known and the case
where Ω is unknown. In either case, we assume Ω has unit diagonals:

(1.4) Ω(i, i) = 1, 1 ≤ i ≤ p.

Such an assumption is only for simplicity, and we don’t use such information
for inference.

1.1. Fisher’s LDA and modern challenges. Fisher’s linear discriminant
analysis (LDA) [20] is a well-known method for classification, which utilizes
a weighted average of the test features L(X) =

∑p
j=1w(j)X(j), and predicts

Y = ±1 if L(X) >< 0. Here, w = (w(1), . . . , w(p))′ is a preselected weight
vector. Fisher showed that the optimal weight vector satisfies

(1.5) w ∝ Ωµ.

In the classical setting where n & p, µ and Ω can be conveniently estimated
and Fisher’s LDA is approachable. Unfortunately, in the modern regime
where p & n, Fisher’s LDA faces immediate challenges.

• It is challenging to estimate Ω simply because that there are O(p2)
unknown parameters but we have only O(np) different measurements.

• Even when Ω is known and even in the simplest case where Ω = Ip,
challenges remain, as the signals are rare and weak. See [15] for the
delicacy of the problem.

The paper is largely focused on addressing the second challenge, and
shows successful classification can be achieved by simultaneously exploiting
the sparsity of µ (aka. signal sparsity) and the sparsity of Ω (aka. graph
sparsity). For the first challenge, encouraging progresses have been made
recently (e.g., [21, 9]), and the problem is more or less settled. Still, the
paper has a two-fold contribution along this line. First, we show that the
performances of the methods in [21, 9] can be substantially improved if we
add an additional re-fitting step; see details in Section 4. Second, we carefully
analyze how the errors in estimating Ω may affect the classification results.

1.2. Innovated Thresholding. We wish to adapt Fisher’s LDA to the cur-
rent setting. Recall that the optimal choice of weight vector is w ∝ Ωµ. If we
have a reasonably good estimate of Ω (see Section 1.8 for more discussion
on estimating Ω), say, Ω̂, all we need is a good estimate of µ.

When µ is sparse, one usually estimates it with some types of wavelet
thresholding [41]. Let Z be the training z-vector as in (1.3). For some thresh-
old t to be determined, there are three obvious approaches to thresholding:



4 Y. FAN, J. JIN AND Z. YAO

• Brute-force Thresholding (BT). Applying thresholding to Z directly
using the so-called clipping rule [15]: µ̂Z

t (i) = sgn(Z(i))1{|Z(i)| ≥ t}
(alternatively, one may use soft-thresholding or hard thresholding [15],
but the differences are secondary; similar below).

• Whitened Thresholding (WT). We first whiten the noise by the trans-
formation Z *→ Ω̂1/2Z ≈ N(Ω1/2µ, Ip), and then apply the threshold-
ing to the vector Ω̂1/2Z in a similar fashion.

• Innovated Thresholding (IT). We first take the transformation Z *→
Ω̂Z and then apply the thresholding by

(1.6) µ̂Ẑ
t (i) = sgn

(
Ẑ(i)

)
1{|Ẑ(i)| ≥ t)}, where Ẑ ≡ Ω̂Z.

The transformation Z *→ Ω̂Z is connected to the term of Innovation in the
literature of time series [23], and so the name of Innovated Thresholding.
Which of the three approaches is the best?

It turns out IT is the best. To see the point, note that for any p× p non-
singular matrixM , one could always estimate µ by applying the thresholding
toMZ entry-wise (in BT, WT, and IT,M = Ip,Ω1/2, and Ω approximately).
The deal is, what is the best M?

Towards this end, write M = [m1,m2, . . . ,mp]′. For any 1 ≤ i ≤ p, it
is seen that (MZ)(i) ∼ N(

√
nm′

iµ,m
′
iΣmi). Therefore, if we bet on µ(i) .=

0, we should choose mi to optimize the Signal to Noise Ratio (SNR) of
(MZ)(i). By Cauchy-Schwarz inequality, the optimal mi satisfies that mi ∝
Ωµ. Writing Ω = [ω1,ω2, . . . ,ωp], it is seen that

(1.7) Ωµ = µ(i)ωi +
∑

k $=i

µ(k)ωk ≡ (I) + (II).

When we bet on µ(i) .= 0, (I) ∝ ωi which is accessible to us. However, (II)
is a very noisy vector and is inaccessible to us, estimating which is equally
hard as estimating µ itself. The point can be further elaborated as follows:
since we don’t know the locations of other nonzero coordinates of µ, it makes
sense to model {

√
nµ(j) : 1 ≤ j ≤ p, j .= i} as iid samples from

(1.8) (1− εp)ν0 + εpHp, εp > 0: small,

where ν0 is the point mass at 0 and Hp is some distribution with no mass
at 0. Under general “rare and weak” conditions for µ and sparsity condition
for Ω, coordinates of E[(II)] are uniformly small. This suggests that (II) is
generally non-informative in designing the best mi, and all we could utilize
is (I).
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In summary, if we bet on µ(i) .= 0, the optimal choice is mi ∝ ωi. As this
holds for all i and we don’t know where the signals are, the optimal choice
for M is M = Ω. This says that IT is not only the best among the three
choices above, but is also the best choice in more general context.

In the literature of variable selection, IT is also called marginal regression
[22]. The connection is not surprising, as approximately, Ω̂1/2Z ≈ Ω1/2Z ∼
N(

√
nΩ1/2µ, Ip) which is a regression model. Both methods apply thresh-

olding to ΩZ entry-wise, but marginal regression uses the hard thresholding
rule, and IT uses the clipping thresholding rule [15].

With that being said, challenges remain on how to set the threshold t
of IT (see (1.6)). If we set t too small or too large, the resultant estimator

µ̂Ẑ
t has too many or too few nonzeros. Our proposal is to set the threshold

in a data driven fashion by using the recent innovation of Higher Criticism
Thresholding (HCT)

1.3. Threshold choice by Higher Criticism. Higher Criticism (HC) is a
notion mentioned in passing by Tukey [40]. In recent years, HC was found to
be useful in sparse signal detection [14], large-scale multiple testing [2, 7, 42],
goodness-of-fit [29], and was applied to nonGaussian detection in Cosmic
Microwave Background [11] and genomics [25, 35]. HC as a method for
threshold choice in feature selection was first introduced in [15] (see also
[24]), but the study has been focused on the case where Ω is the identity
matrix. The case we consider in the current paper is much more complicated,
where how to use HC for threshold choice is a non-trivial problem.

Our proposal is as follows. Let Ω̂ be a reasonably good estimate of Ω and
let Z be the training z-vector as in (1.3). As in (1.6), denote for short

(1.9) Ẑ = Ẑ(Z, Ω̂, p, n) = Ω̂Z.

The proposed approach contains three simple steps.

• For each 1 ≤ j ≤ p, obtain a p-value by πj = P (|N(0, 1)| ≥ |Ẑ(j)|).
• Sort all the p-values in the ascending order π(1) < π(2) < . . . < π(p).

• Define the HC functional HCp,j =
√
p[j/p− π(j)]/

√
(1− j/p)j/p, 1 ≤

j ≤ p. Let ĵ be the index at which HCp,j takes the maximum. The
Higher Criticism Threshold (HCT)—denoted by |Ẑ(ĵ)|—is defined as

the ĵ-th largest coordinate of (|Ẑ(1)|, . . . , |Ẑ(p)|)′.

Moreover, for stability, we need the following refinement. Define

(1.10) s∗p =
√

2 log(p), s̃∗p,n = s̃∗p,n =
√

2max{0, log(p/n2)}.
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It is well-understood (e.g., [14, 23]) that we should not allow the threshold
to be larger than s∗p. At the same time, we should not allow the threshold
to be too small, especially when n is small. The Higher Criticism Threshold
(HCT) we use in this paper is

(1.11) tHC
p =






|Ẑ(ĵ)|, if s̃∗p,n ≤ |Ẑ(ĵ)| ≤ s∗p,

s̃∗p,n, if |Ẑ(ĵ)| < s̃∗p,n,

s∗p, if |Ẑ(ĵ)| > s∗p.

See Sections 1.5 and 3 for more detailed discussions.

1.4. HCT trained classifier. We are now ready for classification. Let Ω̂

be as above, and let µ̂Ẑ
HC = µ̂Ẑ(Z, Ω̂, p, n) be defined as

(1.12) µ̂Ẑ
HC(j) = sgn(Ẑ(j)) · 1{|Ẑ(j)| ≥ tHC

p }, 1 ≤ j ≤ p.

Compared to µ̂Ẑ
t in (1.6), the only difference is that we have replaced t by

tHC
p . Introduce the HCT classification statistic

(1.13) LHC(X, Ω̂) = LHC(X, Ω̂;Z, p, n) = (µ̂Ẑ
HC)

′Ω̂Z.

The HCT trained classifier (or HCT classifier for short) is then the decision
rule that decides Y = ±1 according to LHC(X, Ω̂) >< 0.

The innovation of the procedure is two-fold: using IT for feature selection
and using HCT for threshold choice in the more complicated case where Ω
is unknown and is non-identity. The work is connected to other works on
HC [23, 15], but the procedure and the delicate theory it entails are new.

A natural question is that whether IT has any advantages over exsiting
variable selection methods (e.g., the Lasso [38], SCAD [19], Dantzig selector
[10]). The answer is yes, for the following reasons. First, compared to these
methods, IT is computationally much faster and much more approachable
for delicate analysis. Second, our goal is classification, not variable selection.
For classification, especially when features are rare and weak, the choice of
different variable selection methods is secondary, while the choice of the
tuning parameter is crucial. The threshold of IT can be conveniently set by
HCT, but how to set the tuning parameter of the Lasso, SCAD, or Dantzig
Selector remains an open problem, at least in theory.

How does the HCT classifier behave? In Sections 1.5-1.6, we set up a
theoretic framework and derive a lower bound for classification errors. In
Sections 1.7–1.8, we investigate the HCT classifier in the case where Ω is
known and in the case where Ω is unknown separately, and show that the
HCT classifier yields optimal phase diagram in classification.
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1.5. Asymptotic Rare and Weak model. Motivated by the application
examples aforementioned, we use a Rare and Weak signal model as follows.
We model the scaled contrast mean vector

√
nµ as

(1.14)
√
nµ(j)

iid∼ (1− εp)ν0 + εpHp, 1 ≤ j ≤ p,

where as in (1.8), ν0 is the point mass at 0, Hp is some distribution with no
mass at 0, and εp ∈ (0, 1) is small (note that (εp,Hp) depend on p but not on
j). We use p as the driving asymptotic parameter, and link (n, εp,Hp) to p
through some fixed parameters. In detail, fixing parameters (β, θ) ∈ (0, 1)2,
we model

(1.15) εp = p−β, n = np = pθ.

As p tends to ∞, the sample size np grows to ∞ but in a slower rate than
that of p; the signals get increasingly sparser but the number of signals tends
to ∞. The interesting range of parameters (β, θ,Hp) partitions into three
regimes, according to the sparsity level.

• Relatively Dense (RD). In this regime, 0 < β < (1 − θ)/2. The sig-
nals are relatively dense and successful classification is possible even
when signals are very faint (e.g., Hp concentrates its mass around a
term τp 0

√
2 log(p)). In such cases, (a) successful feature selection is

impossible as signals are too weak, and (b) feature selection is unnec-
essary for the signals are relatively dense.

• Rare and Weak (RW). In this regime, (1 − θ)/2 < β < (1 − θ),
and the signals are moderately sparse. For successful classification,
we need moderately strong signals (i.e., nonzero coordinates of

√
nµ 1√

log(p)). In this case, feature selection is subtle but could be sub-
stantially helpful. In contrast, classification is impossible if signals are
much weaker than

√
log(p), and feature selection is trivial if signals

are much stronger than
√

log(p).
• Rare and Strong (RS). In this regime, β > (1− θ), and the signals are

very sparse. For successful classification, we need very strong signals
(signal strength &

√
log(p)). In this case, feature selection is compa-

rably easier to carry out (but substantially helpful) since the signals
are strong enough to stand out for themselves.

While the statements hold broadly, the most transparent way to under-
stand them is probably to consider the case where Hp is a point mass at τp
(say): in the above three regimes, the minimum τp required for successful
classification (up to some multi-log(p) factors in the first and last regimes)
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are 1/(εp
√

(p/np)),
√

log(p), and
√
np/(pεp) correspondingly; the proof is

elementary so is omitted.
In summary, feature selection is impossible in the RD regime and is rela-

tively easy in the RS regime. For these reasons, we are primarily interested
in the RW regime where we assume

(1.16) (1− θ)/2 < β < (1− θ).

The RD/RS regimes are further discussed in Section 1.10, where we address
the connection between our work and [18, 8]. For β in this range, the most
interesting range for the signal strength is when Hp concentrates its mass at
the scale of

√
log(p). In light of this, we fix r > 0 and calibrate the signal

strength parameter τp by

(1.17) τp =
√

2r log(p).

Except in Section 1.6 where we address the lower bound arguments, we
assume Hp is a point mass (compare (1.14)):

(1.18) Hp = ντp , where τp =
√

2r log(p) is as in (1.17) and 0 < r < 1.

We focus on the case 0 < r < 1, as the case r > 1 corresponds to RS
regime where the classification is comparably easier. This models a setting
where the signal strengths are equal. The case where the signal strengths
are unequal is discussed in Section 1.10.

Next, we model Ω. Motivated by the previous example on Genetic Regu-
latory Network, we assume each row of Ω has relatively few nonzeros. Such a
matrix naturally induces a sparse graph G = (V,E), where V = {1, 2, . . . , p}
and there is an edge between node i and j if and only if Ω(i, j) .= 0.

Definition 1.1. Fix 1 ≤ Kp ≤ p. We call Ω Kp-sparse if and only if
each row of Ω has at most Kp nonzeros, and we call G Kp-sparse if and only
if the maximum degree ≤ Kp.

The class of Kp-sparse graphs is much broader than the class of banded
graphs (we call G a banded graph with bandwidth K if nodes i and j are
not connected whenever |i− j| > K). In fact, even when G is Kp-sparse with
Kp = 2, we can not always shuffle the nodes of G and make it a banded
graph with a small bandwidth.

Let Mp be the class of all p × p positive definite correlation matrices.
Fixing a ∈ (0, 1), b > 0, and a sequence of integers Kp, introduce

(1.19) M∗
p(a,Kp) = {Ω ∈ Mp and is Kp-sparse, |Ω(i, j)| ≤ a, i .= j},
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and

(1.20) M̃∗
p(a, b,Kp) = {Ω ∈ M∗

p(a,Kp), ‖Ω−1‖ ≤ b},

where ‖ · ‖ is the spectral norm. In comparison, M̃∗
p(a, b,Kp) is slightly

smaller than M∗
p(a,Kp). The following short-hand notation is frequently

used in this paper.

Definition 1.2. We use Lp to denote a strictly positive generic multi-
log(p) term that may vary from occurrence to occurrence but always satisfies
that for any fixed c > 0, limp→∞{Lpp−c} = 0 and limp→∞{Lppc} = ∞.

In this paper, we are primarily interested in the case where Kp is at most
multi-logarithmically large unless stated otherwise:

(1.21) lim
p→∞

Kp = ∞, Kp ≤ Lp;

the first requirement is only for convenience. In our classification setting,
Xi ∼ N(Yiµ,Σ), X ∼ N(Y µ,Σ), and Y = ±1 with equal probabilities. The
following notation is frequently used in the paper.

Definition 1.3. We say the classification problem (1.1)-(1.2) satisfies
the Asymptotic Rare Weak model ARW (β, r, θ,Ω) if (1.14)-(1.15), (1.18),
and (1.21) hold.

1.6. Lower bound. Introduce the the standard phase boundary function

(1.22) ρ(β) =






0, 0 < β ≤ 1/2,
β − 1/2, 1/2 < β < 3/4,
(1−

√
1− β)2, 3/4 ≤ β < 1,

and let

ρ∗θ(β) = (1− θ)ρ(β/(1− θ)), (1− θ)/2 < β < (1− θ).

The function ρ has appeared before in determining phase boundaries in a
seemingly unrelated problem on multiple hypothesis testing [26, 27, 14]. The
following theorem is proved in Section 5.

Theorem 1.1. Fix (β, r, θ) ∈ (0, 1)3 such that (1 − θ)/2 < β < (1 − θ)
and 0 < r < ρ∗θ(β). Suppose (1.14)-(1.15), (1.17), and (1.21) hold and that
for sufficiently large p, Ω ∈ M∗

p(a,Kp) and the support of Hp is contained
in [−τp, τp]. Then as p → ∞, for any sequence of trained classifiers, the
misclassification error ! 1/2.
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Note that in Theorem 1.1, we don’t require the signals to have the same
strengths. Also, recall that in our classification setting (1.1)-(1.2), two classes
are assumed as equally likely; extension to the case where two classes are
unequally likely is straightforward. Theorem 1.1 was discovered before in
[15, 28], but the study has been focused on the case where Ω = Ip and Hp

is the point mass at τp. The proof in the current case is much more difficult
and needs a few tricks, where separability of sparse graphs plays a key role.

Lemma 1.1. Fix a sufficiently large p and 1 ≤ Kp < p and suppose
G = (V,E) is a Kp-sparse graph. There is a constant C > 0 such that the
graph decomposes into at most CKp log(p) different disjoint subsets, where
in each subset, there is no edge between any pair of nodes.

Lemma 1.1 is proved in Section 5. The proof uses pigeon-hole principle
and is elementary, but the result has far-reaching implications. Lemma 1.1
is the corner stone for proving the lower bound and for analyzing the HCT
classifier (where we need tight convergence rate of empirical processes for
data with non-conventional correlation structures).

1.7. HCT achieves optimal phase diagram in classification (Ω is known).
One noteworthy aspect of HCT classifier is that it achieves the optimal phase
diagram. In this section, we show this for the case where Ω is known. In this
case, the HCT classifier LHC(X, Ω̂) reduces to LHC(X,Ω) (the term formed
by replacing Ω̂ by Ω everywhere in the definition of former). The following
theorem is proved in Section 5.

Theorem 1.2. Fix (β, r, θ, a) ∈ (0, 1)4 such that (1− θ)/2 < β < (1− θ)
and r > ρ∗θ(β). Consider a sequence of classification problems ARW (β, r, θ,Ω)

with Ω ∈ M̃∗
p(a, b,Kp) for sufficiently large p. Then as p tends to ∞,

P
(
Y ·LHC(X,Ω) < 0

)
→ 0. When r < β, the condition on Ω can be relaxed

to that of Ω ∈ M∗
p(a,Kp).

Call the two-dimensional space {(β, r) : 0 < β < 1, 0 < r < 1} the
phase space. Theorems 1.1-1.2 say that the phase space partitions into two
separate regions, Region of Impossibility and Region of Possibility, where
the classification problem is distinctly different.

• Region of Impossibility. {(β, r) : (1 − θ)/2 < β < (1 − θ), 0 < r <
ρ∗θ(β)}. Fix (β, r) in the interior of this region and consider a se-
quence of classification problems with p1−β signals where each signal
≤

√
2r log(p) in strength. Then for any sequence of ‘sparse’ Ω, suc-



11

cessful classification is impossible. This is the most difficult case where
not much can be done for classification aside from random guessing.

• Region of Possibility. {(β, r) : (1 − θ)/2 < β < (1 − θ)}, ρ∗θ(β) <
r < 1}. Fix (β, r) in the interior of this region and suppose signals
have equal strength of

√
2r log(p). HCT classifier LHC(X,Ω) yields

successful classification (the results hold much more broadly where
equal signal strength assumption can be largely relaxed).

We call the curve r = ρ∗θ(β) the separating boundary. Somewhat surprisingly,
the separating boundary does not depend on the off-diagonals of Ω. The
partition of phase diagram was discovered by [15, 31], and independently
by [28], but where the focus was on the case where Ω = Ip. See also [24].
The study in the current case is much more difficult. Similar phase diagram
was also found in sparse signal detection [14], variable selection [30], and
spectral clustering [32].

Why HCT works? The key insight is that there is an intimate relationship
between the HC functional and Fisher’s separation; the latter plays a key
role in determining the optimal classification behavior, but is, unfortunately,
an oracle quantity which depends on unknown parameters. In Sections 2–3,
we outline a series of theoretic results, explaining why the HCT classifier is
the right approach and how it achieves the optimality.

1.8. Optimality of HCT classification (Ω is unknown). When Ω is un-
known, we first estimate it with the training data.

Definition 1.4. For any sequence of Ωp,p ∈ M∗
p(a,Kp), we say an esti-

mator Ω̂p,p is acceptable if it is symmetric and independent of the test vector
X, and that there is a constant C > 0 such that for sufficiently large p, Ω̂p,p

is K ′
p-sparse where K

′
p ≤ Lp, and |Ω̂p,p(i, j)−Ωp,p(i, j)| ≤ CK2

p

√
log(p)/

√
np

for all 1 ≤ i, j ≤ p.

Usually, the (Lp/
√
np)-rate can not be improved, even when Ω is diagonal.

For Kp-sparse Ω satisfying (1.21), acceptable estimators can be constructed
based on the recent CLIME approach by [9]. If additionally Ω satisfies the
mutual incoherence condition [34, Assumption 1], then the glasso [21] is
also acceptable, provided the tuning parameters are properly set. If Ω is
banded, then the Bickel and Levina Thresholding (BLT) method [4] is also
acceptable, up to some modifications.

With that being said, the numeric performances of all these estimators can
be improved with an additional step of re-fitting. See Section 4 for details.

Naturally, the estimation error of Ω̂ has some negative effects on the HCT
classifier. Fortunately, for a large fraction of parameters (β, r) in Region of
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Possibility, such effects are negligible and HCT continues to yield successful
classification. In detail, suppose

• Condition (a). r > max{(1 − 2θ)/4, ρ∗θ(β)},
• Condition (b). When 0 < θ ≤ 1/3 and (1 − θ)/2 < β < (1 − 2θ),

|r −
√
1− 2θ| ≥

√
1− 2θ − β.

The following theorem is proved in Section 5.

Theorem 1.3. Fix (β, r, θ, a) ∈ (0, 1)4 such that (1−θ)/2 < β < (1−θ),
and Conditions (a)-(b) hold. Consider a sequence of classification problems

ARW (β, r, θ,Ω) such that Ω ∈ M∗
p(a,Kp) when r < β and Ω ∈ M̃∗

p(a, b,Kp)

when r ≥ β. For the HCT classifier LHC(X, Ω̂), if Ω̂ is acceptable, then as
p tends to ∞, P (Y · LHC(X, Ω̂) < 0) → 0.

We remark that, first, when 0 < θ ≤ 1/4 and (1−θ)/2 < β < 3(1−2θ)/4,
Condition (a) can be relaxed to that of r > max{β/3, ρ∗θ(β)}. Second, when
θ > 1/2, Conditions (a)-(b) automatically hold when r > ρ∗θ(β). As a result,
we have the following corollary, the proof of which is omitted.

Corollary 1.1. When θ > 1/2, Theorem 1.3 holds with Conditions
(a)-(b) replaced by that of r > ρ∗θ(β).

This says that as long as np &
√
p, the estimation errors of any acceptable

estimator Ω̂ have negligible effects over the classification decision.

1.9. Comparison with BT and WT. In disguise, many methods are what
we called ‘Brute-forth Thresholding’ or ‘BT’, including but not limited to
[3, 17, 39]. Since Ω is hard to estimate, Bickel and Levina [3] and Tibshirani
et al [39] neglect the off-diagonals in Σ for classification. In a seemingly dif-
ferent spirit, Efron [17] proposes a procedure where he first selects features
by neglecting the off-diagonals in Σ and then estimates the correlation struc-
tures among selected features. However, under the Rare and Weak model,
selected features tend to be uncorrelated. Therefore, at least for many cases,
the approach fails to exploit the ‘local’ graphic structure of the data and is
‘BT’ in disguise. It is also noteworthy that [39] proposes to set the threshold
of BT by cross validation, which is unstable, especially when np is small.

When we replace IT by either BT or WT in HCT classifier, the phase
diagram associated with the resultant procedure is no longer optimal. While
the claim holds very broadly, it can be conveniently illustrated with a simple
case, where p is even, Ω is known and equals to the block diagonal matrix
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calibrated by a parameter h ∈ (−1, 1) and where for all 1 ≤ i, j ≤ p,

(1.23) Ω(i, j) = 1{i = j}+h·1{j−i = 1, i is odd}+h·1{i−j = 1, i is even}.

In this simple case, we have the following theorem, the proof of which is
elementary so is omitted (a similar claim holds for WT if we replace (1−h2)
by (1 +

√
1− h2)/2 below).

Theorem 1.4. Fix (β, θ, r) ∈ (0, 1)3 such that (1 − θ)/2 < β < (1 − θ)
and ρ∗θ(β) < r < ρ∗θ(β)/(1−h2). Suppose (1.18) and (1.23) hold. As p → ∞,
the classification error of HCT classifier tends to 0, but the HCT classifier
with IT replaced by BT tends to 1/2, even when the threshold is ideally set.

1.10. Comparison with works focused on the RS Regime. In disguise,
many recent works focused on the “Rare and Strong” regime according to
our terminology. One example is [36], where they assume the minimum signal
strength (smallest coordinate in magnitude of

√
npµ) is of the order of

√
np.

Other examples include the ROAD approach by Fan et al. [18] and LPD
approach by Cai et al. [8], where the main results (i.e., [18, Theorem 3], [8,
Theorem 1]) assume a sparsity constraint that can be roughly translated to
β > (1− θ/2) in our notations. Seemingly, this concerns the RS Regime we
mentioned earlier.

Compared to these works, our work focuses on the most challenging
regime where the signals are Rare and Weak, and we need much more so-
phisticated methods for feature selection and for threshold choices.

1.11. Comparison with other popular classifiers. HCT classifier also has
advantages over well-known classifiers such as the Support Vector Machine
(SVM) [6], Random Forest [5], and Boosting [13]. These methods need tuning
parameters and are internally very complicated, but they do not outperform
HCT classifier even when we replace the IT by BT; see details in [15], where
we compared all these methods with three well-known gene microarray data
sets in the context of cancer classification.

HCT is also closely related to PAM [39], but is different in important ways.
First, HCT exploits the correlation structure while PAM does not. Second,
while both methods perform feature selection, PAM sets the threshold by
cross validations (CVT), while HCT sets the threshold by Higher Criticism.
When n is small, CVT is usually unstable. In [15], we have shown that HCT
outperforms CVT when analyzing the three microarray data sets aforemen-
tioned. In Section 4, we further compare HCT with CVT with simulated
data.
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1.12. Summary and possible extensions. We propose HCT classifier for
two-class classification, where the major methodological innovation is the
use of IT for feature selection and the use of HC for threshold choice.

IT is based on an ‘optimal’ linear transform that maximizes SNR in all
signal locations, and has advantages over BT and WT. IT also has a three-
fold advantages over the well-known variable selection methods such as the
Lasso, SCAD, and Dantzig selector: (a) IT is computationally faster, (b) IT
is more approachable in terms of delicate analysis, and (c) the tuning pa-
rameter of IT can be conveniently set, but how to set the tuning parameters
of the other methods remains an open problem.

The idea of using HC for threshold choice goes back to [15], where the
focus is on the case where Ω is known and is the identity matrix (see also
[24]). In this paper, with considerable efforts, we extend the idea to the case
where Ω is unknown but is presumably sparse, and show that HC achieves
the optimal phase diagram in classification. The optimality of HC is not
coincidental, and the underlying reason is the intimate relationship between
the HC functional and Fisher’s separation. This is explained in Section 2-3
with details.

In Theorems 1.2-1.3 and Section 2-3, we assume the signals have the same
signs and strengths. The first assumption is largely for simplicity and can be
removed. The second assumption can be largely relaxed, and both Theorems
1.2-1.3 and the intimate relationship between HC and Fisher’s separation
continue to hold to some extent if the signal strengths are unequal. One
such example is where the signal distribution Hp, after scaled by a factor
of (log(p))−1/2, has a continuous density over a closed interval contained in
(0,∞) which does not depend on p.

In the paper, we also assume Ω (equivalently, the induced graph G =
(V,E)) is K-sparse for a moderately large K, which can also be relaxed.
First, the main results continue to hold if there is an integer M = Mp such
that (a)Mp ≤ Lp, and (b) V partitions intoM different subsets, and any pair
of nodes in the same subset are not connected (but nodes in different subsets
could be connected in an arbitrary way). Second, when Ω have many small
nonzero coordinates, we can always regularize it first with a threshold t > 0:
Ω∗(i, j) = Ω(i, j)1{|Ω(i, j)| ≥ t}, and the main results continue to hold if Ω∗

is K-sparse and the difference between two matrices is ‘sufficiently small’.

1.13. Content. The remaining part of the paper is organized as follows.
In Section 2, we introduce two functionals: Fisher’s separation and ideal HC,
and show that the two functionals are intimately connected to each other. In
Section 3, we derive a large-deviation bound on the empirical cdf, and then
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use it to characterize the stochastic fluctuation of the HC functional and
that of Fisher’s separation. Theorems 1.2-1.3 are proved in the end of this
section. Section 4 contains numeric examples. Section 5 is the proof section,
with proofs for secondary lemmas left to the appendix.

1.14. Notations. In this paper, C > 0 and Lp > 0 denote a generic
constant and a generic multi-log(p) term respectively, which may vary from
occurrence to occurrence. For two positive sequences {ap}∞p=1 and {bp}∞p=1,
we say ap ∼ bp if limp→∞{ap/bp} = 1 and we say ap 1 bp if there is a
constant c0 > 1 such that for sufficiently large p, c−1

0 ≤ ap/bp ≤ c0.
The notations Ω and Σ are always associated with each other by Ω =

Σ−1, and (Xi, Yi) represents a training sample while (X,Y ) represents a
test sample. The summarizing z-vector for the training data set is denoted
by Z, with Z̃ = ΩZ and Ẑ = Ω̂Z, where Ω̂ is some estimate of Ω.

2. Ideal threshold and ideal HCT. In Sections 2-3, we discuss the
behavior of HCT classifier. We limit our discussion to the ARW (β, r, θ,Ω)
model, but the key ideas are valid beyond the ARW model and extensions
are possible; see discussions in Section 1.10.

The key insight behind the HCT methodology is that in a broad context,

HCT ≈ ideal HCT ≈ ideal threshold.

The ideal HCT is the non-stochastic counterpart of HCT, and the ideal
threshold is the threshold one would choose if the underlying signal structure
were known.

In this section, we elaborate the intimate connection between the ideal
HCT and the ideal threshold, and their connections to Fisher’s separation.
We also investigate the performance of ‘ideal classifier’ where we assume Ω
is known and the threshold is set ideally.

The connection between HCT and ideal HCT is addressed in Section 3,
which is new even in the case of Ω = Ip; compare [16]. Theorems 1.2-1.3 are
also proved in Section 3.

2.1. Fisher’s separation and classification heuristics. Fix a threshold t >
0 and let Ω̂ be an acceptable estimator of Ω. We are interested in the classifier
that estimates Y = ±1 according to Lt(X, Ω̂) >< 0, where as in (1.12)-
(1.13),

Lt(X, Ω̂) = (µ̂Ẑ
t )

′Ω̂X with µ̂Ẑ
t (j) = sgn(Ẑ(j))1{|Ẑ(j)| ≥ t}.
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For any fixed p×1 vector Z and p×p positive definite matrix A, we introduce

Mp(t, Z, µ,A) = Mp(t, Z, µ,A;np) = (µ̂Z
t )

′Aµ,

and
Vp(t, Z,A) = Vp(t, Z,A;Ω) = (µ̂Z

t )
′AΩ−1Aµ̂Z

t ,

where loosely, “M” and “V ” stand for the mean and variance, respectively.
In our model, given (µ, Ẑ, Ω̂), the test sample X ∼ N(Y · µ,Ω−1); see (1.2)
and note that Ω̂ is independent of X since it is acceptable. It follows that

Lt(X, Ω̂) ∼ N
(
Y ·Mp(t, Ẑ, µ, Ω̂), Vp(t, Ẑ, Ω̂)

)
,

and the misclassification error rate of Lt(X, Ω̂) is

(2.1) P (Y · Lt(X, Ω̂) < 0|µ, Ẑ, Ω̂) = Φ̄

(
Mp(t, Ẑ, µ, Ω̂)√

Vp(t, Ẑ, Ω̂)

)
,

where Φ̄ = 1− Φ denotes the survival function of N(0, 1).
The right hand side of (2.1) is closely related to the well-known Fisher’s

separation (Sep) [1], which measures the standardized interclass distance
Sep(t, Ẑ, µ, Ω̂) = Sep(t, Ẑ, µ, Ω̂;Ω, p):

(2.2) Sep(t, Ẑ, µ, Ω̂;Ω, p) =
E[Lt(X, Ω̂)|Y = 1]− E[Lt(X, Ω̂))|Y = −1]

SD(Lt(X, Ω̂))
.

In fact, it is seen that Sep(t, Ẑ, µ, Ω̂) = 2Mp(t, Ẑ, µ, Ω̂)/
√

Vp(t, Ẑ, Ω̂), and

(2.1) can be rewritten as

P (Y · Lt(X, Ω̂) < 0|µ, Ẑ, Ω̂) = Φ̄
(1
2
Sep(t, Ẑ, µ, Ω̂)

)
.

By (1.14) and (1.18), the overall misclassification error rate is then

(2.3) P (Y · Lt(X, Ω̂) < 0) = Eεp,τpE

[
Φ̄
(1
2
Sep(t, Ẑ, µ, Ω̂)

)]
,

where E is the expectation with respect to the law of (Ẑ, Ω̂|µ), and Eεp,τp is
the expectation with respect to the law of µ; see (1.14) and (1.18).

We introduce two proxies for Fisher’s separation. Throughout this paper,

(2.4) Z̃ = ΩZ.
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For the first proxy, recall that Ẑ = Ω̂Z (e.g., (1.9)). Heuristically, Ω̂ ≈ Ω
and so Ẑ ≈ Z̃. We expect that Sep(t, Ẑ, µ, Ω̂) ≈ Sep(t, Z̃, µ,Ω); the latter
is Fisher’s separation for the idealized case where Ω is known and is defined
as

(2.5) Sep(t, Z̃, µ,Ω) = 2Mp(t, Z̃, µ,Ω)/
√

Vp(t, Z̃,Ω).

For the second proxy, we note that when p is large, some regularity ap-
pears, and we expect that Mp(t, Z̃, µ,Ω) ≈ mp(t, εp, τp,Ω) and Vp(t, Z̃,Ω) ≈
vp(t, εp, τp,Ω), where
(2.6)

mp(t, εp, τp,Ω) = E[Mp(t, Z̃, µ,Ω)], vp(t, εp, τp,Ω) = E[Vp(t, Z̃,Ω)].

In light of this, a second proxy separation is the population Sep:

S̃ep(t) = S̃ep(t, εp, τp,Ω) = 2mp(t, εp, τp,Ω)/
√

vp(t, εp, τp,Ω).

In summary, we expect to see that

Sep(t, Ẑ, µ, Ω̂) ≈ Sep(t, Z̃, µ,Ω) ≈ S̃ep(t, εp, τp,Ω),

and that

(2.7) P (Y · Lt(X, Ω̂) < 0) ≈ Φ̄
(1
2
S̃ep(t)

)
.

In Section 3, we solidify the above connections. But before we do that, we
study the ideal threshold—the threshold that maximizes S̃ep(t).

2.2. Ideal threshold. Ideally, one would choose t to minimize the clas-
sification error of Lt(X, Ω̂). In light of (2.7), this is almost equivalent to
choosing t as the ideal threshold.

Definition 2.1. The ideal threshold Tideal(εp, τp,Ω) is the maximizing

point of the second proxy: Tideal(εp, τp,Ω) = argmax{0<t<∞}S̃ep(t, εp, τp,Ω).

In general, S̃ep(t, εp, τp,Ω) and Tideal(εp, τp,Ω) may depend on Ω in a
complicated way. Fortunately, it turns out that for large p and all Ω in
M∗

p(a,Kp) (see (1.19)), the leading terms of S̃ep(t) and Tideal(εp, τp,Ω) do
not depend on the off-diagonals of Ω and have rather simple forms.

Definition 2.2. (Folding). Denote Ψτ (t) = P (|N(τ, 1)| ≤ t). When
τ = 0, we drop the subscript and write Ψ(t). Also, denote Ψ̄τ = 1 − Ψτ (t)
and Ψ̄(t) = 1− Ψ(t).
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In detail, let

(2.8) W̃0(t) = W̃0(t, εp, τp;Ψ) = εpΨ̄τp(t)/
√

Ψ̄(t) + εpΨ̄τp(t),

(2.9) t∗p(β, r) = min
{
2,

r + β

2r

}
τp,

and

(2.10) δ(β, r) =






β − r, r ≤ β/3,
(β+r)2

8r , β/3 < r < β,
β/2, β ≤ r < 1.

Elementary calculus shows that for large p,

(2.11) argmax{0≤t<∞}
{
W̃0(t)

}
∼ t∗p(β, r), sup

{0≤t<∞}
W̃0(t) = Lp · p−δ(β,r).

It turns out that there is an intimate relationship between S̃ep(t, εp, τp,Ω)

and W̃0(t, εp, τp), where the latter does not depend on the off-diagonals of
Ω. To see the point, we discuss the cases r < β and r ≥ β separately.

In the first case, for a as in M∗
p(a,Kp), we let

(2.12) c0(β, r, a) = δ(β, r)− δ(β, a2r), c̃0(β, r, a) = c̃1(β, r, a)− δ(β, r),

where if a < 1/3, c̃1(β, r, a) = β, and otherwise,

c̃1(β, r, a) =

{
(3a−1)r
3−a + β, r ≤ 3−a

1+5aβ,
3−a
1+a

(β+r)2

8r , 3−a
1+5aβ < r ≤ β.

The following lemma is proved Section 5.

Lemma 2.1. Fix (β, r, θ, a) ∈ (0, 1)4 such that ρ∗θ(β) < r < β and (1 −
θ)/2 < β < (1− θ). In the ARW (β, r, θ,Ω) model, as p → ∞,

sup
t>0

sup
{Ω∈M∗

p(a,Kp)}

∣∣p
(θ−1)

2 S̃ep(t, εp, τp,Ω)− 2τpW̃0(t, εp, τp)
∣∣ ≤ Lpp

−max{β− r
2 ,

3β+r
4 }

+ Lp
[
p−min{r,β−r

2 ,(1−a)(β−ar)} + p−c0(β,r,a) + p−c̃1(β,r,a)
]

sup
{0<t<∞}

W̃0(t, εp, τp).
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Compared to the left hand side, the right hand side is much smaller and
is negligible. Therefore, approximately, S̃ep(t, εp, τp,Ω) ∝ W̃0(t, εp, τp) for all
Ω ∈ M∗

p(a,Kp). Combining this with (2.11), we expect to have

(2.13) Tideal(εp, τp,Ω) ∼ t∗p(β, r), sup
0<t<∞

S̃ep(t, εp, τp,Ω) = Lpp
1−θ
2

−δ(β,r).

Next, consider the case r ≥ β. The lemma below is proved in Section 5.

Lemma 2.2. Fix (β, r, θ, a) ∈ (0, 1)4 such that r ≥ β and (1 − θ)/2 <
β < (1 − θ). Let ∆1 = d0 log(log(p))/

√
log p and ∆2 = 2

√
log(Kp log p),

where d0 > 0 is some constant. In the ARW (β, r, θ,Ω) model with Ω ∈
M̃∗

p(a, b,Kp), as p → ∞,

(a) sup{0<t<
√

2β log(p)−∆1}
S̃ep(t, εp, τp,Ω) " 5

3τpK
−1
p p(1−θ−β)/2,

(b) sup{t≥τp+∆2} S̃ep(t, εp, τp,Ω) " 5
3τpK

−1
p p(1−θ−β)/2,

(c) 2τpK−1
p p

1−θ−β
2 " sup{

√
2β log p−∆1≤t<τp} S̃ep(t, εp, τp,Ω) ≤ Lpp

1−θ−β
2 .

A direct result of Lemma 2.2 is that, for all Ω ∈ M̃∗
p(a, b,Kp) (see (1.19)),

(2.14)
√

2β log(p) " Tideal "
√

2r log(p), sup
{0<t<∞}

{S̃ep(t)} 1 Lpp
(1−θ−β)/2,

where Tideal = Tideal(εp, τp,Ω) and S̃ep(t) = S̃ep(t, εp, τp,Ω) for short. In

this case, the function S̃ep(t) sharply increases and decreases in the intervals
(0,

√
2β log(p)) and (

√
2r log(p),∞), respectively, but is relatively flat in the

interval (
√

2β log(p),
√

2r log(p)); in this interval, the function reaches the
maximum but varies slowly at the magnitude of O(Lpp(1−θ−β)/2). In the

current case, on one hand, it is not critical to pin down Tideal, as S̃ep(t) =
Lpp(1−θ−β)/2 for all t in the whole interval. On the other hand, it is hard to
pin down Tideal uniformly for all Ω under consideration, if possible at all.

2.3. Ideal HCT. Ideal HCT is a counterpart of HCT and a non-stochastic
threshold that HCT tries to estimate. Introduce a functional which is defined
over all survival functions associated with a positive random variable:

HC(t,G) =
√
p[G(t) − Ψ̄(t)]/

√
G(t)(1 −G(t)), t > 0.

We are primarily interested in thresholds that are neither too small or too
large as far as HCT concerns; see (1.10). In light of this, we introduce the
HCT functional

THC(G) = argmax{Ψ̄−1( 12 )<t<s∗p}
HC(t,G),
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where the term Ψ̄−1(1/2) is chosen for convenience, and can be replaced by
some other positive constants. Recall that Z̃ = ΩZ and Ẑ = Ω̂Z (e.g., (2.4)
and 1.9)). For any t > 0, let

(2.15) F̄p(t) =
1

p

p∑

j=1

1{|Ẑ(j)| ≥ t},

and

(2.16) F̃p(t) =
1

p

p∑

j=1

1{|Z̃(j)| ≥ t}, F̃ (t) = F̃ (t, εp,πp,Ω) = Eεp,πp [F̃p(t)].

Note that the only difference between F̃p(t) and F̃ (t) is the subscript p.

Heuristically, for large p, we expect to have F̄p(t) ≈ F̃p(t) ≈ F̃ (t). As a
result, we expect that

THC(F̄p) ≈ THC(F̃p) ≈ THC(F̃ ),

where THC(F̄p) is the HCT where Ω is unknown and has to be estimated,

THC(F̃p) is the HCT when Ω is known, and THC(F̃ ) is a non-stochastic

counterpart of THC(F̃p).

Definition 2.3. We call THC(F̃ ) the ideal Higher Criticism Threshold
(ideal HCT).

Similarly, the leading term of ideal HCT has a simple form that is easy
to analyze. Fix 1 ≤ j ≤ p. Let Dj = {k : 1 ≤ k ≤ p,Ω(j, k) .= 0}, and let

g1(t) = g1(t;Ω, εp, τp) =
1

p

p∑

j=1

P
(
|Z̃(j)| ≥ t, µ(k) .= 0 for some k ∈ Dj , k .= j

)
.

The following is a counterpart of W̃0(t) defined in (2.8) and can be well
approximated by the latter:

(2.17) W0(t) = W0(t, εp, τp,Ω) =
εpΨ̄τp(t) + g1(t)√

Ψ̄(t) + εpΨ̄τp(t) + g1(t)
.

The following lemmas are proved in Section 5.

Lemma 2.3. Fix (β, r, θ, a) ∈ (0, 1)4 such that r > ρ∗θ(β) and (1−θ)/2 <
β < (1− θ). In the ARW (β, r, θ,Ω) model, as p → ∞,

sup
{t>Ψ̄−1( 12 )}

sup
{Ω∈M∗

p(a,Kp)}
{
∣∣p−1/2HC(t, F̃ )−W0(t, εp, τp,Ω)

∣∣} ≤ Lpp
−β.
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Lemma 2.4. Fix (β, r, θ, a) ∈ (0, 1)4 such that r > ρ∗θ(β) and (1−θ)/2 <
β < (1− θ). In the ARW (β, r, θ,Ω) model, as p → ∞, we have

sup
{t>0}

sup
{Ω∈M∗

p(a,Kp)}

∣∣W0(t, εp, τp,Ω)−W̃0(t, εp, τp)
∣∣ ≤ Lp

[
p−

3β
2 +p−c0(β,r,a) sup

{t>0}
W̃0(t)

]
.

If additionally r ≥ β, then

(a) sup{0≤t<
√

2β log(p)−∆1}
W0(t, εp, τp,Ω) " ( 1√

2
)p−β/2,

(b) sup{τp≤t<∞} W0(t, εp, τp,Ω) " ( 1√
2
)p−β/2,

(c) p−β/2 " sup{
√

2β log(p)−∆1<t<τp}
W0(t, εp, τp,Ω) ≤ Lpp−β/2,

where ∆1 = d0 log log(p)/
√

log(p) is defined in Lemma 2.2.

Lemmas 2.3-2.4 say that, approximately, HC(t, F̃ ) ∝ W0(t), and that two

functions W̃0(t) and W0(t) are generally close.
Together, Lemmas 2.1-2.4 consolidate the intimate relationship between

the ideal threshold and the ideal HCT. To see the point, we discuss the cases
r < β and r ≥ β separately.

For the first case, write Tideal = Tideal(εp, τp,Ω) and S̃ep(t) = S̃ep(t, εp, τp,Ω)
for short as before. The following theorem is proved in Section 5.

Theorem 2.1. Fix (β, r, θ, a) ∈ (0, 1)4 such that ρ∗θ(β) < r < β and
(1−θ)/2 < β < (1−θ). In the ARW (β, r, θ,Ω) model with Ω ∈ M∗

p(a,Kp), as

p → ∞, there is a constant c1 = c1(β, r, a) > 0 such that |THC(F̃ )−Tideal| ≤
Lpp−c1(β,r,a), and so S̃ep(THC(F̃ )) ∼ S̃ep(Tideal) = Lpp(1−θ)/2−δ(β,r).

Consider the second case. Lemmas 2.4 says that
√

2β log(p) " THC(F̃ ) "√
2r log(p). While it is hard to further elaborate how close two ideal thresh-

olds are, in light of (2.14), classification by ideal HCT is at least “sub-
optimal”. The following theorem is proved in Section 5.

Theorem 2.2. Fix (β, r, θ, a) ∈ (0, 1)4 such that r ≥ β and (1− θ)/2 <

β < (1 − θ). In the ARW (β, r, θ, a) model where Ω ∈ M̃∗
p(a, b,Kp), as p →

∞, we have that 2τpK−1
p p(1−θ−β)/2 " S̃ep(THC(F̃ )) ≤ S̃ep(Tideal(εp, τp,Ω)) =

Lpp(1−θ−β)/2.

To conclude this section, we investigate the ‘ideal’ classifier Lt(X,Ω),
where Ω is known to us. Note that for each fixed t, the misclassification
error of Lt(X,Ω) is P (Y ·Lt(X,Ω) < 0) = Eεp,πpE

[
Φ̄(12Sep(t, Z̃, µ,Ω)

]
. The

following theorem is proved in Section 5.
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Theorem 2.3. Fix (β, r, θ, a) ∈ (0, 1)4 such that (1− θ)/2 < β < (1− θ)

and r > ρ∗θ(β). In the ARW (β, r, θ, a) model with Ω ∈ M̃∗
p(a, b,Kp), as

p → ∞,

min
t

P
(
Y · Lt(X,Ω) < 0|t

)
= Φ̄

(
(1 + o(1)) · 1

2
S̃ep

(
Tideal

))
.

When r < β, the condition Ω ∈ M̃∗
p(a, b,Kp) can be relaxed to that of

Ω ∈ M∗
p(a,Kp).

Combining Theorem 2.3 with Theorems 2.1-2.2,

min
t

P
(
Y · Lt(X,Ω) < 0|t

)
= Φ̄

(
h(t) · S̃ep

(
THC(F̃ )

))
,

where h(t) = h(t;β, r, θ, a,Ωp, p) satisfies h(t) = 1/2 + o(1) when r < β

and h(t) = Lp when r ≥ β. Recall that in both cases, S̃ep(Tideal) =

LpS̃ep(THC(F̃ )) = Lpp(1−θ)/2−δ(β,r), where the exponent (1− θ)/2− δ(β, r)
is strictly positive by the assumption of r > ρ∗θ(β). Therefore, if (β, r) fall
in Region of Possibility and if we set t as either of the two ideal thresholds,
then Lt(X,Ω) not only gives successful classification, but the classification
error converges to 0 very fast.

3. Classification by HCT. In the preceding section, we have been fo-
cused on two ideal thresholds. In this section, we study the empirical quan-
tities, and characterize the stochastic fluctuation of HCT and Sep defined
in (2.2). We conclude the section by proving Theorems 1.2-1.3. The main
results in this section are new, even in the idealized case where Ω = Ip.

3.1. Stochastic control on the HC functional. Recall that

HC(t, F̄p) =
√
p[F̄p(t)− Ψ̄(t)]/

√
F̄p(t)(1 − F̄p(t)).

When F̄p(t) = 0, the above is not well-defined, and we modify the definition
slightly by replacing F̄p(t) with 1/p. The change does not affect the proof
of the results. The stochastic fluctuation of HCT comes from that of F̄p(t),
which consists of two components: that of estimating Ω and that of the data.
This is captured in the following triangle inequality (see (2.15)-(2.16)):

|F̄p(t)− F̃ (t)| ≤ |F̃p(t)− F̃ (t)|+ |F̄p(t)− F̃p(t)|.

Consider |F̃p(t)− F̃ (t)| first. The key is to study

√
p
(
F̃p(t)− F̃ (t)

)
/
√

F̃ (t)(1 − F̃ (t)).
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When Ω = Ip, this is the standard uniform stochastic processes [37] and much
is known about its stochastic fluctuation. In the more general case where
Ω .= Ip, it is usually hard to derive a tight bound on the tail probability of
this processes. Fortunately, when Ω is Kp-sparse, tight bounds are possible,
and the key the separability of sparse graphs introduced in Lemma 1.1.

Recall that s∗p =
√

2 log(p) (e.g., (1.10)). The following lemma is the
direct result of Lemma 1.1 and the well-known Bennet’s inequality [37], and
is proved in Section 5.

Lemma 3.1. Fix (β, r, θ, a) ∈ (0, 1)4 and consider an ARW (β, r, θ,Ω)
model with Ω ∈ M∗

p(a,Kp). As p → ∞, there is a constant C > 0 such that
with probability at least 1− o(p−1), for all t satisfying Ψ̄−1(1/2) < t < s∗p,

√
p|F̃p(t)− F̃ (t)|/

√
F̃ (t)(1− F̃ (t)) ≤ CK3

p

(
log(p)

)15/4
.

Next, consider |F̃p(t) − F̄p(t)|. Recall that np = pθ. By definition, if Ω̂ is
an acceptable estimator of Ω, then there is a constant C > 0 such that with
probability at least 1− o(p−1),

(3.1) max
{1≤i,j≤p}

{∣∣Ω̂(i, j) − Ω(i, j)
∣∣} ≤ CK2

p

√
2 log(p) · p−θ/2.

As a result, we have the following lemma, whose proof is straightforward
and thus omitted. Recall that Ẑ = Ω̂Z and Z̃ = ΩZ (e.g., (1.9) and (2.4)).

Lemma 3.2. For any acceptable estimator Ω̂, max{1≤j≤p}
{
|Ẑ(j)−Z̃(j)|

}
≤

CK3
p log(p)p

−θ/2 with probability at least 1− o(1/p).

Write for short ηp = CK3
p log(p)p

−θ/2. By Lemma 3.2, with probability

at least 1 − o(1/p), for all 1 ≤ j ≤ p,
∣∣1{|Ẑ(j)| ≥ t} − 1{|Z̃(j)| ≥ t}

∣∣ ≤
1{t− ηp ≤ |Z̃(j)| ≤ t+ ηp}. As a result,

|F̃p(t)− F̄p(t)| ≤ F̃p(t− ηp)− F̃p(t+ ηp),

where we note that heuristically,

F̃p(t− ηp)− F̃p(t+ ηp) ≈ F̃ (t− ηp)− F̃ (t+ ηp) ≈ 2ηp|F̃ ′(t)|.

Combining these, with probability at least 1− o(1/p), for any t > Ψ̄−1(12),

√
p|F̃p(t)− F̄p(t)|√
F̃ (t)(1 − F̃ (t))

≤ 2
√

2pηp|F̃ ′(t)|/
√

F̃ (t) = 2
√
2p(1−θ)/2|F̃ ′(t)|/

√
F̃ (t).

Recall s∗p =
√

2 log(p). The above heuristic is captured in the following
lemma, which is proved in Section 5.
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Lemma 3.3. Fix (β, r, θ, a) ∈ (0, 1)4. In the ARW (β, r, θ,Ω) model with
Ω ∈ M∗

p(a,Kp), there exists a constant C > 0 such that with probability at

least 1− o(1/p), for all t such that Ψ̄−1(12) < t < s∗p,

√
p|F̄p(t)− F̃p(t)| · [F̃ (t)(1 − F̃ (t))]−1/2 ≤ Lpmax

{
(p(1−θ)F̃ (t))1/2, 1}.

Combining Lemmas 3.1 and 3.3, the following theorem follows directly.

Theorem 3.1. Fix (β, r, θ, a) ∈ (0, 1)4. In the ARW (β, r, θ,Ω) model
with Ω ∈ M∗

p(a,Kp), as p → ∞, with probability at least 1− o(p−1),

∣∣∣HC(t, F̄p)−HC(t, F̃ )
∣∣∣ ≤ Lp[(p

1−θF̃ (t))1/2 + 1], ∀ Ψ̄−1(
1

2
) < t < s∗p.

By Theorem 3.1, in order for |THC(F̄p) − THC(F̃ )| to be small, we must

have that for all t in the vicinity of THC(F̃ ),

Lp[(p
1−θF̃ (t))1/2 + 1] 0 HC(t, F̃ ).

When θ > 1/2, this holds for all (β, r) in Region of Possibility. When θ ≤ 1/2,
this might not hold for all (β, r) in this region, as the estimation error of
Ω̂ is simply too large. This explains why we need to restrict HCT to be no
less than s̃∗p,n as in (1.10). This also explains that why we need Conditions
(a)-(b) in Theorem 1.3, but we don’t need such conditions in Theorem 1.2
and Corollary 1.1.

In the ARW (β, r, θ,Ω) model, np = pθ. Therefore,

s̃∗p,n = sp(θ), if we let sp(θ) =
√

2max{(1− 2θ), 0} log(p);

see (1.10). Accordingly, the HCT defined in (1.11) can be rewritten as

tHC
p =






THC(F̄p), if sp(θ) ≤ THC(F̄p) ≤ s∗p,
sp(θ), if THC(F̄p) < sp(θ),
s∗p, if THC(F̄p) > s∗p.

The main result in this section is as follows.

Theorem 3.2. Fix (β, r, θ, a) ∈ (0, 1)4 such that (1 − θ)/2 < β < 1 − θ
and r > ρ∗θ(β). In the ARW (β, r, θ,Ω) model with Ω ∈ M∗

p(a,Kp),

1) If θ > 1
2 , then as p → ∞, there are positive constants c2 = c2(β, r, a, θ)

and d0 = d0(β, r, a, θ) such that with probability at least 1 − o(1/p),
|tHC
p − Tideal(εp, τp,Ω)| ≤ Lpp−c2 when r < β, and tHC

p ∈ [
√
2β log p−

∆1, τp) when r ≥ β, where ∆1 = d0 log(log(p))/
√

log(p).
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2) If 0 < θ ≤ 1
2 and (β, r, θ) satisfy the conditions in Theorem 1.3, then

with probability at least 1 − o(1/p), |tHC
p − Tideal(εp, τp,Ω)| ≤ Lpp−c3

for some constant c3 = c3(β, r, a) > 0 when r < β, and tHC
p ∈

[
√
2β log p−∆1, τp) for ∆1 = d1 log(log(p))/

√
log p when r ≥ β, where

d1 = d1(β, r, a) > 0 is a constant.

3.2. Stochastic fluctuation of Fisher’s separation. Similarly, the stochas-
tic fluctuation of Sep(t, Ẑ, µ, Ω̂) contains two parts: that from Z̃ = ΩZ, and
that from the estimation Ω̂. In detail,

|Sep(t, Ẑ, µ, Ω̂)− S̃ep(t, εp, τp,Ω)| ≤ 2 · (I + II),

where I = 1
2 |Sep(t, Z̃, µ,Ω) − S̃ep(t, εp, τp,Ω)| and II = 1

2 |Sep(t, Ẑ, µ, Ω̂) −
S̃ep(t, Z̃, µ,Ω)|.

Consider I first. Recall that

Sep(t, Z̃, µ,Ω) = 2Mp(t, Z̃, µ,Ω))/
√

Vp(t, Z̃,Ω).

Heuristically, Mp(t, Z̃, µ,Ω) = mp(t, εp, τp,Ω) + Op(
√

mp(t, εp, τp,Ω)) and

Vp(t, Z̃, µ,Ω) = vp(t, εp, τp,Ω) + Op(
√

vp(t, εp, τp,Ω)); see (2.6). Combining
these with the definitions, we expect that
(3.2)

Sep(t, Z̃, µ,Ω) = S̃ep(t, εp, τp,Ω)
[
1+Op

( 1√
mp(t, εp, τp,Ω)

+
1√

vp(t, εp, τp,Ω)

)]
,

where in the bracket, the second term is much smaller than 1. This is elab-
orated in the following lemma which is proved in Section 5. In detail, let
q(t) = q(t;β, r, θ,Ωp, p) satisfy that q(t) = p(1−θ)/2−max{4β−2r,3β+r}/4 if r < β
and q(t) = 0 if r ≥ β.

Lemma 3.4. Fix (β, r, θ, a) ∈ (0, 1)4 such that r > ρ∗θ(β) and (1−θ)/2 <

β < (1−θ). In the ARW (β, r, θ,Ω) model with Ω ∈ M̃∗
p(a, b,Kp), as p → ∞,

with probability at least 1− o(1/p),

sup
{t>0}

|Sep(t, Z̃, µ,Ω)− S̃ep(t, εp, τp,Ω)| ≤ Lp[q(t) + p−θ/2].

When r < β, the condition on Ω can be relaxed to that of Ω ∈ M∗
p(a,Kp).

Next, we consider II. The following lemma, which is proved in Section 5,
characterizes the order of II.
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Lemma 3.5. Under the same conditions as in Lemma 3.4, as p → ∞,
with probability at least 1 − o(1/p), for all t such that sp(θ) < t < s∗p,

|Sep(t, Ẑ, µ, Ω̂) − Sep(t, Z̃, µ,Ω)| ≤ Lp[p−θ(pF̃ (t))1/2 + q(t) + p−θ/2]. When
r < β, the condition on Ω can be relaxed to that of Ω ∈ M∗

p(a,Kp).

Combining Lemmas 3.4–3.5, we have the following theorem, which is par-
allel to Theorem 3.1 and is proved in Section 5.

Theorem 3.3. Under the same conditions as in Lemma 3.4, as p → ∞,
with probability at least 1− o(p−1), for all t such that sp(θ) < t < s∗p,

∣∣∣Sep(t, Ẑ, µ, Ω̂)− S̃ep(t, εp, τp,Ω)
∣∣∣ ≤ Lp[p

−θ(pF̃ (t))1/2 + p−θ/2 + q(t)].

When r < β, the condition on Ω can be relaxed to that of Ω ∈ M∗
p(a,Kp).

3.3. Proof of Theorems 1.2–1.3. We are now ready to prove Theorems
1.2–1.3, where Ω is assumed as known and unknown, respectively. The proofs
are similar, so we only show Theorem 1.3. Consider LHC(X, Ω̂), where Ω̂ is
an acceptable estimator. The misclassification error is

(3.3) P
(
Y · LHC(X, Ω̂) < 0

)
= Eεp,τpE

[
Φ̄
(1
2
Sep(tHC

p , Ẑ, µ, Ω̂
)]
.

We now prove for the case of r < β and r ≥ β separately.
In the first case, we note that Lp[p−θ(pF̃ (t))1/2 + p−θ/2] ≤ Lpp

min{0, 12−θ}

for sp(θ) < t < s∗p. Write Tideal = Tideal(εp, τp,Ω) and S̃ep(t) = S̃ep(t, εp, τp,Ω)
for short as before. By Theorem 3.3, with probability 1− o(1/p),
(3.4)

|Sep(tHC
p , Ẑ, µ, Ω̂

)
− S̃ep(tHC

p )| ≤ Lp[p
min{0, 12−θ} + p

1−θ
2 −max{β− r

2 ,
3β+r

4 }].

At the same time, by Theorem 3.2, with probability 1−o(1/p), |tHC
p −Tideal|

is algebraically small. Note that S̃ep(t) is a non-stochastic function. By
Taylor expansion and Lemma 2.1,

(3.5) S̃ep(tHC
p ) = (1 + o(1))S̃ep(Tideal) = Lpp

1−θ
2 −δ(β,r),

where δ(β, r) is as in (2.10). By definitions, max{4β−2r, 3β+r}/4 > δ(β, r).
Inserting (3.3)-(3.5) into (3.3) gives

(3.6) P
(
Y · LHC(X, Ω̂) < 0

)
=

(
1 + o(1/p)

)
Φ̄
(
Lpp

1−θ
2 −δ(β,r)

)
+ o(1/p),

and the claim follows since (1− θ)/2− δ(β, r) > 0.
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In the second case,
√
2β log p " tHC

p "
√
2r log p with probability at

least 1−o(1/p). Combining this with Theorem 3.3, with probability at least
1− o(1/p),

(3.7) |Sep(tHC
p , Ẑ, µ, Ω̂

)
− S̃ep(tHC

p )| ≤ Lpp
min{0, 12−θ}.

At the same time, by similar argument as that of the proof of Theorem 2.2,

2τpK
−1
p p(1−θ−β)/2 " S̃ep(tHC

p ) ≤ S̃ep(Tideal) = Lpp
(1−θ−β)/2.

Combining this with (3.3) and (3.7) gives

(3.8) P
(
Y ·LHC(X, Ω̂) < 0

)
= (1+o(1/p))Φ̄

(1
2
Lpp

(1−θ)/2−δ(β,r)
)
+o(1/p),

and the claim follows since 1−θ
2 − δ(β, r) > 0. This proves Theorem 1.3.

We conclude this section by a remark on the convergence rate. At the
end of Section 2, we show that the ‘ideal’ classifier Lt(X,Ω) have very fast
convergence rate with t being either the ideal threshold or the ideal HCT.
In comparison, the convergence rate of LHC(X, Ω̂) is unfortunately much
slower (but is still algebraically fast). To explain this, we note that the rate
of convergence of tHC

p to THC(F̃ ) and the rate of convergence of Ω̂ to Ω are
both algebraically fast; if these convergence rates can be improved, then the
misclassification error rate of LHC(X, Ω̂) can be improved as well.

4. Simulations. We have conducted a small-scale numerical study. The
idea is to select a few sets of representative parameters for experiments, and
compare the performance of HCT classifier (HCT) with three other methods:
ordinary HCT (oHCT), pseudo HCT (pHCT), and CVT. All these methods
are very similar to HCT, except for that (a) in pHCT, we assume Ω is known
to us, (b) in CVT, we set the threshold of IT by a 5-fold cross validation, and
(c) in oHCT, we pretend Σ is diagonal, and estimate Ω accordingly. Note
that CVT reduces to PAM [39] if we do not utilize the correlation structure;
see more discussion in [15].

4.1. Estimating Ω. For some of the procedures, we need to estimate Ω.
We use Bickel and Levina’s Thresholding (BLT) procedure [4]. Alternatively,
one could use the glasso [21] or the CLIME [9]. But since the main goal is to
investigate the performance of HCT, we do not include glasso and CLIME
in the study: if HCT performs well with Ω estimated by BLT, we expect it
to perform even better if Ω is estimated more accurately.

At the same time, each of these methods can be improved numerically
with an additional re-fitting stage. Take the BLT for example. For the train-
ing data {(Xi, Yi)}ni=1, let X̄ = 1

n

∑n
i=1 YiXi, and let Σ̂ = 1

n

∑n
i=1(YiXi −



28 Y. FAN, J. JIN AND Z. YAO

X̄)′(YiXi − X̄) be the empirical covariance matrix. BLT starts by obtaining
an estimate of Σ using thresholding:

(4.1) Σ∗(i, j) = Σ̂(i, j)1{|Σ̂(i, j)| ≥ η}, 1 ≤ i, j ≤ p,

and then estimate Ω by Ω̂∗∗ = (Σ∗)−1. Here, η > 0 is a tuning parameter.
We propose the following refitting stage to improve the estimator. Fix-

ing a tuning parameter ζ > 0, we further improve Ω̂∗∗ via coordinate-wise
thresholding and call the resultant estimator Ω̂∗:

(4.2) Ω̂∗(i, j) = Ω̂∗∗(i, j)1{|Ω̂∗∗(i, j)| ≥ ζ}.

For each 1 ≤ i ≤ p, let Si = {1 ≤ j ≤ p : Ω̂∗(i, j) .= 0}, and let Ai be the
sub-matrix of Σ̂ formed by restricting the rows/columns of Σ̂ to Si. Denote
the final estimate of Ω by Ω̂ = [ω1,ω2, . . . ,ωp]. We define ωi as follows. Write
Si = {j1, j2, . . . , jk}, where k = |Si|. Let ei be the p × 1 vector such that
ei(j) = 1{i = j}, 1 ≤ j ≤ p, and let ξi be the k × 1 vector formed by
restricting the rows of ei to Si. Define ηi = A−1

i ξi. We let ωi(j') = ηi(-),
1 ≤ - ≤ k, and let ωi(j) = 0 if j /∈ Si.

Fig 1. Comparison of classification errors by HCT (solid), oHCT (dashed) and pHCT
(dash-dotted). The x-axis is a, and the y-axis is the classification error (Experiment 1a).

4.2. Numerical experiments. Fix (p, n, εp,Hp,Ω) and an integer m, each
simulation experiment contains the following main steps.

1. Generate a p× 1 vector µ according to (
√
nµ(j))

iid∼ (1− εp)ν0 + εpHp.
2. Generate training data (Xi, Yi), 1 ≤ i ≤ n, by letting Yi = 1 for

i ≤ n/2 and Yi = −1 for i > n/2, and Xi ∼ N(Yi · µ,Ω−1).
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3. Generate m test vectors, each of which has the form of X ∼ N(Y ·
µ,Ω−1), where Y = ±1 with equal probabilities.

4. Use the training data to build all four classifiers, apply them to the
test set, and then record the test errors.

When we need to estimate Ω, we use BLT with the aforementioned refitting
stage. The study contains three different experiments, which we now discuss
separately.

Experiment 1. In this experiment, we compare HCT with oHCT and
pHCT. The experiment contains three sub-experiments 1a, 1b and 1c.

In Experiment 1a, we fix (p, n, εp, τp,m) = (3000, 2000, 0.1, 4, 500), and let
Hp be the point mass at τp. Also, we choose Ω to be the tridiagonal matrix

(4.3) Ω(i, j) = 1{i = j}+ a · 1{|i − j| = 1}, 1 ≤ i, j ≤ p,

where a takes values from {.05, .15, .2, .35, .4, .45}. The results are reported
in Figure 1. The tuning parameter η in (4.1), which varies with the values
of a, n and p, is calculated from trials of comparing (Σ∗)−1 with the true Ω.
The tuning parameter ζ in (4.2), which also varies with the values of a, n
and p, is chosen so that there are only k nonzero coordinates in each row of
Ω̂∗ after thresholding of Ω̂∗∗. We let k = 2, 3 if Ω is tridiagonal and k = 4, 5
if Ω is five-diagonal (see experiments below). In this experiment, η is set
accordingly from {.1, .1, .15, .15, .2, .25} and ζ is from {.05, .1, .1, .2, .25, .3}.
The results suggest that HCT outperforms oHCT, but is slightly inferior to
pHCT since we have to pay a price for estimating Ω. As a increases, the
correlation structure becomes increasingly influential, so the advantage of
HCT over oHCT becomes increasingly prominent (but differences between
HCT and pHCT remain almost the same).

In Experiment 1b, for various (p, n, εp, τp), we choose m = 500 and let Ω
be either of the following tridiagonal matrix or five-diagonal matrix. In the
first case, Ω is a p×p tridiagonal matrix with 1 on the diagonal and a on the
off-diagonal. In the second case, Ω is a p× p five-diagonal matrix with 1 on
the diagonal, a1 on the first off-diagonal, and a2 on the second off-diagonal.
Experiment 1c uses a very similar setting, except that we take Hp as the
uniform distribution over [τp − 0.5, τp + 0.5]. We select ζ and η similarly as
in experiment 1a. The results based on 5 repetitions for Experiment 1b-1c
are reported in Table 1, which suggest that HCT outperforms oHCT and
that pHCT slightly outperforms HCT.

Experiment 2. In this experiment, we compare the pHCT with the CVT
assuming Ω is known (the case Ω is unknown is discussed in Experiment 3).
Experiment 2 contains two sub-experiments, 2a and 2b.
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n = 1000, p = 2000 n = 2000, p = 3000 n = 2000, p = 3000

a = .05, εp = .1, τp = 4 a = .45, εp = .2, τp = 3 a1 = .45, a2 = .2 , εp = .1, τp = 4

oHCT 0.054 0.2616 0.17
pHCT 0.0448 0.058 0.098
HCT 0.052 0.061 0.0992

n = 500, p = 1000 n = 2000, p = 3000 n = 2000, p = 3000

a = .05, εp = 0.1, τp = 4 a = .45, εp = .05, τp = 5 a1 = .35, a2 = .2, εp = .1, τp = 4

oHCT 0.0536 0.2268 0.1332
pHCT 0.046 0.1284 0.0912
HCT 0.0524 0.1344 0.1252

n = 1000, p = 2000 n = 2000, p = 3000 n = 2000, p = 3000
Hp = U(3.5, 4.5) Hp = U(2.5, 3.5) Hp = U(3.5, 4.5)

a = .05, εp = .1 a = .45, εp = .2, τp = 3 a1 = .45, a2 = .2, εp = .1, τp = 4

oHCT 0.052 0.2816 0.1472
pHCT 0.046 0.0704 0.0840
HCT 0.044 0.0716 0.0891

Table 1

Classification errors by HCT, oHCT and pHCT. Ω is tridiagonal (left two columns) or
five-diagonal matrix (right column). Rows 1-2: Experiment 1b. Row 3: Experiment 1c.

In Experiment 2a, we consider 6 different combinations of (p, n, εp, τp)
with m = 500, and let Ω be the tridiagonal matrix as in (4.3) with a = 0.2.
Averages of the selected thresholds and classification errors across different
replications are reported in Table 2. The results suggest that the thresh-
old choices by HC and cross validations are considerably different, with the
former being more accurate and more stable. Note that HCT is also com-
putationally much more efficient than the CVT.

Threshold Error Threshold Error Threshold Error

pHCT 1.9 0.05 2.16 0.002 1.99 0
CVT 2.5 0.08 1 0.018 1 0

pHCT 2.39 0.18 2.06 0.10 2.13 0.02
CVT 1.9 0.224 2.00 0.14 1.1 0.09

Table 2

Comparison of thresholds (Column 2, 4, 6) and classification errors (Column 3,5, 7) by
pHCT and CVT. (p, τp) = (3000, 1.8), and εp = 0.1 (top) and 0.05 (bottom). Left to

right: n = 100, 50, 20 (Experiment 2a).

In Experiment 2b, we set (p, εp,m) = (3000, 0.05, 500), n ∈ {20, 40}, and
let Ω be the same as in Experiment 2a. We let τp range from 1 to 2.5 with an
increment of 0.1. The classification errors by pHCT and CVT are in Figure
2, where a similar conclusion can be drawn as that in Experiment 2a.
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Fig 2. Classification errors of pHCT (solid) and CVT (dashed) for n = 20 (left) and 40
(right) and various τp (x-axis) (Experiment 2b).

Experiment 3. We compare the performance of HCT with CVT for the
case where Ω is unknown and needs to be estimated. Note that for small n
(say, less than 500) we might not have reasonable accuracy on estimating
Ω using BLT. For small p, say 100-300, the CVT is computationally very
slow and it is very likely that the refitting procedure for BLT would not
have decent performance. We take (p, n, εp) = (5, 000, 500, .1) and let Ω be
the block diagonal matrix consisting 10 diagonal blocks, each is a big five-
diagonal matrix C = C500,500(a1, a2), where C(i, j) = 1{i = j} + a1 · 1{|i −
j| = 1}+ a2 · 1{|i − j| = 2}, 1 ≤ i, j ≤ 500, and a1 = .45, a2 = .1. We let τp
range from 1 to 3 with an increment of 0.2. The tuning parameter ζ and η are
set in the similar way as in Experiment 1. The results are reported in Figure
3. Due to high computational cost, we only conduct m = 6 repetitions, so
the results are a bit noisy. Still, it is seen that HCT outperforms CVT.

In summary, for a reasonably large sample size n, HCT outperforms oHCT
and is only slightly inferior to pHCT. The reason we need a relatively large
n is mainly due to that we need to estimate Ω. The relative performance of
pHCT, HCT, and oHCT is intuitive, since pHCT utilizes the true correlation
structure among the features, HCT estimates the correlation structure, while
oHCT ignores it. The comparisons of pHCT with CVT in Experiments 2a-2b
suggest that if Ω is known, then HCT dominates CVT. Experiment 3 shows
that when p is several times larger than n (e.g., 10 times larger), HCT has
smaller classification errors than CVT does, and the precision matrix Ω can
be estimated reasonably well.

For larger p, the advantages of the HCT are even more prominent than
those considered here. We skip the comparisons for larger p due to high
computational cost, which mainly comes from the BLT procedure (we must
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Fig 3. Classification errors by HCT (solid) and CVT (dashed) for various τp (x-
axis)(Experiment 3).

run the algorithm many times to select a good tuning parameter η). In the
future, if we could find a more efficient method for estimating Ω, then HCT
will be both more effective and more convenient to use for large p.

5. Proofs. In this section, we prove all key theorems and lemmas in the
order they appear (except for Theorem 1.2-1.3 which are proved in Section
3.3). Secondary lemmas are proved in Section 6.

5.1. Proof of Theorem 1.1. For short, write n = np. Recall that the train-
ing samples are Xi ∼ N(Yiµ,Ω−1), 1 ≤ i ≤ n, where Yi ∈ {−1, 1} are given.
Consider an (independent) test sample X ∼ N(Y · µ,Ω−1), where Y = ±1
with equal probabilities. Let f±1 be the joint of density of (X1, . . . ,Xn,X)
in the case where Y = 1 and Y = −1, respectively, and let H(f, g) be
the Hellinger distance between two density functions f and g. To show the
claim, it is sufficient to show H(f1, f−1) → 0 as p → ∞, uniformly for all
Ω ∈ M∗

p(a,Kp). Let f0 be the joint density of (X1, . . . ,Xn,X) in the case
where X ∼ N(0,Ω−1) (but the distributions of Xi remain the same). By
triangle inequality and symmetry, H(f1, f−1) ≤ H(f1, f0) + H(f−1, f0) =
2H(f1, f0). Therefore, it is sufficient to show

(5.1) H(f1, f0) → 0.

Since Ω is aKp-sparse correlation matrix, by Lemma 1.1, there is a permu-
tation matrix P and an integer Mp = Mp(Ω,Kp) such that Mp ≤ CKp log(p)
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and

(5.2) PΩP ′ =




Ω̃11 . . . Ω̃1Mp

. . . . . . . . .
Ω̃Mp1 . . . Ω̃MpMp



 ,

where on the diagonal, Ω̃11, . . ., Ω̃MpMp are identity matrices. Since permut-
ing the coordinates of X1,X2, . . . ,X simultaneously does not change the
Hellinger distance H(f1, f0), we assume P = Ip for simplicity.

Now, corresponding to the partition of Ω in (5.2), we partition the mean-
vector µ as µ = ((µ(1))′, . . . , (µ(Mp))′)′. For 0 ≤ m ≤ Mp, let Pm be the
projection matrix such that Pmµ = ((µ(1))′, . . . , (µ(m))′, 0, . . . , 0)′, where
generically, 0 denotes a row vector of zeros, and let f (m) be the joint density
of (X1, . . . ,Xn,X) under the law that Xi ∼ N(Yiµ,Ω−1) for all 1 ≤ i ≤ n
and X ∼ N(Pmµ,Ω−1). Note that f0 = f (0) and f1 = f (Mp), and that by
triangle inequality,

(5.3) H(f (0), f (Mp)) ≤
Mp∑

m=1

H(f (m−1), f (m)).

Recalling Mp ≤ CKp log(p) and Kp ≤ Lp, (5.1) follows by Lemma 5.1
below.

Lemma 5.1. There is a constant c0 = c0(β, r, θ) > 0 such that for any
1 ≤ m ≤ Mp − 1,

(5.4) H(f (m−1), f (m)) ≤ Lpp
−c0 .

5.2. Proof of Lemma 5.1. Denote K = Kp, M = Mp, and n = np for
short. Recall that each of X,X1, . . . ,Xn can be partitioned into M blocks.
We simultaneously swap the first block and the m-th block of X and of
each Xi, but still denote the resultant vectors by X and Xi for notational
simplicity. Denote ν̃ = µ(m), ˜̃ν = ((µ(1))′, . . . , (µ(m−1))′, 0, . . . , 0)′, and ˜̃µ =
((µ(1))′, (µ(2))′, . . . , (µ(m−1))′, (µ(m+1))′, . . . , (µ(M))′)′. After the swaps, f (m)

is the joint density of (X1, . . . ,Xn,X), where the common mean vector of
X1, . . . ,Xn (which we still denote by µ for simplicity) is µ = (ν̃ ′, ˜̃µ′)′, the
mean vector of X is (ν̃ ′, ˜̃ν ′)′, and the common precision matrix (still denote
by Ω for simplicity) of X1, . . . ,Xn,X is

(5.5) Ω =

(
Ik B
B′ D

)
,
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where Ik is a k × k identity matrix with k = k(Ω,m) equals to the size
of the m-th block (before the swaps) and D is a correlation matrix. Sim-
ilarly, f (m−1) is the joint density of (X1, . . . ,Xn,X), where the laws of
X1, . . . ,Xn,X are the same as that of f (m) except for that the mean vector
of X is (0, ˜̃ν ′)′ instead.

Denote for short f0 = f (m−1), f1 = f (m). Since Yi are given, we assume
Yi = 1 for notational simplicity. Consequently, Z = 1√

n

∑n
i=1 YiXi reduces to

Z = 1√
n

∑n
i=1Xi. By definitions and elementary statistics, f0(x1, . . . , xn, x) =

φ(x,Ω)Πn
i=1φ(xi,Ω) · I, and f1(x1, . . . , xn, x) = φ(x,Ω)Πn

i=1φ(xi,Ω) · II,
where

I =

∫
e
√
nµ′Ωz−n

2 µ
′Ωµ+(0,˜̃ν′)Ωx− 1

2
˜̃ν′D ˜̃νdF (µ),

II =

∫
e
√
nµ′Ωz−n

2 µ
′Ωµ+(ν̃′,˜̃ν′)Ωx− 1

2 [‖ν̃‖
2+ν̃′B ˜̃ν+˜̃ν′D ˜̃ν]dF (µ),

and F (µ) denotes the cdf of µ. Here, x and xi are p × 1 vectors, z =
1√
n

∑n
i=1 xi, and φ(x,Ω) is the joint density of N(0,Ω−1). For 1 ≤ i ≤ k, de-

note the i-th row of B in (5.5) by ω′
i. Also, write Ωx = (x̃, ˜̃x)′ and Ωz = (z̃, ˜̃z)′

so that the lengths of x̃ and z̃ are k. Introduce g = g(z̃, ˜̃µ), h = h(z̃, x̃, ˜̃µ, ˜̃ν),
and w = w(˜̃z, ˜̃µ, ˜̃ν) by

g = Πk
i=1

[
(1− εp) + εpe

τp z̃i− 1
2 τ

2
p−

√
nτp(ωi, ˜̃µ)

]
,

hg = Πk
i=1

[
(1− εp) + εpe

τp z̃i+(τp/
√
n)x̃i− 1

2 τ
2
p− 1

2n τ
2
p−

√
nτp(ωi, ˜̃µ)−(τp/

√
n)(ωi,ν̃)

]
,

and
w = e

√
n˜̃µ′ ˜̃z+˜̃µ′ ˜̃z−n

2
˜̃µ′D ˜̃µ− 1

2
˜̃ν′D ˜̃ν .

Here, we have suppressed the expressions of g, h, and w as long as there is
no confusion. Since ν̃ and ˜̃µ are independent, by direct calculations,

I =

∫
e
√
nµ̃′z̃+

√
n˜̃µ′ ˜̃z+˜̃ν′ ˜̃x−n

2 ‖µ̃‖
2−nµ̃′B ˜̃µ−n

2
˜̃µ′D ˜̃µ− 1

2
˜̃ν′D ˜̃νdF (µ̃)dF (˜̃µ)

=

∫ (
Πk

i=1

[
(1− εp) + εpe

τp z̃i− 1
2 τ

2
p−

√
nτp(ωi, ˜̃µ)

])
e
√
n ˜̃µ′ ˜̃z+˜̃µ′ ˜̃z−n

2
˜̃µ′D ˜̃µ− 1

2
˜̃ν′D ˜̃νdF (˜̃µ),

which, by the definitions, implies that I =
∫
gwdF (˜̃µ). Similarly, II =∫

hgwdF (˜̃µ).
Let A(f0, f1) and H(f0, f1) be the Hellinger affinity and the Hellinger

distance between f0 and f1, respectively. It is well-known that there is a
universal constant C > 0 such that

(5.6) |1−A(f0, f1)| ≤ C ·H(f0, f1).
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Let E0 be the expectation under the law that X1, . . . ,Xn,X are iid from
N(0,Ω−1). By Hölder inequality, H(f0, f1) ≤ E0[(

∫
(h−1)gwdF (˜̃µ))2/(

∫
gwdF (˜̃µ))] ≤

E0[
∫
(h− 1)2gwdF (˜̃µ)]. Since E0[

∫
hgwdF (˜̃µ)] = 1 and E0[

∫
gwdF (˜̃µ)] = 1,

it is seen

(5.7) H(f0, f1) ≤ E0[

∫
h2gwdF (˜̃µ)] − 1.

Note that h2g does not depend on ˜̃x and ˜̃z, and that (˜̃x|x̃) is independent
of (˜̃z|z̃) and (˜̃x|x̃) ∼ N(B′x̃,D−B′B), (˜̃z|z̃) ∼ N(B′z̃, D−B′B). It follows
that E

[
w
∣∣(x̃, z̃)

]
= exp(

√
n˜̃µ′B′z̃ − n

2
˜̃µ′B′B ˜̃µ + ˜̃ν ′B′x̃ − 1

2
˜̃ν ′B′B ˜̃ν). Denote

the right hand side by v = v(x̃, z̃, ˜̃µ, ˜̃ν). It follows that E0[
∫
h2gwdF (˜̃µ)] =

E0[
∫
h2gvdF (˜̃µ)]. Combining this with (5.6)-(5.7) gives

(5.8) |1−A(f0, f1)| ≤ C
(
E0[

∫
h2gvdF (˜̃µ)] − 1

)
≡ C(IV − 1).

We now evaluate IV . For simplicity, we assume Hp is a point mass at τp;
the proof for general cases is similar since the support of Hp is contained in
[−τp, τp], but we need to have an extra layer of integral so the expression is
much more cumbersome. Denote for short ai = (1 − εp) and bi = 1 − εp +

εpexp(τpz̃i −
τ2p
2 −

√
nτp(ωi, ˜̃µ)), 1 ≤ i ≤ k. By direct calculations,

(5.9)

IV = E0

[∫
Πk

i=1

(
e
√
n(ωi, ˜̃µ)z̃i−n

2 (ωi, ˜̃µ)2
[
ai + bie

τp√
n
x̃i−

τ2p
2n− τp√

n
(ωi,ν̃)]2

ai + bi
e(

˜̃ν,ωi)x̃i− 1
2 (

˜̃ν,ωi)2
)
dF (˜̃µ)

]
.

Recall that x̃ and z̃ are independent normal vector with Ik as the covariance
matrix. It follows
(5.10)

E0
[
(ai + bie

τp√
n
x̃i− 1

2n τ
2
p−

τp√
n
(ωi,ν̃))2e(ωi,˜̃ν)x̃i− 1

2 (ωi,˜̃ν)2
]
= (ai + bi)

2 + (e
τ2p
n − 1)b2i .

Denote for short
√
n(ωi, ˜̃µ) = diτp. By definitions and direct calculations,

(5.11) E0
[
e
√
n(ωi, ˜̃µ)z̃i−n

2 (ωi, ˜̃µ)2(ai + bi)
]
= 1,

and
(5.12)

E0
[
e
√
n(ωi, ˜̃µ)z̃i−n

2
(ωi, ˜̃µ)2 b2i

ai + bi

]
= ε2pe

τ2p · E
[

e(2+di)τpzi−(2+di)2τ2p/2

(1− εp) + εpe
τpz̃i−

τ2p
2 −biτ2p

]
.
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Inserting (5.10)-(5.12) into (5.9) gives

IV =

∫
Πk

i=1

(
e
√
n(ωi, ˜̃µ)z̃i−n

2 (ωi, ˜̃µ)2
[
ai + bi + (eτ

2
p /n − 1)

b2i
ai + bi

])
dF (˜̃µ)

=

∫
Πk

i=1

[
1 + (e

τ2p
n − 1)ε2pe

τ2pE
[ e(2+di)τpzi−(2+di)2τ2p /2

1− εp + εpe
τp z̃i−

τ2p
2 −biτ2p

]]
dF (˜̃µ).(5.13)

Write
τ2p
n ε2pe

τ2pE
[
e(2τp+di)zi−(2τp+di)2/2/[(1− εp)+ εpe

τp z̃i−
τ2p
2 −diτp ]

]
= Ai+Bi,

where

Ai =

(
τ2p
n
ε2pe

τ2p

)
E

[
e(2τp+bi)zi−(2τp+bi)2/21{z≤tp+bi}

]
=

(
τ2p
n
ε2pe

τ2p

)
Φ(tp−2τp),

Bi =

(
τ2p
n
εp

)
E

[
e(τp+bi)zi−(τp+bi)2/21{z>tp+bi}

]
=

(
τ2p
n
εp

)
Φ̄(tp − τp),

and tp = [(r + β)/(2r)]τp. First, by Mills’ ratio [41], Ai ≤ Lpp−2β+2r−θ.
Second, for Bi, noting that tp/τp > 1 in the range of interest, so Bi ≤
Lpp−(β+r)2/(4r)−θ. By our assumptions, there is a constant c0 = c0(β, r, θ) >

0 such that min{2β − 2r + θ, (β+r)2

4r + θ} ≥ 1 + c0. Combining these gives

(5.14)

(
τ2p
n
ε2pe

τ2p

)
E

[
e(2τp+di)zi−(2τp+di)2/2

1− εp + εpe
τp z̃i−

τ2p
2 −diτp

]
≤ Lpp

−(1+c0).

Inserting (5.14) into (5.13), IV ≤ 1+p−c0 . Inserting this into (5.8) gives the
claim. #

5.3. Proof of Lemma 1.1. We define R0, R1, . . . , RM recursively as fol-
lows: (a) Let R0 = ∅. (b). Given R0, . . . , Rm−1, let Rm ⊂ {1, 2, . . . , p}\(R0∪
. . .∪Rm−1) be the subset the size of which is as large as possible and satisfies
that Ω(k, -) = 0 for any two different indices k ∈ Rm and - ∈ Rm (if there
are more than one such subsets, pick any one). The process is repeated until
no index is left. Clearly, the constructed R1, R2, . . . , RM satisfy the second
claim, and all remains to show is that M ≤ CKp log(p).

For m = 0, 1, . . . ,M , let sm = |Rm|. The key to the proof is that for all
0 ≤ m ≤ M ,

(5.15) sm+1 ≥ max{1, 1

Kp + 1
(p − s0 − s1 − . . .− sm)}.

Since the proofs are similar, we only show the case m = 0. Let R1 =
{i1, i2, . . . , is1}, and Dk = {1 ≤ i ≤ p : i .= ik,Ω(ik, i) .= 0}, 1 ≤ k ≤ s1.
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By the assumption of Kp-sparse, |Dk| ≤ Kp, and so
∣∣R1 ∪

(
∪1≤k≤s1Dk

)∣∣ ≤
|R1|+

∑
1≤k≤s1

∣∣Dk

∣∣ ≤ s1(Kp+1). If (5.15) does not hold, then s1(Kp+1) < p,

and there is an index j∗ /∈ R1 ∪
(
∪1≤k≤s1Dk

)
. Let R∗

1 = {j∗}∪R1. It is seen
that Ω(j, k) = 0 for any j, k ∈ R∗

1 and j .= k, which contradicts with the
definition of R1. This shows that s1(Kp + 1) ≥ p and (5.15) follows.

Next, let m0 ≤ M be the largest indices such that s1 + . . . + sm0 ≤
p−Kp − 1. We claim that for all 1 ≤ m ≤ m0,

(5.16) (s1+s2+ . . .+sm) ≥ p

Kp + 1

m−1∑

j=0

(1− 1

Kp + 1
)j ≡ p[1− (

Kp

Kp + 1
)m].

It suffices to show the first inequality. We show this by mathematical in-
duction. First, by (5.15), this is true for m = 1. Second, if this holds for

m − 1, then (s1 + s2 + . . . sm−1) ≥ p
∑m−1

j=1
Km−1

p

(Kp+1)j . At the same time, by

(5.15), s1 + . . . + sm ≥ (s1 + . . . + sm−1) +
1

Kp+1(p − [s1 + . . . + sm−1]) =
p

Kp+1 + Kp

Kp+1(s1 + . . . + sm−1). Combining these with basic algebra, the
inequality holds for m and the claim follows.

By (5.16), 1 − (Kp/(Kp + 1))m0 ≤ (p − Kp − 1)/p. Therefore, m0 ≤
log( p

Kp+1)/ log(1 + 1
Kp

) ≤ C(Kp + 1) log(p). Also, by the way the sets are
constructed, M ≤ m0 +Kp + 1. Combining these gives the claim. #

5.4. Proof of Lemmas 2.1-2.2. Before we prove these two lemmas, we
need some preparations. Recall that Dj = {k : 1 ≤ k ≤ p,Ω(j, k) .= 0}
for 1 ≤ j ≤ p. Introduce events A0j = {µ(k) = 0, ∀k ∈ Dj}, A1j =
{µ(k) .= 0 for exactly one k ∈ Dj}, and A2j = {µ(k) .= 0 for some k ∈ Dj, k .=
j}. Let µ̃ = Ωµ. It is seen that

• Over the event A0j , µ̃(j) = 0.
• Over the event A1j ∩ {µ(j) .= 0}, √npµ̃(j) =

√
npµ(j) = τp.

• Over the event A1j ∩ {µ(j) = 0}, √np|µ̃(j)| ≤ aτp.

Let h0(t) = h0(t, εp, τp,Ω) = p−1∑p
j=1 P (|Z̃(j)| ≥ t;A0j), h

+
1 (t) = h+1 (t, εp, τp,Ω) =

p−1 ∑p
j=1 P (Z̃(j) ≥ t;A1j∩{µ(j) .= 0}), h−1 (t) = h−1 (t, εp, τp,Ω) = p−1 ∑p

j=1 P (Z̃(j) ≤
−t;A1j ∩ {µ(j) .= 0}), and g2(t) =

√
np

pτp

∑p
j=1E[µ̃(j)sgn(Z̃(j)) · 1{|Z̃(j)| ≥

t}|A2j ]P (A2j). Further, recall that g1(t) = 1
p

∑p
j=1 P (|Z̃(j)| ≥ t, A2j). By

definitions, it follows that
(5.17)
F̃ (t) = h0(t)+h+1 (t)+h−1 (t)+g1(t), mp(t) = n−1/2

p pτp
(
h+1 (t)−h−1 (t)+g2(t)

)
.

Lemma 5.2 below summarizes some basic properties of these quantities, the
proof of which is elementary so we omit it.
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Lemma 5.2. For any t > 0, we have (a) (1−Kpεp)Ψ̄(t) ≤ h0(t) ≤ Ψ̄(t),
(b) (1−Kpεp)εpΦ̄(t− τp) ≤ h+1 (t) ≤ εpΦ̄(t− τp), (1−Kpεp)εpΦ̄(t+ τp) <
h−1 (t) ≤ εpΦ̄(t + τp), (c) 0 < g1(t) ≤ KpεpΨ̄aτp(t) + (Kpεp)2Ψ̄(1+a)τp(t) +
C(Kpεp)3, (d) 0 ≤ g2(t) ≤ Kpg1(t), and (e) (1 −Kpεp)(Ψ̄(t) + εpΨ̄τp(t)) ≤
F̃ (t).

Next, the following lemma is proved in the appendix.

Lemma 5.3. Fix a ∈ (0, 1) and τ > 0. Let (X,Y ) be a bivariate normal
distribution with mean vector (0, τ)′, variance one and correlation ρ. Then
there is a constant C = C(a) > 0 such that for all ρ ∈ [−a, a], P (|X| ≥
t
∣∣|Y | ≥ t) ≤ C(1 + t)exp

(
− (1−a)t2

2(1+a)

)
.

By Lemma 5.3, we have the following lemma which is proved in Section
5.9.

Lemma 5.4. For any t > 0, we can write vp(t) = p
(
F̃ (t) + rem(t)

)
,

where the reminder term rem(t)/F̃ (t) can be bounded from above by

{
Lpp

−min{r,β−r
2 ,(1−a)(β−ar)} + Lp(1 + t) exp

(
− (1−a)t2

2(1+a)

)
, r < β and t ≤ τp + s̃p,

Kp, r ≥ β or t > τp + s̃p,

(5.18)

where s̃p =
√

max{2(β − r), (β + r)} log p. Moreover, when r < β and t ≤
τp+ s̃p, we have vp(t)/(pF̃ (t)) ≥ 1− o(1). In addition, if the smallest eigen-

value of Ω is bounded from below by b > 0, then vp(t)/[pF̃ (t)] ≥ b.

Recall that in (2.17) and (2.8), we defined W0(t) and its proxy W̃0(t),
respectively. Define a(t) =

√
p(W0(t))−1[h+1 (t) + h−1 (t) + g1(t)](vp(t))−1/2

and S1(t) = (vp(t))−1/2[
√
p(g2(t)− g1(t)− 2h−1 (t))]. Then S̃ep(t, εp, τp,Ω) =

2τp
√

p/np[a(t)W0(t) + S1(t)]. The following two lemmas are proved in Sec-
tion 5.7 and 5.8.

Lemma 5.5. Fix (β, r) ∈ (0, 1)2 and Ω ∈ M∗
p(a,Kp). Then

(5.19)

sup
{0<t≤τp+s̃p}

|S1(t)| ≤ Lp
(
p−3β/2 + p−(β+r)

)
+ Lpp

−c0(β,r,a) sup
{0<t<∞}

W̃0(t),

where c0(β, r, a) is defined in (2.12) and s̃p is defined in Lemma 5.4. If in

addition Ω ∈ M̃∗
p(a, b,Kp), then the above inequality holds with the left hand

side replaced with sup{t>0} |S1(t)|.
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Also, if r < β and t ≤ τp+s̃p, then |a(t)−1| ≤ Lpp
−min{r,β−r

2 ,(1−a)(β−ar)}+

Lp(1+t) exp
(
− (1−a)t2

2(1+a)

)
; and if in addition Ω ∈ M̃∗

p(a, b,Kp), then K−1/2
p "

a(t) " b−1/2.

Lemma 5.6. Fix (r,β) ∈ (0, 1)2. Then

sup
{t>0}

|W0(t)− W̃0(t)| ≤ Lpp
−3β/2 + 2 sup

{t>0}

KpεpΨ̄aτp(t)√
Ψ̄(t) +KpεpΨ̄aτp(t)

(5.20)

= Lpp
−3β/2 + Lpp

−c0(β,r,a) sup
{t>0}

W̃0(t),

where c0(β, r, a) is defined in (2.12).

We now prove Lemma 2.1 and Lemma 2.2 separately.

5.5. Proof of Lemma 2.1. Write for short S̃ep(t) = S̃ep(t, εp, τp,Ω). We
consider the two cases 1) t > τp + s̃p and 2) t ≤ τp + s̃p separately, where s̃p
is as in Lemma 5.4.

First consider case 1). We will show that (1a) S̃ep(t) ≤ Lpp
1−θ
2 −max{β− 1

2 r,
3β+r

4 }

and (1b) W̃0(t) ≤ Lpp
−max{β− 1

2 r,
3β+r

4 }. Then combining (1a) and (1b) com-
pletes the proof of the lemma in case 1). We now proceed to prove (1a) and

(1b). The result (1b) follows immediately from the definition of W̃0(t) and

the inequalities W̃0(t) ≤
√
εpΨ̄τp(t) ≤ Lpp−max{4β−2r,3β+r}/4. It remains to

prove (1a). Let η be a p × 1 vector such that η(j) = 1{(Ωµ̂Z̃
t )(j) .= 0},

1 ≤ j ≤ p. Also, for any p × 1 vectors x and y, let x ◦ y be the p × 1 vec-
tor such that (x ◦ y)(j) = x(j)y(j), 1 ≤ j ≤ p. By definition, it is seen that

mp(t) = E[M̃p(t)] = E[(µ̂Z̃
t )

′Ωµ] = E[(µ̂Z̃
t )

′Ω(µ◦η)]. Using Cauchy-Schwartz
inequality, mp(t) ≤

(
E[(µ̂Z̃

t )
′Ωµ̂Z̃

t ]
)1/2(

E[(µ ◦ η)′Ω(µ ◦ η)]
)1/2

. Recalling that

vp(t) = E[Ṽp(t)] = E[(µ̂Z̃
t )

′Ωµ̂Z̃
t ], it follows that

(5.21) |S̃ep(t)| = 2mp(t)(vp(t))
−1/2 ≤ 2

(
E[(µ ◦ η)′Ω(µ ◦ η)]

)1/2
.

Since the largest eigenvalue of Ω is no greater than Kp, the last term above

≤ 2K1/2
p (E‖µ◦η‖2)1/2 and so |S̃ep(t)| ≤ 2K1/2

p (E‖µ◦η‖2)1/2. It remains to
study E‖µ ◦ η‖2. By definition,

E‖µ ◦ η‖2 =
p∑

i=1

τ2p
np

P (µ(i) .= 0, (Ωµ̂Z̃
t )(i) .= 0) ≤

τ2p
np

p∑

i=1

∑

j∈Di

P (µ(i) .= 0, µ̂Z̃
t (j) .= 0)

=
τ2p
np

p∑

i=1

∑

j∈Di

P (µ(i) .= 0, |Z̃(j)| ≥ t) ≤ Lpp
1−θ(εpΨ̄τp(t) + εpΨ̄aτp(t) + CKpε

2
p).
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Since we consider the range t > τp + s̃p, the above expectation can be
bounded as E‖µ ◦ η‖2 ≤ Lpp1−θ−max{4β−2r,3β+r}/2. Inserting this into (5.21)
we complete the proof of (1a).

Now we consider the case 2). Recall that S̃ep(t) = 2τp
√

p/np[a(t)W0(t)+
S1(t)]. Noting that np = pθ, the key is to show

sup
{0<t≤τp+s̃p}

∣∣∣(2τp)−1p(θ−1)/2S̃ep(t)−W0(t)
∣∣∣ ≤ Lpp

−3β/2 + Lpp
−β−r

(5.22)

+ Lp

(
p−min{r,β−r

2 ,(1−a)(β−ar)} + p−c0(β,r,a) + p−c̃1(β,r,a)
)

sup
{t>0}

W̃0(t)
)
.

In fact, once this is proved, the claim follows by using Lemma 5.6.
We now show (5.22). By Lemma 5.5,

sup{0<t≤τp+s̃p} |p
(θ−1)/2(2τp)

−1S̃ep(t)−W0(t)|(5.23)

≤ sup{0<t≤τp+s̃p} |a(t)− 1|W0(t) + sup{0<t≤τp+s̃p} |S1(t)|.

The second term on the right was studied in Lemma 5.5 inequality (5.19).
We now study the first term on the right. By lemma 5.5,

(5.24) sup{0<t≤τp+s̃p} |a(t)− 1|W0(t) ≤ sup{t≥0} I1(t) + sup{t≥0} I2(t),

where I1(t) = Lp
(
p−min{r,β−r

2 ,(1−a)(β−ar)} + C(1 + t) exp(− 1−a
2(1+a) t

2)
)
W̃0(t),

and I2(t) = Lp|W0(t)− W̃0(t)|.
Consider I2(t) first. By Lemma 5.6 and Lemma 5.5,

(5.25) sup{t≥0} I2(t) ≤ Lp

(
p−3β/2 + p−c0(β,r,a) sup{0<t<∞} W̃0(t)

)
.

Consider I1(t) next. Write I1(t) = I1a(t) + I1b(t), where I1a(t) = Lp·
p−min{r,β−r

2
,(1−a)(β−ar)}W̃0(t) and I1b(t) = Lp(1 + t) exp(− 1−a

2(1+a) t
2)W̃0(t).

We first study I1b(t). By definitions and elementary algebra,

sup
{0<t<∞}

{(1 + t)exp(− (1− a)

2(1 + a)
t2)W̃0(t)} = Lpp

−c̃1(β,r,a) sup
{0<t<∞}

W̃0(t),

where c̃1(β, r, a) is defined in (2.12). Combining these results and comparing
terms yields

(5.26) sup
t>0

I1(t) ≤ Lp

(
p−min{r,β−r

2 ,(1−a)(β−ar)} +p−c̃1(β,r,a)
)

sup
{0<t<∞}

W̃0(t).
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Combing (5.26) and (5.25) with (5.24) yields

sup
{0<t≤τp+s̃p}

|a(t)− 1|W0(t) ≤ Lpp
−3β/2

+
(
p−min{r,β−r

2 ,(1−a)(β−ar)} + p−c0(β,r,a) + p−c̃1(β,r,a)
)

sup
{0<t<∞}

W̃0(t).

Inserting this and (5.19) into (5.23) completes the proof of the lemma when
t ≤ τp + s̃p. #

5.6. Proof of Lemma 2.2. First, we consider (a)-(b). By Lemma 5.5,

(2τp)−1
√

np/pS̃ep(t) ≤ b−1/2W0(t)+S1(t), where W0(t) is defined in (2.17),
and S1(t) is as in Lemma 5.5. The key is to prove that there is a constant
d0 > 0 such that for any fixed t satisfying either 0 ≤ t ≤

√
2β log p −

d0 log log p/
√
log p or t > τp + 2

√
log(Kp log p),

(5.27) W0(t) "
2
√

bεp
3Kp

, S1(t) "
√

bεp
3Kp(log p)

.

In fact, once these are proved, then

(5.28) S̃ep(t) ≤ 2τpp
(1−θ)/2[b−1/2W0(t) + S1(t)] "

5

3
τpK

−1
p p(1−θ−β)/2,

and parts (a)-(b) of the lemma follow.
We now show (5.27). Recall that by the proof of Lemmas 5.5-5.6,

|S1(t)| ≤ Lp(p
−3β/2 + p−β−r) +

CKpεpΨ̄aτp(t)√
Ψ̄(t) +KpεpΨ̄aτp(t)

,(5.29)

0 < W0(t)− W̃0(t) ≤ Lpp
−3β/2 +

CKpεpΨ̄aτp(t)√
Ψ̄(t) +KpεpΨ̄aτp(t)

;(5.30)

note that the last terms in the above two inequalities are the same. We
now consider the case t ≤

√
2β log p − d0 log log p/

√
log p and the case t >

τp + 2
√

log(Kp log p) separately.
In the first case, by Mills’s ratio [41], with the constant d0 > 0 being

appropriately chosen, Ψ̄(t)+KpεpΨ̄aτp(t) ≥ 9C2b−1K4
p(log p)

2εp and Ψ̄(t)+
εpΨ̄τp(t) ≥ 9b−1K2

pεp. As a result,

CKpεpΨ̄aτp(t)√
Ψ̄(t) +KpεpΨ̄aτp(t)

≤
√

bεp
3Kp log p

, W̃0(t) =
εpΨ̄τp(t)√

Ψ̄(t) + εpΨ̄τp(t)
≤

√
bεp

3Kp
.



42 Y. FAN, J. JIN AND Z. YAO

Inserting these into (5.29) and (5.30), the claim follows by noting that εp =
p−β.

Consider the second case. In this case, εpΨ̄aτp(t) = o(εpp−(1−a)2r). Thus,

KpεpΨ̄aτp(t)√
Ψ̄(t) +KpεpΨ̄aτp(t)

≤
√

KpεpΨ̄aτp(t) = o(K−1
p (log p)−1√εp),

and

W̃0(t) =
εpΨ̄τp(t)√

Ψ̄(t) + εpΨ̄τp(t)
≤

√
εpΨ̄τp(t) "

√
bεp/(3Kp).

Inserting these into (5.29) and (5.30) proves (5.27), the claim follows by
similar reasons.

Next, consider (c). Write for short sp =
√
2β log p − d0 log log p/

√
log p.

Since the eigenvalue of Ω is bounded from above byKp, by definition we have

vp(t) ≤ KppF̃ (t). Thus, S̃ep(t) = 2mp(t)/
√

vp(t) ≥ 2K−1/2
p mp(t)/

√
pF̃ (t).

By definitions in (5.17) and Lemma 5.2 we can further obtain that

S̃ep(t) ≥ 2τpp
1−θ
2 (h+1 (t)− h−1 (t))√

KpF̃ (t)
≥ 2τpp

1−θ
2 [(1−Kpεp)εpΦ̄(t− τp)− εpΦ̄(t+ τp)]√

Kp
(
Ψ̄(t) + εpΨ̄τp(t) +KpεpΨ̄aτp(t) + C(Kpεp)2

) .

When sp ≤ t ≤ τp, the numerator above ∼ 2τpp
1−θ
2 −β, and the denomina-

tor above ≤ Kpp
−β

2 . Thus, S̃ep(t) ≥ 2τpK−1
p p(1−θ−β)/2. On the other hand,

recall that supt>0 W̃0(t) = Lpp−β/2 when r ≥ β, which together with Lem-
mas 5.5-5.6 ensures supt>0 W0(t) ≤ Lpp−β/2 and supt>0 S1(t) ≤ Lpp−β/2.

Since (2τp)−1
√

np/pS̃ep(t) ≤ b−1/2W0(t) + S1(t), combining these entails

S̃ep(t) ≤ Lpp(1−θ−β)/2. This completes the proof of part (c). #

5.7. Proof of Lemma 5.6. Recall thatW0(t) =
εpΨ̄τp(t)+g1(t)√

Ψ̄(t)+εpΨ̄τp(t)+g1(t)
, where

g1(t) is as in Lemma 5.2. We will compare W0(t) with W̃0(t) defined in (2.8).
On one hand, since (A + x)/

√
B + x is an increasing function of x when

0 ≤ A < B, it is seen that W0(t) ≥ W̃0(t). On the other hand, writing for
short b(t) = KpεpΨ̄aτp(t)+(Kpεp)2Ψ̄(1+a)τp(t), it follows from Lemma 5.2(c)



43

that

W0(t) ≤
εpΨ̄τp(t) + b(t) + CK3

pε
3
p√

Ψ̄(t) + εpΨ̄τp(t) + b(t) +CK3
pε

3
p

(5.31)

≤ W̃0(t) + CK3/2
p p−3β/2 +

KpεpΨ̄aτp(t)√
Ψ̄(t) +KpεpΨ̄aτp(t)

+
K2

pε
2
pΨ̄(1+a)τp(t)√

εpΨ̄τp(t) + b(t)
.

Combining these and recalling εp = p−β, we have

sup
0<t<∞

|W0(t)− W̃0(t)| ≤ Lpp
−3β/2 + I + II,

where

I = sup
0<t<∞

KpεpΨ̄aτp(t)√
Ψ̄(t) +KpεpΨ̄aτp(t)

, II = sup
0<t<∞

K2
pε

2
pΨ̄(1+a)τp(t)√

εpΨ̄τp(t) + b(t)
.

To show the first inequality of claim, it is sufficient to show
(5.32)

II ≤ Lpp
−3β/2+Lpp

−β/2 sup
0<t<∞

KpεpΨ̄aτp(t)√
Ψ̄(t) +KpεpΨ̄aτp(t)

≡ Lpp
−3β/2+Lpp

−β/2·I.

Towards this end, we write II ≤ IIa + IIb, where IIa and IIb are the

supremum of K2
pε

2
pΨ̄(1+a)τp(t)/

√
εpΨ̄τp(t) + b(t) over the intervals 0 < t < τp

and τp ≤ t < ∞, respectively. Consider IIa. When 0 ≤ t ≤ τp, Ψ̄τp(t) ≥

1/2, and so IIa ≤ K2
p ε

2
p sup{0<t<τp}

Ψ̄(1+a)τp(t)√
εpΨ̄τp(t)

≤ Lpε
3/2
p . Consider IIb. By

definitions and change-of-variable, and recalling εp = p−β,

IIb ≤ sup
{τp≤t<∞}

K2
pε

2
pΨ̄(1+a)τp(t)√

εpΨ̄τp(t) +K2
pε

2
pΨ̄(1+a)τp(t)

= sup
{0≤t<∞}

K2
pε

3/2
p Ψ̄aτp(t)√

Ψ̄(t) +K2
pεpΨ̄aτp(t)

≤ Lpε
1/2
p · I = Lpp

−β/2 · I.

Combining these proves (5.32). Consequently, the first inequality of the claim
follows.

To show the second inequality in the claim, we use similar calculations as
in [16] and get

sup
{0≤t<∞}

{
W̃0(t)

}
= Lpp

−δ(r,β), I = Lpp
−δ(a2r,β) ≡ Lpp

−c0(β,r,a) sup
0<t<∞

W̃0(t),

where we have used c0(r,β, a) = δ(r,β) − δ(a2r,β) as in (2.10). #
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5.8. Proof of Lemma 5.5. Consider the first claim. By Lemma 5.2 (part
(d)), |g2(t)| ≤ Kpg1(t). So by definitions,

(5.33) |S1(t)| ≤ (Kp + 1)

√
pg1(t)√
vp(t)

+
2
√
ph−1 (t)√
vp(t)

≡ (Kp + 1)B0(t) +B1(t).

Consider B0(t) first. Rewrite B0(t) = [g1(t)/
√

F̃ (t)]
√

pF̃ (t)/vp(t). Note

that when r < β and t ≤ τp + s̃p, pF̃ (t)/vp(t) " 1, and when r ≥ β

and Ω ∈ M̃∗(a, b,Kp), by the last claim of Lemma 5.4, pF̃ (t)/vp(t) ≤ b−1.

This says that pF̃ (t)/vp(t) ≤ C for some generic constant C > 0 and so

B0(t) ≤ Cg1(t)/
√

F̃ (t). At the same time, by definitions and Lemma 5.2,

F̃ (t) = h0(t) + h+1 (t) + h−1 (t) + g1(t) ≥ (1 −Kpεp)[Ψ̄(t) + εpΨ̄τp(t)] + g1(t),
so we have

B0(t) ≤ Cg1(t)/
√

Ψ̄(t) + εpΨ̄τp(t) + g1(t).

Finally, using Lemma 5.2 and noting that x/
√
A+ x is an increasing function

in x ∈ (0,∞) for any number A > 0, we obtain

B0(t) ≤
C
(
KpεpΨ̄aτp(t) + (Kpεp)2Ψ̄(1+a)τp(t) + (Kpεp)3

)
√

Ψ̄(t) + εpΨ̄τp(t) +KpεpΨ̄aτp(t) + (Kpεp)2Ψ̄(1+a)τp(t) + (Kpεp)3
.

where the right hand side ≤ I + II + C(Kpεp)3/2, with

I =
CKpεpΨ̄aτp(t)√

Ψ̄(t) +KpεpΨ̄aτp(t)
, II =

C(Kpεp)2Ψ̄(1+a)τp(t)√
εpΨ̄τp(t) +KpεpΨ̄aτp(t) + (Kpεp)2Ψ̄(1+a)τp(t)

.

The above two terms have been considered in Lemma 5.6 (see the last two
terms of (5.31)). Using the results over there we can show that

(5.34) sup
{0<t≤s̃p}

B0(t) ≤ Lpp
−3β/2 + Lpp

−c0(β,r,a) sup
{0<t<∞}

W̃0(t).

Next we considerB1(t). Write B1(t) = 2·[(pF̃ (t)/vp(t))1/2]·[h−1 (t)(F̃ (t))−1/2].

We have just proved pF̃ (t)/vp(t) ≤ C when r ≥ β or 0 < t ≤ τp + s̃p
with C > 0 some generic constant. At the same time, using (5.17) and
parts (a)-(b) of Lemma 5.2, first, h−1 (t) ≤ εpΦ̄(t + τp), and second, F̃ (t) ≥
h0(t) + h+1 (t) + h−1 (t) ≥ (1−Kpεp)[Ψ̄(t) + εpΨ̄τp(t)]. Combining these gives

h−1 (t)(F̃ (t))−1/2 ≤ CεpΦ̄(t + τp)/
√

Ψ̄(t) + εpΨ̄τp(t). It follows that B1(t) ≤
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CεpΦ̄(t+τp)/
√

Ψ̄(t) + εpΨ̄τp(t). This together with direct calculations yields

(5.35) sup
0<t≤s̃p

B1(t) ≤ Cεp sup
0<t<∞

Φ̄(t+ τp)√
Ψ̄(t) + εpΨ̄τp(t)

= Cp−(β+r).

Inserting (5.34) and (5.35) into (5.33) completes the proof.
Consider the last two claims. Write a(t) = A1 ·A2 · A3, where

A1 =
h+1 (t) + h−1 (t) + g1(t)

εpΨ̄τp(t) + g1(t)
, A2 =

(Ψ̄(t) + εpΨ̄τp(t) + g1(t)

F̃ (t)

)1/2
,

and A3 =
(
pF̃ (t)/vp(t)

)1/2
. First, by Lemma 5.2 (part (b)), εp(1−Kpεp)Ψ̄τp(t) ≤

h+1 (t) + h−1 (t) ≤ εpΨ̄τp(t) and thus 1 − Kpεp ≤ A1 ≤ 1. Second, simi-

larly, by Lemma 5.2, 1 ≤ A2 ≤ (1 − Kpεp)−1/2. Since by basis algebra,
|AB − 1| ≤ |A − 1| + |B − 1| + |A − 1||B − 1| for any numbers A and B,
we have |a(t) − 1| ≤ CKpεp(1 + |A3 − 1|) + |A3 − 1|. Now, by Lemma 5.4,

|A3− 1| ≤ Lp

(
p−min{r,β−r

2 ,(1−a)(β−ar)} +(1+ t) exp
(
− (1−a)t2

2(1+a)

))
when r < β

and 0 < t ≤ τp + s̃p, and K−1/2
p ≤ A3(t) ≤ b−1/2 when Ω ∈ M̃∗

p(a, b,Kp),
and so the claim follows. #

5.9. Proof of Lemma 5.4. The last claim follows trivially from the as-
sumption on the minimum eigenvalue of Ω. And in the case of r ≥ β, by
definition of vp(t) and noting that the maximum eigenvalue of Ω is bounded

by Kp, we obtain that vp(t) ≤ KppF̃ (t). So we only need to prove the first
claim in the case of r < β and the second claim.

Consider the first claim. Let Di = {j : Ω(i, j) .= 0} and D̃i = Di \
{i}. Write h(t) = h̃0(t) + h̃1(t), where h(t) = p−1 ∑p

i=1

∑
j∈D̃i

P (|Z̃(i)| ≥
t, |Z̃(j)| ≥ t), h̃0(t) = p−1∑

i,j∈D̃i
P (|Z̃(i)| ≥ t, |Z̃(j)| ≥ t, µ̃i = 0 or µ̃j =

0), h̃1(t) = p−1∑
i,j∈D̃i

P (|Z̃(i)| ≥ t, |Z̃(j)| ≥ t, µ̃i .= 0 and µ̃j .= 0). By
definitions, it is seen that

(5.36) vp(t) = p(F̃ (t) + rem(t)), where |rem(t)| ≤ h(t) = h̃0(t) + h̃1(t).

To show the claim, it is sufficient to show that the ratio [h̃0(t)+ h̃1(t)]/F̃ (t)
does not exceed the right hand side of (5.18).

First, consider h̃0(t). If at least one of Z̃(i) and Z̃(j) has mean 0, by
Lemma 5.3 and definitions, P (|Z̃(i)| ≥ t, |Z̃(j)| ≤ t, µ̃j = 0 or µ̃j = 0) ≤
CKp(1 + t) exp(− (1−a)t2

2(1+a) )
(
P (|Z̃(i)| ≥ t) + P (|Z̃(j)| ≥ t)

)
. Since D̃i has at
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most Kp components, it follows from the definition of F̃ (t) that

h̃0(t) ≤ CKp(1 + t) exp(−(1− a)t2

2(1 + a)
)p−1

∑

i,j∈D̃i

(
P (|Z̃(i)| ≥ t) + P (|Z̃(j)| ≥ t)

)
(5.37)

≤ CK2
p(1 + t) exp

(
− (1− a)t2

2(1 + a)

)
F̃ (t).

Next, consider h̃1(t). Define events A1,ij = {µ(k) .= 0 for some k ∈ Di \
Dj}, A2,ij = {µ(k) .= 0 for exactly one k, which is in Di ∩Dj}, and A3,ij =
{µ(k) .= 0 for two or more k, all of which are in Di ∩Dj}. It is seen that

h̃1(t) = p−1
∑

i,j∈D̃i
P (|Z̃(i)| ≥ t, |Z̃(j)| ≥ t, µ̃(i) .= 0, µ̃(j) .= 0)

= h̃1,1(t) + h̃1,2(t) + h̃1,3(t),

where h̃1,1(t) = p−1∑
i,j∈D̃i

P (|Z̃(i)| ≥ t, |Z̃(j)| ≥ t, A1,ij ∪A1,ji), h̃1,2(t) =

p−1 ∑
i,j∈D̃i

P (|Z̃(i)| ≥ t, |Z̃(j)| ≥ t, A2,ij) , and h̃1,3(t) = p−1∑
i,j∈D̃i

P (|Z̃(i)| ≥
t, |Z̃(j)| ≥ t, A3,ij).

We first consider h̃1,1(t). Note that

P (|Z̃(i)| ≥ t, |Z̃(j)| ≥ t, A1,ij ∪A1,ji)

≤ P (|Z̃(i)| ≥ t, |Z̃(j)| ≥ t, A1,ji) + P (|Z̃(i)| ≥ t, |Z̃(j)| ≥ t, A1,ij)

≤ P (|Z̃(i)| ≥ t, A1,ji) + P (|Z̃(j)| ≥ t, A1,ij) ≤ Kpεp[P (|Z̃(i)| ≥ t) + P (|Z̃(j)| ≥ t)].

Thus, h̃1,1(t) ≤ 2εpK2
pp

−1∑p
i=1 P (|Z̃(i)| ≥ t) = LpεpF̃ (t).

Now we consider h̃1,2(t). For any (i, j) ∈ A2,ij , we use (Z̃∗(i), Z̃∗(j)) to
denote the demeaned pair of (Z̃(i), Z̃(j)). By definition there exists a k
such that

√
npµ(k) = τp, µ̃(i) = Ω(i, k)µ(k) and µ̃(j) = Ω(j, k)µ(k). Thus,

|√npµ̃(i)| ≤ aτp or |√npµ̃(j)| ≤ aτp and

P (|Z̃(i)| ≥ t, |Z̃(j)| ≥ t, A2,ij) ≤ KpεpP (|Z̃∗(i)| ≥ t− aτp) = KpεpΨ̄aτp(t).

Then h̃1,2(t) ≤ K2
pεpΨ̄aτp(t). Direct calculations yield

h̃1,2(t)

Ψ̄(t) + εpΨ̄τp(t)
≤

K2
p εpΨ̄aτp(t)

Ψ̄(t) + εpΨ̄τp(t)
≤ Lpp

−(1−a)(β−ar), for all t ≤ τp + s̃p.

(5.38)

By Lemma 5.4 F̃ (t) ! Ψ̄(t)+εpΨ̄τp(t), it follows that h̃1,2(t) ≤ Lpp−(1−a)(β−ar)F̃ (t).
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Now, consider h̃1,3(t). Observe that h̃1,3(t) ≤ p−1∑
i,j∈D̃i

P (A3,ij) ≤
Kp(Kpεp)2. By Lemma 5.2,

h̃1,3(t)

F̃ (t)
≤ 1

1−Kpεp

Kp(Kpεp)2)

Ψ̄(t) + εpΨ̄τp(t)
≤

CK3
pε

2
p

Ψ̄(t) + εpΨ̄τp(t)
.

When r < β and t ≤ τp+s̃p, we have Ψ̄(t)+εpΨ̄τp(t) ≥ Lpp−max{4β−2r,3β+r}/2,

and thus CK3
pε

2
p/[Ψ̄(t)+ εpΨ̄τp(t)] ≤ Lp(p−(β−r)/2 + p−r). When t > τp+ s̃p,

by the definition of vp(t) and recalling that the largest eigenvalue of Ω is

bounded by Kp, we have vp(t) ≤ KppF̃ (t). Combining these together and

noting that F̃ (t) ! Ψ̄(t)+εpΨ̄τp(t), we obtain h̃1,3(t)/F̃ (t) ≤ Kp if t > τp+s̃p,

and h̃1,3(t)/F̃ (t) ≤ Lp(p−(β−r)/2 + p−r) if t ≤ τp + s̃p.
Combining the bounds on h̃1,1(t), h̃1,2(t) and h̃1,3(t) entails that when

r < β, h̃1(t)/F̃ (t) ≤ p−(β−r)/2 + p−r + p−(1−a)(β−ar) if t ≤ τp + s̃p and

h̃1(t)/F̃ (t) ≤ Kp if t > τp + s̃p. These together with (5.36) and (5.37)
completes the proof of the first claim when r < β.

Next, we consider the second claim. The goal is to show that vp(t)/(pF̃ (t)) !
1, assuming r < β and t ≤ τp + s̃p. We consider the cases (a) d3 log log p ≤
t ≤ τp + s̃p and (b) t < d3 log log p separately, where d3 > 0 is a large
constant.

In Case (a), using (5.37), it is seen that |rem(t)|/F̃ (t)| = o(1), uniformly
for all d3 log log p ≤ t ≤ τp + s̃p. Using (5.36), |vp(t)/(pF̃ (t))− 1| = o(1) and
the claim follows.

In Case (b), recall that vp(t) = E[(µ̂Z̃
t )

′ΩµZ̃
t ], where µ̂

Z̃
t (j) = sgn(Z̃(j))1{|Z̃(j)| ≥

t} and Z̃ = ΩZ. Write Z̃ =
√
npµ̃ +W , where µ̃ = Ωµ and W ∼ N(0,Ω).

Let µ̂t be the counterpart of µ̂Z̃
t defined by µ̂t(j) = sgn(W (j))1{|W (j)| ≥

t}. We claim (b1) E[(µ̂Z̃
t )

′ΩµZ̃
t ] = E[(µ̂t)′Ωµ̂t] + O(Lpp1−β/2) and (b2)

E[(µ̂t)′Ωµ̂t] ≥ pF̃ (t). The claim follows by combining (b1) and (b2) and
noting that pF̃ (t) ≥ Lpp(1−Kpεp) when t ≤ d3 log log p.

Consider (b1). Let S = {1 ≤ i ≤ p : µ̂Z̃
t (i) .= µ̂t(i)}. Note that for

all p × 1 vectors ξ and η, by Schwartz inequality and that the spectral
norm of Ω ≤ Kp, |(ξ + η)′Ω(ξ + η) − η′Ωη| ≤ ξ′Ωξ + 2[(ξ′Ωξ) · (η′Ωη)]1/2 ≤
Lp[‖ξ‖2 + ‖ξ‖‖η‖]. Applying this with η = µ̂t, ξ = µ̂Z̃

t − µ̂t, and noting

that each coordinate of µ̂Z̃
t − µ̂t has magnitude no greater than 2, we claim

that |E[(µ̂Z̃
t )

′ΩµZ̃
t ] − E[(µ̂t)′Ωµ̂t]| ≤ LpE[|S| +

√
p|S|] ≤ LpE[

√
p|S|]. Note

that for any i ∈ S, we must have µ̃(i) .= 0. Therefore, by definitions, |S| ≤∑p
i=1 1{(Ωµ)(i) .= 0} ≤

∑p
i=1

∑
j:Ω(i,j)$=0 1{µ(j) .= 0} ≤ Kp

∑p
i=1 1{µ(i) .=

0}, where we have used the assumption that Ω is Kp-sparse. Note that∑p
i=1 1{µ(i) .= 0} ∼ Binomial(p, εp), where εp = p−β, so E[

√
p|S|] ∼ p1−β/2.



48 Y. FAN, J. JIN AND Z. YAO

Combining these gives (b1).
Consider (b2). Denoting B = E[µ̂tµ̂′

t], we have E[(µ̂t)′Ωµ̂t] = E[Ωµ̂tµ̂′
t] =

tr(ΩB). We claim that for any i .= j such that Ω(i, j) .= 0, B(i, j) has the
same sign as that of Ω(i, j). To see the point, writeB(i, j) = E[sgn(Z̃(i))sgn(Z̃(j))·
1{|Z̃(i| > t, |Z̃(j)| > t}. By symmetry and basic statistics, B(i, j) = 2[P (Z̃(j) >
t, Z̃(j) > t|Ω(i, j)) − P (Z̃(i) > t, Z̃(j) > t| − Ω(i, j))], where for any ρ ∈
(−1, 1), P (Z̃(i) > t, Z̃(j) > t|ρ) is evaluated at the law that corr(Z̃(i), Z̃(j)) =
ρ. The claim follows by noting that for any ρ > 0, P (Z̃(j) > t, Z̃(j) >
t|ρ) > P (Z̃(i) > t)P (Z̃(j) > t) > P (Z̃(i) > t, Z̃(j) > t| − ρ). As a result,
tr(ΩB) ≥ tr(B) ≡ pF̃ (t), where we have used the fact that the diagonals of
Ω are ones. This proves (b2). #

5.10. Proof of Lemmas 2.3-2.4. Write for short W (t) = p−1/2HC(t, F̃ ).

Recalling W0(t) = [εpΨ̄τp(t) + g1(t)]/
√

Ψ̄(t) + εpΨ̄τp(t) + g1(t) as defined in

(2.17), where g1(t) is as in Lemma 5.2, we let a1(t) =
(
W0(t)

)−1
[F̃ (t)−h0(t)]·

(F̃ (t)(1− F̃ (t))−1/2, and W1(t) = [Ψ̄(t)− h0(t)] · (F̃ (t)(1− F̃ (t))−1/2, where
h0(t) is as in Lemma 5.2. By these notations, W (t) = a1(t)W0(t) −W1(t).
The following Lemma is proved in Section 5.11.

Lemma 5.7. Fix a sufficiently large p. There is a universal constant
C > 0 such that for all Ω ∈ M∗

p(a,Kp),

0 < W1(t) ≤ CKpεpΨ̄(t)/
√

Ψ̄(t) + εpΨ̄τp(t), for all t ≥ Ψ̄−1(1/2)

(5.39)

1− CKpεp ≤ a1(t) ≤ (1 + CKpεp)(1− Ψ̄(t)−Kpεp)
−1/2, for all t ≥ 0.

(5.40)

Consider Lemma 2.3. Using Lemma 5.7, |a1(t)− 1| ≤ C(Kpεp + Ψ̄(t)) for
all t ≥ 0. Recalling W (t) = a1(t)W0(t)−W1(t), we have

sup
{t≥Ψ̄−1( 12 )}

|W (t)−W0(t)| ≤ sup
{t≥0}

{|a1(t)− 1|W0(t)}+ sup
{t≥Ψ̄−1( 12 )}

W1(t)
(5.41)

≤ Lp(I + II + III),

where I = Kpεp sup{t≥0}{W0(t)}, II = sup{t≥0}{Ψ̄(t)W0(t)}, and III =
sup{t≥Ψ̄−1( 12 )}

{W1(t)}.
First, consider I. By basic algebra and Lemma 5.6,

I ≤ Lpεp[ sup
{t≥0}

W̃0(t)+ sup
t≥0

|W0(t)− W̃0(t)|] ≤ Lpp
−β[p−3β/2+ sup

{t≥0}
{W̃0(t)}].
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Next, consider II. Write

(5.42) II ≤ sup
{t≥0}

[Ψ̄(t)W̃0(t)] + sup
{t≥0}

[Ψ̄(t)|W0(t)− W̃0(t)|] ≡ IIa+ IIb.

On one hand, elementary calculus shows that IIa ≤ p−β. On the other hand,

by similar argument as in the proof of Lemma 5.6, IIb ≤ Lp(p−β+p−
a2r
3

−β+

p−3β/2). Combining these, II ≤ Lp(p−β + p−
a2r
3 −β + p−3β/2). Last, consider

III. By (5.39) and direct calculations,

III ≤ CKpεp sup{t≥0}{Ψ̄(t)/
√

Ψ̄(t) + εpΨ̄(t− τp)} ≤ Lpp
−β.

Inserting these into (5.41) gives the claim.
Next, we show Lemma 2.4. The first claim has already been proved in

Lemma 5.6. So we only need to prove claims (a)–(c) in the case of r ≥ β.
First consider claims (a) and (b) in Lemma 2.4. Comparing Lemma 5.6

and the desired claim, it is sufficient to verify that

W0(t) ≤ p−β/2/
√
2, if t ≤

√
2β log p− ∆1 or t > τp,(5.43)

where ∆1 = d0(log log p)/
√
log p is as defined in the statement of Lemma

2.4. Once this is proved, recalling that W (t) = a1(t)W0(t) −W1(t) and we
have just proved supt≥Ψ̄−1(1/2){Ψ̄(t)W0(t)} ≤ Lpp−β, then by lemma 5.7 we
have

W (t) ≤ a(t)W0(t) " (1 + CΨ̄(t) + CKpεp)W0(t) " p−β/2/
√
2.

We now proceed to prove (5.43). By the proof of Lemma 5.6 (inequality
(5.31)), we have

0 ≤ W0(t)− W̃0(t) ≤ Lpp
−β +KpεpΨ̄aτp(t)/

√
Ψ̄(t) +KpεpΨ̄aτp(t),(5.44)

where we have noted that the last term in (5.31) is bounded byKpεp
√

Ψ̄(1+a)τp(t) ≤
Lpp−β. First consider the case when t ≤

√
2β log p − ∆1. By Mills’s ratio,

for appropriately chosen d0 in ∆1 = d0(log log p)/
√
log p, we have Ψ̄(t) +

KpεpΨ̄aτp(t) ≥ 8K2
p εp, and Ψ̄(t) + εpΨ̄aτp(t) ≥ 8εp. As a result,

KpεpΨ̄aτp(t)√
Ψ̄(t) +KpεpΨ̄aτp(t)

≤
√
2εp/4, W̃0(t) ≤

εpΨ̄τp(t)√
Ψ̄(t) + εpΨ̄τp(t)

≤
√

2εp/4.
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Inserting these into (5.44), we complete the proof of (5.43) when t ≤
√
2β log p−

∆1. Now we consider the case of t > τp. Since εpΨ̄aτp(t) = o(εpp−(1−a)2r), it
follows that

KpεpΨ̄aτp(t)√
Ψ̄(t) +KpεpΨ̄aτp(t)

≤
√

KpεpΨ̄aτp(t) = o(p−β/2)

and

W̃0(t) ≤
εpΨ̄τp(t)√

Ψ̄(t) + εpΨ̄τp(t)
≤

√
εpΨ̄τp(t) ≤

√
εp/2.

Inserting these into (5.44) proves (5.43) when t > τp.
Finally we prove part (c). Write for short sp =

√
2β log p−∆1. By (5.40)

and recalling that we have just proved supt>0 W1(t) ≤ Lpp−β, we obtain
that W (t) = a1(t)W0(t) −W1(t) ≥ (1 −Kpεp)W0(t) − supt>0 W1(t) ≥ (1 −
CKpεp)W0(t)−Lpp−β. Further recall that in Lemma 5.6, we have shown that

W0(t) ≥ W̃0(t) for all t ≥ 0. Thus, W (t) ≥ (1−CKpεp)W̃0(t)−Lpp−β. Tak-

ing t∗p =
β+r
2r τp, it is seen that for sufficiently large p, sp ≤ t∗p ≤ τp. Therefore,

sup{sp≤t≤τp} W (t) ≥ (1 − CKpεp) sup{sp≤t≤τp} W̃0(t) ≥ (1 − CKpεp)W̃0(t∗p),

and the first inequality of part c) follows from W̃0(t∗p) ∼ p−β/2. On the
other hand, by Lemma 5.6 and recall r ≥ β, we have supt>0 W0(t) ≤
Lp supt>0 W̃0(t) ∼ Lpp−β/2. Further, by (5.40) and the expression W (t) =
a1(t)W0(t) − W1(t), we have supsp≤t≤τp W (t) ≤ supsp≤t≤τp{a1(t)W0(t)} ≤
C supsp≤t≤τp W0(t) ∼ Lpp−β/2. Thus, the second inequality in the claim fol-
lows. #

5.11. Proof of Lemma 5.7. Let h0(t), h
±
1 (t) and g1(t) be as in Lemma

5.4. Consider the first claim. By Lemma 5.2 parts (a) and (e), we have

(5.45) 0 ≤ Ψ̄(t)−h0(t) ≤ KpεpΨ̄(t), F̃ (t) ≥ (1−Kpεp)[Ψ̄(t)+εpΨ̄τp(t)].

At the same time, note that F̃ (t) ≤ Ψ̄(t) +Kpεp. Combining these ensures
that

(5.46) 1 ≤ (1− F̃ (t))−1/2 ≤ [1− Ψ̄(t)−Kpεp]
−1/2.

Inserting (5.45) and (5.46) into the definition of W1(t) gives

0 ≤ W1(t) ≤
KpεpΨ̄(t)√

(1− Ψ̄(t)−Kpεp)(1−Kpεp)[Ψ̄(t) + εpΨ̄τp(t)]
.
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Thus the first claim follows by noting (1 − Ψ̄(t) −Kpεp) ≥ 1/2 − Kpεp for
all t ≥ Ψ̄−1(12).

Consider the second claim. Recall that F̃ (t) = h0(t)+h+1 (t)+h−1
1 +g1(t).

By definitions,

(5.47) a1(t) = (1− F̃ (t))−1/2 · I · II,

where I = [h+1 (t) + h−1 (t) + g1(t)]/[εpΨ̄τp(t) + g1(t)], and

II =
√

Ψ̄(t) + εpΨ̄(t− τp) + g1(t)/
√

h0(t) + h+1 (t) + g1(t).

By (a) and (b) in Lemma 5.2, we have

(5.48) (1−Kpεp) ≤ I ≤ 1, 1 ≤ II ≤ (1−Kpεp)
−1/2.

Inserting (5.46) and (5.48) into (5.47), we obtain that there is a universal
constant C > 0 such that (5.40) holds. #

5.12. Proof of Theorems 2.1-2.2. The following lemma is proved in Sec-
tion 5.13.

Lemma 5.8. Fix (β, r) ∈ (0, 1)2 and a sufficiently large p. When t ranges

in (0,∞), W̃0(t) first strictly increases and reaches the maximum at t =
t∗∗p ∼ min{2, r+β2r }τp (≡ t∗p), and then strictly decreasing. Additionally, if
r < β, then there are positive constants c4 = c4(β, r) and c5 = c5(β, r) such

that for all |t− t∗∗p | ≤ c4τ−1
p , W̃ ′′

0 (t) ≤ −2c5W̃0(t).

Denote by W (t) = p−1/2HC(t, F̃ ). By the first claim in Lemma 2.3 and
Lemma 5.6, and noting that β > c0(β, r, a), we obtain

(5.49) sup{t≥0} |W (t)− W̃0(t)| ≤ Lp[p
−β + p−c0(β,r,a) sup{t≥0} W̃0(t)].

First, we show Theorem 2.1, where we assume r < β. Once the first claim
is proved, the second claim follows by combining Taylor expansion with
Lemmas 2.3, 2.4, and 5.8, so we only show the first claim. The idea is to
prove THC and Tideal are both close to t∗∗p , then they are close to each other.

We first prove that THC and t∗∗p are close. We will show that (i) W (t∗∗p +
u)−W (t∗∗p ) < 0 for all |u| ≤ c4/τp, and (ii) W (t)−W (t∗∗p ) < 0 for all |u| >
c4/τp. Then combining these proves

|THC(F̃ )− t∗∗p | ≤ p−c1 ,(5.50)
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with c1 = c1(β, r, a) > 0 some constant to be specified later.

We now prove the first case (i). Recall that t∗∗p is the maximizer of W̃0(t)

and W̃0(t∗∗p ) = Lpp−δ(β,r), where δ(β, r) is as in (2.10). Thus, W̃ ′
0(t

∗∗
p ) = 0. By

Taylor expansion, W̃0(t∗∗p + u)− W̃0(t∗∗p ) = u2

2 W̃
′′
0 (t̃p), where t̃p lies between

t∗∗p and t∗∗p + u. Next, by Lemma 5.8, for |u| ≤ c4
τp

we can further write

W̃0(t∗∗p + u) − W̃0(t∗∗p ) ≤ −c5u2W̃0(t̃p) = −c5u2W̃0(t∗∗p ) − c5u2(W̃0(t̃p) −
W̃0(t∗∗p )) ≤ −c5u2W̃0(t∗∗p )− c5u2(W̃0(tp + u)− W̃0(t∗∗p )), where the last step

is because of W̃0(t∗∗p + u) ≤ W̃0(t̃p). Thus, the inequality can be further

written as W̃0(t∗∗p +u)−W̃0(t∗∗p ) ≤ −c5u2W̃0(t∗∗p )/(1+c5u2). Then by (5.49)
we obtain that

W (t∗∗p + u)−W (t∗∗p ) =
(
W (t∗∗p + u)− W̃0(t

∗∗
p + u)

)
−

(
W (t∗∗p )− W̃0(t

∗∗
p )

)(5.51)

+
(
W̃0(t

∗∗
p + u)− W̃0(t

∗∗
p )

)
≤ Lp(p

−β + p−c0(β,r,a)W̃0(t
∗∗
p )) +

(
W̃0(t

∗∗
p + u)− W̃0(t

∗∗
p ))

≤ Lpp
−β +

(
Lpp

−c0(β,r,a) − c5u
2/(1 + c5u

2)
)
W̃0(t

∗∗
p )

It is easy to check that p−c0(β,r,a)W̃0(t∗∗p ) & Lpp−β when ρ∗θ(β) < r <
β. By Lemma 5.8, we obtain that if |u| ≥ p−c1 with c1 = c1(β, r, a) ∈
(0, 13c0(β, r, a)), then for all |u| ≤ c4/τp,

W (t∗∗p + u)−W (t∗∗p ) ≤ −Lpp
−2c1(β,r,a)W̃0(t

∗)(1 + o(1)) < 0,

which completes the proof of case (i). It remains to prove case (ii). Di-

rect calculations yield W̃0(t∗∗p ± c4/τp) " e−c5W̃0(t∗∗p ), where c5 > 0 is
a constant depending on whether r < β/3 or r ≥ β/3. By Lemma 5.8,

W̃0(t) ≤ W̃0(t∗∗p ± c4/τp) " e−c5W̃0(t∗∗p ) for all |t− t∗∗p | > c4/τp. Thus, simi-

lar to (5.51) we haveW (t)−W (t∗∗p ) ≤ Lp(p−β+p−c0(β,r,a)W̃0(t∗∗p ))+(W̃0(t)−
W̃0(t∗∗p )) " Lpp−β +(e−c5 − 1+Lpp−c0(β,r,a))W̃0(t∗∗p ) = Lpp−β + (e−c5 − 1+

Lpp−c0(β,r,a))p−δ(β,r) < 0, where the last step is because β > δ(β, r). This
proves case (ii). Consequently, we have proved (5.50).

Using similar method as above and in view of Lemma 2.1 we can also
prove that for appropriately chosen c1 > 0,

|Tideal(εp, τp,Ω)− t∗∗p | ≤ p−c1 .(5.52)

Thus the claim in Theorem 2.1 follows when r < β.
We now show Theorem 2.2, where we assume r ≥ β. In this range W̃0(t)

is maximized at t∗∗p = β+r
2r τp and W̃0(t∗∗p ) ∼ p−

β
2 . By Lemma 2.4 we see that
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the maximizer of W0(t) is in the range [
√
2β log p − ∆1, τp). By (5.43) and

Lemma 2.3 we obtain that if 0 ≤ t <
√
2β log p− ∆1 or τp ≤ t < ∞,

W (t) = W0(t) + (W (t)−W0(t)) ≤
1√
2
p−β/2 + Lpp

−β =
1√
2
p−β/2(1 + o(1)),

and if
√
2β log p− ∆1 ≤ t < τp,

W (t) = W0(t) + (W (t)−W0(t)) ≥ p−β/2 − Lpp
−β = p−β/2(1− o(1)).

Thus, the maximizer THC(F̃ ) is in the interval [
√
2β log p− ∆1, τp).

By Lemma 2.2, the maximizer of S̃ep(t, εp, τp,Ω) is in the interval [
√
2β log p−

∆1, τp + ∆2). Thus, Theorem 2.2 follows immediately from Lemma 2.2.
#

5.13. Proof of Lemma 5.8. Let ψτp(t) = φ(t− τp)+φ(t+ τp) and ψ(t) =
2φ(t). Introducem0(t) = ψ(t)/Ψ̄(t),m1(t) = Ψ̄τp(t)/ψτp(t), d(t) = −ψ′

τp(t)/ψτp(t),

a(t) = εpψτp(t)/ψ(t), R(t) = m1(t)/m0(t), and g(t) = (1/2)(1+a(t))/(R−1(t)+
a(t)). The following lemma is proved in Section 6.4.

Lemma 5.9. Fix a sufficiently large p, R(t) > 1 and is strictly decreasing
for all t > 0.

Consider the first claim. By direct calculations and our notations,

(5.53) W̃ ′
0(t)/W̃0(t) =

1

2

[ ψ(t) + εpψτp(t)

Ψ̄(t) + εpΨ̄τp(t)

]
−

ψτp(t)

Ψ̄τp(t)
≡ [g(t) − 1]/m1(t).

To show the claim, it suffices to show that equation g(t) = 1 has exactly one
solution. Recall that g(t) = (1/2)(1 + a(t))/(R−1(t) + a(t)), where R(t) > 1
and both a(t) and R−1(t) are strictly increasing in t. It follows from basic
calculus that g(t) is strictly decreasing in (0,∞), and the equation g(t) = 1
has at most one solution.

The equation also has at least one solution. Note that g(0) ≥ Ceτ
2
p/2

which > 1 for sufficiently large p, it suffices to show that there is a t such
that g(t) < 1. We show this for the case of r < β/3 and r > β/3 separately.
In the first case, for all t such that |t − 2τp| ≤ 4τ−1

p , a(t) is algebraically
small, and so by Mills’ ratio [41], for any fixed b,

g(2τp + bτ−1
p ) ≤ 1

2

[1
2
− 3b

2
τ−2
p +O(τ−4

p )
]
,

and the claim follows. Note that this shows that the solution t∗∗p of the equa-

tion g(t) = 1 satisfies |t∗∗p − 2τp| ≤ 2τ−1
p . In the second case, a(

√
2 log(p)) =
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Lpp1−β−(1−
√
r)2 , where the the exponent > 0 since r > β/3 and r > ρ(β)

(recall that ρ(β) is the standard phase function). Therefore, g(t0) ∼ 1/2 and
the claim follows. This completes the proof of the first claim.

Consider the second claim. We discuss for the case 0 < r < β/3 and
β/3 < r < β separately.

Consider the first case. Recalling that |t∗∗p − 2τp| ≤ 2τ−1
p , it is sufficient

to show that for all t such that |tp − 2τp| ≤ 4τ−1
p , W̃ ′′

0 (t)/W̃0(t) " −1/2.
Introduce s(t) = [tψ(t)+ d(t)ψτp (t)] · [Ψ̄(t)+ εpΨ̄τp(t)]/[ψ(t)+ εpψτp(t)]

2. By
direct calculations,

(5.54) W̃ ′′/W̃ (t) = I + II − 1

2
III,

where

I = (g(t)−1)2/m2
1(t), II = d(t)/m1(t)−m−2

1 (t), III = (s(t)−1)g2(t)m−2
1 (t).

Consider I first. When |t − 2τp| ≤ 4τ−1
p , on one hand, by Mills’ ratio,

m−1
1 (t) ∼ (t − τp) ∼ τp. On the other hand, by similar argument, |g(t) −

1| ≤ Cτ−2
p . It follows that I ≤ Cτ−2

p . Consider II next. By Mills’ ratio,

m−1
1 (t) = (t − τp) +

1
t−τp + O(τ−3

p ). Since |d(t) − (t − τp)| is algebraically
small, it follows from basic algebra that II ∼ −1. Consider III. Note that
both the ratio εpψτp(t)/ψ(t) and the ratio εpΨ̄τp(t)/Ψ̄τp(t) are algebraically
small. Combining this with Ψ̄(t)/ψ(t) = (1/t)− (1/t3) +O(t−5) gives

s(t) =
tψ(t)Ψ̄(t)

(ψ(t))2
+O(τ−3

p ) = 1− 1

t2
+O(τ−3

p ),

Recall that m−1
1 (t) ∼ τp and g(t) ∼ 1, it follows that III ∼ −4τ2p /t

2 ∼ −1.

Inserting these into (5.54) gives that for all |t−2τp| ≤ 4τ−1
p , W̃ ′′

0 (t)/W̃0(t) "
−1/2 and the second claim follows.

Consider the second case, where r ≥ β. For a constant η0 ∈ (0, 1) to be
determined, choose t0 and t±p such that a(t0) = 3r−β

β+r , and a(t±p ) = (1 ±
η0)a(t0). It is seen that |t±p − β+r

2r τp| ≤ Cτ−1
p , and |t0 − β+r

2r τp| ≤ Cτ−1
p .

Combining these with definitions and Mills’ ratio, for t−p ≤ t ≤ t+p , R
−1(t) ∼

(t− τp)/t ∼ (β − r)/(β + r), and that

(5.55) g(t) ∼ 1

2
· 1 + a(t)

[(β − r)/(β + r)] + a(t)
.

By direct calculations, g(t−p ) > 1 and g(t+p ) < 1. Since g(t∗∗p ) = 1, we have
t−p < t∗∗p < t+p .



55

We now use (5.54) to calculate W̃ ′′
0 (t)/W̃0(t) with. First, recall that II ∼

−1. Second, by similar argument, m−1
1 (t) ∼ (t− τp) ∼ (β − r)/(2r)τp. Com-

bining this with (5.55),

I = m−2
1 (t)[g(t)− 1]2 = (

β − r

2r
)2τ2p ·

(
[
1

2

1 + a(t)

[(β − r)/(β + r) + a(t)
− 1]2+ o(1)

)
.

Last, by similar argument,

tψ(t) + εpd(t)ψτp(t)

Ψ̄(t) + εpΨ̄τp(t)
∼ (β + r)/(β − r) + a(t)

(β − r)/(β + r) + a(t)
(
β − r

2r
)2τ2p .

s(t) ∼ [(β + r)/(β − r) + a(t)] · [(β − r)/(β + r) + a(t)]

(1 + a(t))2
.

Combining this with (5.55), III equals to (β−r
2r )2τ2p · [

1+a(t)
(β−r)/(β+r)+a(t) ]

2 times

[ [(β + r)/(β − r) + a(t)] · [(β − r)/(β + r) + a(t)]

(1 + a(t))2
− 1 + o(1)

]
.

Inserting these into (5.54) and recalling that a(t0) = (3r − β)/(β + r), it

follows from basic algebra that W̃ ′′(t0)/W̃ (t0) " − 3r−β
2(β−r) · (

β−r
2r )2τ2p , Recall

that a(t±p ) = (1 ± η0)a(t0). By the continuity of I and III on a(t), if we
choose η0 sufficiently small, then for all t−p ≤ t ≤ t+p ,

W̃ ′′
0 (t)/W̃0(t) ≤ − 3r − β

4(β − r)
· (β − r

2r
)2τ2p ,

and the claim follows. #

5.14. Proof of Lemma 3.1. The following lemma is proved in Section
5.15.

Lemma 5.10. As p → ∞, there is a constant C > 0 such that with
probability at least 1− o(1/p3),

√
p|F̃p(t)− F̃ (t)|

√
F̃ (t)(1 − F̃ (t))

≤
{

CK3
p(log(p))

5/2, ∀ 0 < t <
√

2 log(p), p2 > pF̃ (t) ≥ log5/4(p),

CK3
p

(
log(p)

)15/4
, ∀ 0 < t <

√
2 log(p), pF̃ (t) < log5/4(p).

We now prove Lemma 3.1. Put an evenly spaced grid on [0,
√
2 log p] by

tk = (
√
2 log p/p2)k, 0 ≤ k ≤ p2. Denote by V (t) =

√
p(F̃p(t)−F̃ (t))(F̃ (t)(1−

F̃ (t)))−1/2. For each 0 ≤ i ≤ p2 − 1, we claim that

(5.56) sup{ti≤t≤ti+1} |V (t)| ≤ max{|V (ti)|, |V (ti+1)|}+ Lp/p.
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In fact, as both F̃p(t) and F̃ (t) are monotone functions, we have

F̃p(ti+1)− F̃ (ti)√
F̃ (ti)

≤ F̃p(t)− F̃ (t)√
F̃ (t)

≤ F̃p(ti)− F̃ (ti+1)√
F̃ (ti+1)

.

Let hi =
F̃ (ti+1)

F̃ (ti)
. Since F̃ (t) ≤ 1

2 , sup{ti≤t≤ti+1}
{
|V (t)|

}
does not exceed

(5.57)

2
(
max{

√
1

hi
|V (ti)|,

√
hi|V (ti+1)|}+

√
p|F̃ (ti)− F̃ (ti+1)|√

F̃ (ti)
+

√
p|F̃ (ti)− F̃ (ti+1)|√

F̃ (ti+1)

)
.

Since the derivative of (−F̃ (t)) is the density of a location normal mixture,
and is therefore bounded from above. Moreover, for 0 < t <

√
2 log p and

sufficiently large p, F̃ (t) ≥ F̃ (
√
2 log p) ≥ 2(1 −Kpεp)Φ̄(

√
2 log p) ≥ p−1Lp.

Using Taylor expansion,
(5.58)
√
p|F̃ (ti)− F̃ (ti+1)|√

F̃ (ti)
+

√
p|F̃ (ti)− F̃ (ti+1)|√

F̃ (ti+1)
≤ Lp√

p3F̃ (ti)
+

Lp√
p3F̃ (ti+1)

≤ Lp/p.

Similarly, we can show |hi − 1| ≤ Lp/p. Inserting this and (5.58) into (5.57)
gives (5.56).

Combining (5.56) with Lemma 5.10, the claim follows from

sup
{0≤t≤

√
2 log(p)}

[√
p|F̃p(t)− F̃ (t)|

√
F̃ (t)(1− F̃ (t))

]
= sup

{0≤t≤
√

2 log(p)}
|V (t)| ≤ C sup

{0≤i≤p2}
|V (ti)|+

Lp

p
,

where C > 0 is some constant. #

5.15. Proof of Lemma 5.10. The following lemma is proved in Section
5.16.

Lemma 5.11. There are partitions {1, 2, . . . , p} = R′
1 ∪ R′

2 . . . ∪ R′
N1

=
R′′

1 ∪ R′′
2 . . . ∪ R′′

N2
such that N1 ≤ CKp log(p), N2 ≤ CK2

p log(p), and that
for any fixed 1 ≤ j ≤ N1 and 1 ≤ k ≤ N2, the collection of random vari-
ables {Z̃(i)− µ̃(i), i ∈ R′

j} are independent of each other, and the same are
{µ̃(i), i ∈ R′′

k}.

We now show Lemma 5.10. The key idea is to combine Lemma 1.1 with
the well-known Bennett’s inequality (e.g., [37]). The Bennett’s inequality
only applies to sum of independent random variables. To apply it in the
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current setting, note that by Lemma 5.11, we can partition {1, 2, . . . , p}
into N different subsets R1, . . . , RN , where N ≤ CK3

p log
2(p), such that

the collection of random variables {Z̃(i) : i ∈ Rk} are independent, for

each 1 ≤ k ≤ N . In light of this, we write F̃p(t) = 1
p

∑N
k=1 S

(k)
p (t), where

S(k)
p (t) =

∑
i∈Rk

1{|Z̃(i)| ≥ t} is the sum of independent random variables,
to which the Bennet’s inequality can be applied directly.

In detail, let S(k)(t) = E[S(k)
p (t)] and sk = |Rk|, 1 ≤ k ≤ N , and S(t) =∑N

k=1 S
(k)(t). Since we are only interested in the region of t such that F̃ (t) ≤

1/2, it follows easily that

(5.59)

√
p|F̃p(t)− F̃ (t)|

√
F̃ (t)(1− F̃ (t))

"

√
2|Sp(t)− S(t)|√

S(t)
≤

N∑

k=1

√
2|S(k)

p (t)− S(k)(t)|√
S(t)

.

For each 1 ≤ k ≤ N , using Bennet’s inequality [37, Page 851] yields

(5.60) P
(∣∣S(k)

p − S(k)(t)
∣∣ ≥ λ

)
≤ 2exp

(
− λ2

2skσ2
k

ψ
( λ

skσ2
k

))
,

where ψ is as in [37, Page 851] and skσ2
k = Var(S(k)

p (t)). First, note that
xψ(x) is monotonely increasing in x ∈ (0,∞). Second, by definitions and ba-
sic property of Bernoulli random variables, skσ2

k ≤ S(k)(t) ≤ S(t). Inserting
these into (5.60) gives

P

([
S(')
p − S(')(t)

]
≥ λ

)
≤ exp

(
− λ2

2S(t)
ψ
( λ

S(t)

))
.

Let λ = C
√

(log p)S(t) if S(t) ≥ 1
2(log p)

5/4 and λ = C(log p)3/2 if S(t) <
1
2 (log p)

5/4, where C > 0 is a constant. By elementary calculus and the
property of ψ,

P

([
S(')
p − S(')(t)

]
≥ λ

)
≤

{
exp

(
−C2 log p

2

)
, S(t) ≥ 1

2(log p)
5/4

exp
(
−C log p

2

)
, S(t) < 1

2(log p)
5/4.

Inserting this into (5.59) and noting that pF̃ (t) ≥ (log p)−1/2 give the claim.
#

5.16. Proof of Lemma 5.11. Recall that Z̃− µ̃ ∼ N(0,Ω), the first claim
follows directly from Lemma 1.1. For the second claim, introduce a graph
G = (V,E) where V = {1, 2, . . . , p}, and nodes i and j are connected if and
only if Si ∩ Sj = ∅, where Si = {1 ≤ k ≤ p : Ω(i, k) .= 0}, 1 ≤ i ≤ p. Since
Ω is Kp-sparse, G is K2

p -sparse. Also, µ̃(i) and µ̃(j) are independent if and
only if nodes i and j are disconnected. Applying Lemma 1.1 to G gives the
claim. #
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5.17. Proof of Lemma 3.3. Recall that np = pθ, Ẑ = Ω̂Z, and Z̃ = ΩZ. A
direct result of Lemma 3.2 is that there is a term 0 < ηp ≤ CK3

p(log p)p
−θ/2

such that with probability at least 1− o(1/p),

|1{|Ẑ(j)| ≥ t}−1{|Z̃(j)| ≥ t}| ≤ 1{t− ηp ≤ |Z̃(j)| < t+ ηp}, ∀t > 0 and 1 ≤ j ≤ p.

Let Gp(t) = F̃p(t − ηp) − F̃p(t + ηp) and G(t) = F̃ (t − ηp) − F̃ (t + ηp). By
the above inequality, it is seen that with probability at least 1− o(1/p),

(5.61) |F̄p(t)− F̃p(t)| ≤ Gp(t).

We now analyze Gp(t). By definitions and the triangle inequality,

(5.62) Gp(t) ≤ G(t) + |F̃p(t− ηp)− F̃ (t− ηp)|+ |F̃p(t+ ηp)− F̃ (t+ ηp)|.

A key fact is that there is a universal constant C > 0 such that

(5.63) |F̃ ′(t)| ≤ C(Kpτp + t)F̃ (t).

To see the point, we write F̃ (t) = 1
p

∑p
i=1E[Ψ̄√

npµ̃(i)(t)] and F̃ ′(t) = −1
p

∑p
i=1E[φ(t−√

npµ̃(i)) + φ(t +
√
npµ̃(i))], where φ is the density function of N(0, 1).

Note that there is a constant C > 0 such that φ(x) ≤ C|x|Φ̄(x), and that
|t±√

npµ̃(i)| ≤ t+Kpτp for all 1 ≤ i ≤ p, the desired claim follows.

Now, first, write G(t) = F̃ (t−ηp)−F̃ (t+ηp) = 2ηpF̃ ′(ξ) for some number ξ

with |ξ−t| < ηp. Using (5.63), |F̃ ′(ξ)| ≤ CKpτpF̃ (ξ) ∼ CKpτpF̃ (t). It follows

(5.64) G(t) ≤ CKpτpF̃ (t)ηp.

Second, by Lemma 3.1 and monotonicity, with probability at least 1−o(1/p),
|F̃p(t±ηp)− F̃ (t±ηp)| ≤ CK3

p(log p)
7/2p−1/2(F̃ (t±ηp))1/2, where by (5.63),

F̃ (t± ηp) 1 F̃ (t). It follows that with probability at least 1− o(1/p),

(5.65) |F̃p(t± ηp)− F̃ (t± ηp)| ≤ CK3
p(log p)

4p−1/2(F̃ (t))1/2.

Recall that ηp ≤ K3
p(log p)p

−θ/2. Inserting (5.64)-(5.65) into (5.62) gives

(5.66) Gp(t) ≤ CK4
p(log p)

3/2p−θ/2F̃ (t) +CK3
p(log p)

4p−1/2(F̃ (t))1/2.

Combining (5.66) with (5.61) gives

√
p|F̄p(t)− F̃p(t)|√
F̃ (t)(1− F̃ (t))

≤
√
p|Gp(t)|√

F̃ (t)(1− F̃ (t))
≤ C

(
K4

p(log p)
3/2(p1−θF̃ (t))1/2 +K3

p(log p)
4
)
,

(5.67)

and the claim follows. #
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5.18. Proof of Theorem 3.1. We consider the case when pF̃ (t) < K6
p(log(p))

9

and when pF̃ (t) ≥ K6
p(log(p))

9 separately.
In the first case, it is sufficient to show that |HC(t, F̄p)| ≤ Lp and

|HC(t, F̃p)| ≤ Lp. By Lemmas 3.3 and 5.10, with probability at least 1 −
o(1/p), p|F̄p(t) − F̃ (t)| ≤ Lp. By Lemma 5.4, F̃ (t) ≥ (1 − Kpεp)Ψ̄(t) and
thus, pΨ̄(t) ≤ Lp. Since HC(t, F̄p) is defined in a way such that F̄p(t) ≥ 1/p,

it is easy to see that HC(t, F̄p) ≤ p|F̄p(t)− Ψ̄(t)| ≤ p|F̄p(t)− F̃ (t)|+pF̃ (t)+

pΨ̄(t) ≤ Lp. Similarly, we can prove that HC(t, F̃p) ≤ Lp. The claim follows
easily.

In the second case, let h(t) = (F̃ (t)(1− F̃ (t)))/(F̄p(t)(1− F̄p(t)) and write

for short g(t) =
√
p
(
F̄p(t) − F̃p(t)

)(
F̃ (t)(1 − F̃ (t)

)−1/2
. By definitions, we

can write

(5.68) HC(t, F̄p)−HC(t, F̃ ) = g(t)
√

h(t) +HC(t, F̃ )(
√

h(t)− 1).

We first prove |h(t) − 1| ≤ o(1). To see this, note that (5.67) and Lemma
5.10 ensure that with probability at least 1− o(1/p),

|F̄p(t)/F̃ (t)− 1| ≤ |(F̄p(t)− F̃p(t))/F̃ (t)|+ |F̃p(t)/F̃ (t)− 1|(5.69)

≤ CK4
p(log p)

3/2p−θ/2 + CK3
p(log p)

4(pF̃ (t))−1/2.

By the assumption of pF̃ (t) ≥ K6
p(log p)

9, the right hand side of (5.69) tends

to 0. Thus, with probability at least 1− o(1/p), 0 ≤ F̄p(t), F̃ (t) < 2/3 for all
0 < t ≤

√
2 log(p). Note that for all x, y ∈ (0, 2/3), |[x(1−x)]/[y(1−y)]−1| ≤

C|x/y − 1|. It follows from (5.69) and definitions that

(5.70) |h(t)− 1| ≤ C|F̄p(t)/F̃ (t)− 1| ≤ Lp(p
−θ/2 + (pF̃ (t))−1/2),

where the right hand side tends to 0 since pF̃ (t) ≥ K6
p(log p)

9. At the same

time, since F̃ (t) ≥ (1 −Kpεp)Ψ̄(t), we have |F̃ (t) − Ψ̄(t)| ≤ F̃ (t) + Ψ̄(t) "

2F̃ (t). It follows from 1− F̃ (t) ≥ 1− Ψ̄(t)−Kpεp ≥ 1/2−Kpεp that

(5.71) |HC(t, F̃ )| = √
p|F̃ (t)− Ψ̄(t)|(F̃ (t)(1 − F̃ (t))−1/2 ≤ C(pF̃ (t))1/2.

Combining (5.70) and (5.71) gives

(5.72) HC(t, F̃ )|
√

h(t)− 1| ≤ Lp[(p
1−θF̃ (t))1/2 + 1].

At the same time, a direct use of Lemma 3.3 also gives that with probability
at least 1− o(1/p),

(5.73) g(t) ≤ Lp[(p
1−θF̃ (t))1/2 + 1].

Inserting (5.72) and (5.73) into (5.68) and recalling |h(t)− 1| → 0 gives the
claim. #
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5.19. Proof of Theorem 3.2. Write for short Ŵp(t) = p−1/2HC(t, F̄p)

and W (t) = p−1/2HC(t, F̃p).
First consider the case of θ ≥ 1

2 . By triangle inequality, Theorem 3.1, and
Lemma 2.3 we have

sup
Ψ̄−1( 12 )<t<s∗p

|Ŵp(t)−W0(t)| ≤ sup
Ψ̄−1( 12 )<t<s∗p

|Ŵp(t)−W (t)|+ sup
t>Ψ̄−1( 12 )

|W (t)−W0(t)|

(5.74)

≤ Lp(p
−β + p−θ/2

√
F̃ (t) + p−1/2) ≤ Lp(p

−θ/2 + p−β).

This result is parallel to Lemma 2.3. When r < β, similar to (5.51) we can
obtain that for all u satisfying |u| ≤ c4/τp,

Ŵp(t
∗∗
p + u)− Ŵp(t

∗∗
p ) ≤ Lp(p

− θ
2 + p−β) + [Lpp

−c0(β,r,a) − c7u2

1 + u2
] sup
{t≥0}

W̃0(t),

(5.75)

for some constant c7 > 0, where t∗∗p is as in (5.51). It is easy to check

that sup{t≥0} W̃0(t) = Lpp−δ(β,r) > p−
1−θ
2 > p−θ/2, c0(β, r, a, θ) < β, and

p−c0(β,r,a) supt≥0 W̃0(t) ≥ p−β. Thus, for any u > Lpp−c2(β,r,a) with c2(β, r, a) <

min{θ−2δ(β,r)
4 , c0(β,r,a)2 }, it holds that Ŵp(t∗∗p +u)−Ŵp(t∗∗p ) = −Lpp−2c2(β,r,a)(1+

o(1)) < 0 for all |u| ≤ c4/τp. Again, using similar arguments as in Theorem

2.2, we can prove that Ŵp(t) − Ŵp(t∗∗p ) < 0 for all |t − t∗∗p | > c4/τp. Thus,
we have proved that

|tHC
p − t∗∗p | = |THC(F̄p)− t∗∗p | ≤ Lpp

−c2(β,r,a).

This together with (5.52) completes the proof of the Theorem when r < β.
Now we consider the case where r ≥ β. If t > τp or t <

√
2β log p−∆1 with

∆1 = d0 log log p/
√
log p, by Lemma 2.4 and (5.74), it holds Ŵp(t) = W0(t)+

(Ŵp(t)−W0(t)) "
1√
2
p−β/2 + Lpp−β + Lpp−θ/2. Recall that β < 1− θ ≤ θ.

Thus Ŵp(t) "
1√
2
p−β/2(1 + o(1)). If

√
2β log p − ∆1 < t < τp, using similar

argument we obtain that Ŵp(t) = W0(t)+(Ŵp(t)−W0(t)) ! p−β/2(1−o(1)).
Thus,

tHC
p ∈ (

√
2β log p− ∆1, τp)

and the claim in the theorem follows.
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Next we consider the case where θ < 1
2 . By Theorem 3.1 and Lemma 2.4

and noting that 1− θ > β > 1−θ
2 , for any t, t+ u ∈ [sp(θ), s∗p] we have

Ŵp(t+ u)− Ŵp(t) = (Ŵp(t+ u)−W0(t+ u))− (Ŵp(t)−W0(t))

+ (W0(t+ u)−W0(t)) ≤ Lpp
−θ/2

√
F̃ (t) + Lpp

−β + (W0(t+ u)−W0(t)).

Since p−θF̃ (t) ≤ p−1+θ and β > (1− θ)/2, it follows that

Ŵp(t+ u)− Ŵp(t) ≤ Lpp
−(1−θ)/2 + Lpp

−β + (W0(t+ u)−W0(t)).(5.76)

So the stochastic behavior of W0(t) in the range t ∈ [sp(θ), s∗p] determines

the stochastic behavior of Ŵp(t + u) − Ŵp(t). By direct calculations, we
obtain that if (β, r, θ) falls in either of the six sub-regions as follows

• 1/3 < θ ≤ 1/2, (1 − θ)/2 < β < 1− θ, r > max{ρ∗θ(β),
1−2θ
4 },

• 1
4 < θ ≤ 1

3 , (1 − θ)/2 < β ≤ 1 − 2θ, r > max{1−2θ
4 , ρ∗θ(β)}, |r −√

1− 2θ| ≥
√
1− 2θ − β

• 1
4 < θ ≤ 1

3 , 1− 2θ < β ≤ 1− θ, r > max{1−2θ
4 , ρ∗θ(β)}

• 0 < θ ≤ 1
4 , (1 − θ)/2 < β ≤ 3(1 − 2θ)/4, r > max{β3 , ρ

∗
θ(β)}, |r −√

1− 2θ| ≥
√
1− 2θ − β

• 0 < θ ≤ 1
4 , 3(1 − 2θ)/4 < β ≤ 1 − 2θ, r > max{1−2θ

4 , ρ∗θ(β)}, |r −√
1− 2θ| ≥

√
1− 2θ − β

• 0 < θ ≤ 1
4 , 1− 2θ < β < 1− θ, r > max{1−2θ

4 , ρ∗θ(β)},

then t∗∗p ∈ (sp(θ), s∗p) and the maximum of W0(t) is achieved in (sp(θ), s∗p).
So it reduces to the θ > 1/2 case. Note that the six regions above can be
summarized into Condition (a)-(b) in Theorem 1.3. By (5.76) and using
similar proof as that for θ ≥ 1

2 we finish the proof of Theorem 3.2.

5.20. Proof of Lemma 3.4. Introduce up(t) = up(t, εp, τp,Ω) =
∑p

j=1E
[
µ̃(j)2·

1{|Z̃(j)| ≥ t}
]
. The following lemma is proved in the appendix.

Lemma 5.12. For any t > 0, there are universal constants C1 > 0
and C2 > 0 such that for sufficiently large p, C1 min{t, 1

Kp
√
2 log p

}√np ≤
mp(t,εp,τp,Ω)
up(t,εp,τp,Ω) ≤ C2(1+ t)

√
np and mp(t, εp, τp,Ω) ≤ C2(1+ t)K2

pτ
2
pn

−1/2
p pF̃ (t),

where F̃ (t) is defined in Lemma 5.2.

The following lemma is proved in Section 5.21.
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Lemma 5.13. There is a constant C > 0 such that with probability at
least 1− o(1/p), for all 0 ≤ t ≤

√
2 log(p),

√
np|Mp(t, Z̃, µ)−mp(t, εp, τp,Ω)| ≤ CK5

p(log p)
4
√

pF̃ (t),(5.77)

|Vp(t, Z̃, µ)− vp(t, εp, τp,Ω)| ≤ CK4
p(log p)

9/2
√

pF̃ (t).(5.78)

Write for short Ṽp(t) = Vp(t, Z̃, µ), M̃p(t) = Mp(t, Z̃, µ),mp(t) = mp(t, εp, τp,Ω),

vp(t) = vp(t, εp, τp,Ω), S̃ep(t) = S̃ep(t, εp, τp,Ω), Sep(t) = Sep(t, Z̃, µ,Ω),

F̃ (t) = F̃ (t, εp, τp,Ω) and F̃p(t) = F̃p(t, Z̃, µ,Ω). We consider the two cases

1) t > τp + s̃p or pF̃ (t) ≤ K8
p(log p)

10, and 2) t ≤ τp + s̃p and pF̃ (t) >
K8

p(log p)
10, separately, where s̃p is defined in Lemma 5.4.

Consider the first case. It suffices to show (1a) p(θ−1)/2S̃ep(t) ≤ Lpp−1/2+
Lpp−max{4β−2r,3β+r}/4 and (1b) p(θ−1)/2Sep(t) ≤ Lpp−max{4β−2r,3β+r}/4 +
Lpp−1/2. Claim (1a) can be proved using the same arguments as in Lemma
2.1, so we only need to prove (1b).

Consider (1b). Let η be a p× 1 vector such that η(j) = 1{(Ωµ̂Z̃
t )(j) .= 0},

1 ≤ j ≤ p. Also, for any p × 1 vectors x and y, let x ◦ y be the p × 1
vector such that (x ◦ y)(j) = x(j)y(j), 1 ≤ j ≤ p. By definitions, it

is seen that M̃p(t) = (µ̂Z̃
t )

′Ωµ = (µ̂Z̃
t )

′Ω(µ ◦ η). Using Cauchy-Schwartz

inequality, |M̃p(t)| ≤
(
(µ̂Z̃

t )
′Ωµ̂Z̃

t

)1/2(
(µ ◦ η)′Ω(µ ◦ η)

)1/2
. Recalling that

Ṽp(t) = (µ̂Z̃
t )

′Ωµ̂Z̃
t , it follows that

|Sep(t)| = 2|M̃p(t)|(Vp(t))
−1/2 ≤ 2

(
(µ ◦ η)′Ω(µ ◦ η)

)1/2
.

Since the largest eigenvalue of Ω is no greater than Kp, the last term above

≤ 2K1/2
p ‖µ◦η‖ and so |Sep(t)| ≤ 2K1/2

p ‖µ◦η‖. At the same time, by Lemma

3.1, with probability at least 1− o(1/p), pF̃p(t) ≤ p|F̃p(t)− F̃ (t)|+ pF̃ (t) ≤
Lp(pF̃ (t))1/2 + pF̃ (t) ≤ Lpp1−max{4β−2r,3β+r}/2 if t ≥ τp + s̃p. Similarly, we

can show that pF̃p(t) ≤ Lp if pF̃ (t) ≤ K8
p(log p)

10. Thus, in case (1b) we have

pF̃ (t) ≤ Lpp1−max{4β−2r,3β+r}/2 + Lp. By definitions, this implies that µ̂Z̃
t

has no more than Lpp1−max{4β−2r,3β+r}/2+Lp non-zero coordinates. Since Ω
is Kp-sparse, η also has no more than Lpp1−max{4β−2r,3β+r}/2 + Lp nonzero

coordinates. Therefore, ‖µ ◦ η‖ ≤ Lpp
1−θ
2

−max{4β−2r,3β+r}/4 + Lpp−θ/2, and
(1b) follows from the assumption that Kp ≤ Lp.

Consider the second case. Denote h(t) = vp(t)/Ṽp(t). The key is to show

(5.79) |h(t) − 1| ≤ Lp(pF̃ (t))−1/2.
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Towards this end, we write |h(t) − 1| = I · II · h(t) · (pF̃ (t))−1/2, where
I = |Ṽp(t) − vp(t)|(pF̃ (t))−1/2, and II = (pF̃ (t))/vp(t). First, by Lemma
5.13, I ≤ Lp with probability at least 1 − o(1/p). Second, by Lemma 5.4,
II ≤ C with some constant C > 0 whose value depends on whether r < β
and t ≤ τp+s̃p or r ≥ β. Last, by Lemma 5.13 and (5.78), with probability at

least 1− o(1/p), Ṽp(t)/vp(t) ≥ 1−CK4(log p)9/2 (pF̃ (t))1/2

vp(t)
≥ 1− o(1), where

we note that pF̃ (t) ≥ K8
p(log p)

9 and CK4
p(log(p))

9/2(pF̃ (t))1/2(vp(t))−1 "

K4
p(log(p))

9/2(pF̃ (t))−1/2 = o(1). As a result, with probability at least 1 −
o(1/p), h(t) = Ṽp(t)

vp(t)
" 1. Combining these gives (5.79).

Next, write

(5.80) |Sep(t)− S̃ep(t)| = | M̃p(t)√
Ṽp(t)

− mp(t)√
vp(t)

| ≤ III + IV,

where III = |M̃p(t)−mp(t)|
√

h(t)/
√

vp(t) and IV = mp(t)|
√

h(t)−1|/
√

vp(t).

Recall that h(t) " 1 + Lp and that CpF̃ (t) ≤ vp(t). It follows from Lemma
5.13 that with probability at least 1−o(1/p), III " |M̃p(t)−mp(t)|(pF̄p(t))−1/2 ≤
Lpn

−1/2
p . At the same time, note that IV ≤ |h(t)−1|mp(t)(vp(t))−1/2. On one

hand, by Lemmas 5.4 and 5.12, mp(t) ≤ Lpn
1/2
p up(t) ≤ LpK2

pn
−1/2
p pF̃ (t).

On the other hand, since vp(t) ≥ CpF̃ (t), by (5.79), we have IV ≤ Lpn
−1/2
p

with probability at leats 1− o(1/p). Combining these with (5.80) gives the
claim.

By going through the proof above we see that if further Ω ∈ M̃∗
p (a, b,Kp),

then the two cases at the very beginning can be reduced to 1) pF̃ (t) ≤
K8

p(log p)
10, and 2) pF̃ (t) > K8

p(log p)
10, and the claim |Sep(t) − S̃ep(t)| ≤

Lpn
−1/2
p can be proved using same arguments. Thus, Lemma 3.4 is proved.

#

5.21. Proof of Lemma 5.13. Write for short M̃p(t) = Mp(t, Z̃, µ), Ṽp(t) =
Vp(t, Z̃, µ), mp(t) = mp(t, εp, τp,Ω), and vp(t) = E[Vp(t, Z̃, µ)]. The following
Lemma is proved in Section 5.22.
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Lemma 5.14. For any t ∈ (0,
√
2 log p],

P
(√

np|M̃p(t)−mp(t)| ≥ CK3
p(log p)

2λ
)

≤ CK3
p(log p)

2 exp
(
− λ2c2

2Kp

√
2 log(p)npmp(t)

ψ
( λc2√

npmp(t)

))
,

P
(
|Ṽp(t)− vp(t)| ≥ CK3

p(log p)
2λ

)
≤ CK3

p(log p)
2 exp

(
− λ2

4KppF̃ (t)
ψ
( λ

2KppF̃ (t)

))
,

where ψ is as in Bennett’s lemma [37, Page 851].

Since the proofs are very similar, we only show the first one. The goal is to
show that with probability 1−o(1/p3), |M̃p(t)−mp(t)| ≤ CK4

p(log(p))
9/2(pF̃ (t))−1/2

for any 0 ≤ t ≤
√

2 log(p). Once this is shown, we lay out an evenly spaced
grid on [0,

√
2 log(p)] with an inter-distance of 1/p, and the claim follows by

similar argument as in the proof of Lemma 3.1.

Since Lemma 5.12 ensures that mp(t) ≤ CK2
p(log p)

3/2pn−1/2
p F̃ (t), by the

monotonicity of xψ(x) and Lemma 5.14,

P
(√

np|M̃p(t)−mp(t)| ≥ CK3
p(log p)

2λ
)

(5.81)

≤ CK3
p(log p)

2 exp
(
− λ2c2

2CK3
p(log p)

2pF̃ (t)
ψ(

λc2

CK2
p (log p)

3/2pF̃ (t)
)
)
.

We now show the desired claim for the case pF̃ (t) ≥ (log(p))3/2 and the case
pF̃ (t) ≤ (log(p))3/2 separately.

Consider the first case. Let λ = CK2
p(log p)

3/2
√

pF̃ (t). Direct calculations

show that λ/[K2
p (log p)

3/2pF̃ (t)] ≤ C(pF̃ (t))−1/2 and λ2/[K3
p (log p)

2pF̃ (t)] ≥
C log(p)Kp. By (5.81) and noting that limx→0+ ψ(x) = 1,

P

(
√
np|M̃p(t)−mp(t)| ≥ CK5

p(log p)
7/2

√
pF̃ (t)}

)

≤ CK3
p(log p)

2 exp
(
− C2Kp(log p)

2

)
≤ o(1/p3).

Consider the second case. Let λ = CK2
p(log p)

3. It is seen that λ/[K2
p (log p)

3/2pF̃ (t)] ≥
C(log(p))3/2/(pF̃ (t)). Using Lemma 5.14 where we note that ψ(x) ∼ log(x)

x
when x → ∞ [37, Page 852],

P
(√

np|M̃p(t)−mp(t)| ≥ CK5
p(log p)

7/2
)
≤ C(log p)5 exp

(
− C(log p)

2

)
≤ o(1/p3).
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This together with pF̃ (t) ! p(1−Kpεp)Ψ̄(t) ! (log p)−1/2 yields the desired
claim. #

5.22. Proof of Lemma 5.14. Since the proofs are similar, we only show
the first one. By Lemma 1.1, we can partition {1, · · · , p} into N = N1N2 ≤
K3

p log
2(p) sets R1, · · · , RN such that for any fixed index 1 ≤ k ≤ N , the

collection of bivariate random variables {(µ̃(j), Z̃(j)) : j ∈ Rk} are indepen-
dent of each other. Recall that M̃p(t) =

∑p
j=1 µ̃(j)sgn(Z̃(j))1{|Z̃(j)| ≥ t}

and mp(t) = E[M̃p(t)]. The partition allows us to write M̃p(t) − mp(t) =
∑N

k=1[M̃
(k)
p (t) −m(k)

p (t)], where M (k)
p (t) =

∑
j∈Rk

µ̃(j)sgn(Z̃(j))1{|Z̃(j)| ≥
t} and m(k)

p (t) = E[M (k)
p (t)], 1 ≤ k ≤ N . It follows that for any λ > 0,

(5.82) P (
√
np|M̃p(t)−mp(t)| ≥ Nλ) ≤

N∑

k=1

P (
√
np|M̃ (k)

p (t)−m(k)
p (t)| ≥ λ).

Fix 1 ≤ k ≤ N , using Bennett’s inequality [37, Page 851],

P (
√
np|M̃ (k)

p (t)−m(k)
p (t)| ≥ λ) ≤ exp

(
− λ2

2|Rk|σ2
k

ψ
(λKp

√
2 log p

|Rk|σ2
k

))
,

where ψ is as in [37, Page 851], and |Rk|σ2
k is the variance of

√
npM̃

(k)
p (t).

Using Lemma 5.12, |Rk|σ2
k ≤ npup(t) ≤ c−1

2 Kp

√
2 log(p)npmp(t). By the

monotonicity of the function xψ(x) [37, Page 851], it follows that

P
(√

np|M̃ (k)
p (t)−m(k)

p (t)| ≥ λ
)
≤ exp

(
− λ2c2

2Kp

√
2 log(p)npmp(t)

ψ
( λc2√

npmp(t)

))
.

Inserting this into (5.82), the claim follows by recalling N ≤ CK3
p log

2(p).
#

5.23. Proof of Lemma 3.5. Write for short M̂p(t) = Mp(t, Ẑ, µ), M̃p(t) =
Mp(t, Z̃, µ), V̂p(t) = Vp(t, Ẑ, µ), and Ṽp(t) = Vp(t, Z̃, µ),mp(t) = mp(t, εp, τp,Ω),

and vp(t) = vp(t, εp, τp,Ω). We discuss the case 1) t > τp + s̃p or pF̃ (t) ≤
K10

p (log p)10 and the case 2) t ≤ τp+ s̃p and pF̃ (t) > K10
p (log p)10 separately.

Consider the first case. First, in the proof of Lemma 3.4, we have shown

that Sep(t, Z̃, µ,Ω) ≤ Lpp
1−θ
2 − 1

4 max{4β−2r,3β+r} +Lpp−θ/2. Second, by simi-
lar argument as in the proof Lemma 3.4 part (1b), and using Lemma 3.3, we

can prove that Sep(t, Ẑ, µ, Ω̂) ≤ Lpp
1−θ
2 − 1

4 max{4β−2r,3β+r} + Lpp−θ/2. Com-
bining these gives the claim.
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Consider the second case. The key is that with probability at least 1 −
o(1/p),

max{√np|M̂p(t)− M̃p(t)|, |V̂p(t)− Ṽp(t)|} ≤ Lp · [p1−θ/2F̃ (t) + (pF̃ (t))1/2],

(5.83)

max{|(Ṽp(t)− vp(t))/vp(t)|, |
√
np(M̃p(t)−mp(t))/vp(t)|} = o(1).

(5.84)

for all t ≤ τp + s̃p. To see (5.83), note that |M̂p(t) − M̃p(t)| = |(µ̂Ẑ
t −

µ̂Z̃
t )

′Ωµ| ≤ ‖µ̂Ẑ
t − µ̂Z̃

t ‖1 · ‖Ωµ‖∞, where by the Kp-sparsity of Ω, ‖Ωµ‖∞ ≤
Kpτpn

−1/2
p , and so |M̂p(t) − M̃p(t)| ≤ Kpτpn

−1/2
p ‖µ̂Ẑ

t − µ̂Z̃
t ‖1. Similarly,

‖Ω(µ̂Ẑ
t + µ̂Z̃

t )‖∞ ≤ ‖Ω‖1‖µ̂Ẑ
t + µ̂Z̃

t ‖∞ ≤ 2Kp, and so |V̂p(t) − Ṽp(t)| ≤
|(µ̂Ẑ

t − µ̂Z̃
t )

′Ω(µ̂Ẑ
t + µ̂Z̃

t )| ≤ 2Kp‖µ̂Ẑ
t − µ̂Z̃

t ‖1. By similar argument as in the
proof of Lemma 3.3, it is seen that with probability at least 1 − o(1/p),

‖µ̂Ẑ
t − µ̂Z̃

t ‖1 ≤ pGp(t), where Gp(t) is defined therein. It is shown in Lemma

3.3 that Gp(t) ≤ CK4
p(log p)

3/2p−θ/2F̃ (t) + CK3
p(log p)

4p−1/2(F̃ (t))1/2 with
probability at least 1− o(1/p). Combining these gives (5.83).

To see (5.84), note that by Lemma 5.13, with probability at least 1 −
o(1/p),

(5.85) |Ṽp(t)− vp(t)| ≤ CK4
p(log(p)

9/2(pF̃ (t))1/2.

Recall that by Lemma 5.4, vp(t) ≥ CpF̃ (t) with some constant C > 0
whose value depends on whether r < β or r ≥ β. Combining this with
the fact that pF̃ (t) ≥ K10

p (log p)10 for all t ≤ τp + s̃p, it is seen that

CK4
p(log(p)

9/2(pF̃ (t))1/2 = o(pF̃ (t)) = o(vp(t)). Inserting this into (5.85)

gives that |(Ṽp(t)− vp(t))/vp(t)| = o(1) with probability at least 1− o(1/p).
By similar argument, |√np(M̃p(t)−mp(t))/vp(t)| = o(1) with probability at
least 1− o(1/p). Combining these gives (5.84).

We now proceed to show the lemma in the second case. Let h(t) =
V̂p(t)/Ṽp(t). Write

(5.86)
√
np|Sep(t, Z, µ, Ω̂)−Sep(t, Z̃, µ,Ω)| ≤

√
1/h(t)·I+|

√
1/h(t)−1|·II,

where I =
√
np|M̂p(t) − M̃p(t)|(Ṽp(t))−1/2 and II =

√
npM̃p(t)(Ṽp(t))−1/2.

Recall that by Lemmas 5.4 and 5.12,
√
npmp(t) ≤ K2

p(log p)
3/2pF̃ (t) "

K2
p(log p)

3/2vp(t). Using Lemma 5.4 and (5.83)-(5.84),

|h(t) − 1| = pF̃ (t)

vp(t)

vp(t)

Ṽp(t)
|Ṽp(t)− V̂p(t)|(pF̃ (t))−1 ≤ Lp[p

−θ/2 + (log p)5/2(pF̃ (t))−1/2],
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I ≤ Lp(pF̃ (t)/vp(t))
1/2(pF̃ (t))−1/2[p1−θ/2F̃ (t)+(pF̃ (t))1/2] ≤ Lp·[p−θ/2(pF̃ (t))1/2+1],

and

II " (pF̃ (t)/vp(t))(pF̃ (t))−1√np[|M̃p(t)−mp(t)|+mp(t)] ≤ Lp.

Recall that pF̃ (t) ≥ K10
p (log p)10. This together with the inequality above

for h(t) ensures that |h(t)− 1| ≤ o(1). Inserting these into (5.86) gives

|Sep(t, Z, µ, Ω̂)− Sep(t, Z̃, µ,Ω)| ≤ Lp · n−1/2
p [p−θ/2(pF̃ (t))1/2 + 1],

and the claim follows.
Similarly to Lemma 3.4, we see that if in addition Ω ∈ M̃∗

p (a, b,Kp), then

the term Lpp
1−θ
2 − 1

4 max{4β−2r,3β+r} in the upper bound of the claim can be
removed using the same proof as above. This concludes the proof of the
lemma. #

5.24. Proof of Theorem 2.3. Note that for any 0 < x < 1,

Φ̄−1(x) =
√

−2 log x+O
( log log( 1√

2π log x
)

log x−1

)
,(5.87)

where the last term is negligible compared to the first term. So Φ̄−1(misclassification|t)
can be well approximated by E(t) ≡

√
−2 log

(
P (Y Lt(X,Ω) < 0|t)

)
.

We write S̃ep(t) = S̃ep(t, εp, τp,Ω), Sep(t) = Sep(t, Z̃, µ,Ω), and Tideal =
Tideal(εp, τp,Ω) for short. The following lemmas are proved in Section 5.25
and Section 5.26 respectively.

Lemma 5.15. Fix a constant κ > 0. As p → ∞, for any sequence tp ∈
(0, τp + s̃p] with s̃p defined in Lemma 5.4 such that S̃ep(tp) ≥ Lppκ, we have

P (Y Lt(X,Ω) < 0|t = tp) = Φ̄
(
(1 + o(1))12 S̃ep(tp)

)
.

Lemma 5.16. For any sequence of closed subset Ap ⊂ [0, τp+ s̃p] with s̃p
defined in lemma 5.4, if there exists a constant κ > 0 such that supt∈Ap

{S̃ep(t)} ≥
pκ for sufficiently large p, then

sup
t∈Ap

E(t) "
1

2
sup

0<t≤τp+s̃p
S̃ep(t).

Now we proceed to prove the theorem. The key is to show

min
t>τp+s̃p

P (Y Lt(X,Ω) < 0|t) > Φ̄
((

1 + o(1)
)1
2
S̃ep

(
Tideal

))
,(5.88)

min
0<t≤τp+s̃p

P (Y Lt(X,Ω) < 0|t) = Φ̄
((

1 + o(1)
)1
2
S̃ep

(
Tideal

))
.(5.89)
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Then combining the above results completes the proof of the theorem.
We first prove (5.88). When r < β, by proof (1b) in Lemma 3.4 we have

Sep(t, Z̃, µ,Ω) ≤ Lpp
1−θ
2 − 1

4 max{4β−2r,3β+4} for all t > τp+s̃p with probability
at least 1− o(p−1). When r ≥ β, by Lemma 3.4 we have

Sep(t) = S̃ep(t) + (Sep(t)− S̃ep(t)) ≤ S̃ep(t) + Lpp
−θ/2.

Following the same lines as those in the proof of Lemma 2.2 we can show that

for r ≥ β, S̃ep(t) ≤ Lpp
1−θ
2 −c8 with c8 = c8(β, r) > δ(β, r) for all t > τp+ s̃p.

Combining these and recalling that r > ρ∗θ(β) and β ∈ (1−θ2 , 1− θ), we have

Sep(t) ≤ Lpp
1−θ
2 −c9(β,r) with c9(β, r) some constant whose value depends on

whether r < β or r ≥ β and satisfies c9(β, r) > δ(β, r), for all t > τp + s̃p,

with probability at least 1−o(p−1). Recall that S̃ep
(
Tideal

)
= Lpp

1−θ
2 −δ(β,r).

Thus,

P (Y Lt(X,Ω) < 0|t) = Φ̄
(1
2
Sep(t)

)
≥ Φ̄

(
Lpp

1−θ
2 −c9(β,r)

)
(1− o(p−1))

& Φ̄
((

1 + o(1)
)1
2
S̃ep

(
Tideal

))
.

This completes the proof of (5.88).
Next we prove (5.89). Since (5.87) ensures that Φ̄−1(misclassification|t)

can be well approximated by E(t), we only need to prove

sup{0<t≤τp+s̃p}E(t) ≤ 1

2
sup{0<t≤τp+s̃p} S̃ep(t)(1 + o(1)).(5.90)

Then, Φ̄
(
1
2 sup0<t≤τp+s̃p S̃ep(t)(1 + o(1))

)
provides a lower bound for the

misclassification rate P (Y Lt(X,Ω) < 0|t) for 0 < t ≤ τp + s̃p. Taking
tp = Tideal in Lemma 5.15 and noting that Tideal ∈ (0, τp + s̃p] shows

P (Y Lt(X,Ω) < 0|Tideal) = Φ̄
(
1
2 sup0<t≤τp+s̃p S̃ep(t)(1 + o(1))

)
. Combining

these yields (5.89).

We now proceed to prove (5.90). Define Ap = {t : t ∈ (0, τp+ s̃p], S̃ep(t) ≤
1
2 sup0<t≤τp+s̃p{S̃ep(t)}}. Then by Lemma 5.16 and (5.87), for large enough
p,

supt∈Ap
E(t) ≤ (1 + o(1))

1

2
sup0<t≤τp+s̃p{S̃ep(t)}.

So it remains to show that uniformly for all t ∈ Ac
p ≡ (0, τp + s̃p] \ Ap,

(5.91) E(t) ≤ (1 + o(1))
1

2
sup

0<t≤τp+s̃p
S̃ep(t).
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We proceed to prove the above claim (5.91). Introduce the event

Bp = { sup
t∈Ac

p

|M̃p(t)−mp(t)|
mp(t)

≤ Lpp
−κ, sup

t∈Ac
p

|Ṽp(t)− vp(t)|
pF̃ (t)

≤ Lpp
−κ}.

where κ = (1 − θ)/2 − δ(β, r) > 0. The proof has two steps: (a) show that
P (Bp) ≥ 1 − o(1/p), and then (b) show that on the event Bp, the desired
claim in the lemma holds.

We first show (a). Recall that we have proved in (2.13) that sup0<t<
√
2 log p S̃ep(t) =

Lppκ. By Lemma 5.4 and (5.78), vp(t) ≥ CpF̃ (t) with some constant C >
0, where the value of C depends on whether r < β or r ≥ β. More-
over, by definition of Ac

p, S̃ep(t) ≥ 1
2Lpp−κ for t ∈ Ac

p. It follows that

mp(t) = 1
2

√
vp(t)S̃ep(t) ≥

√
CpF̃ (t)Lppκ. On the other hand, by Lemma

5.12 mp(t) ≤ Lpp1−θ/2F̃ (t), so we can derive pF̃ (t) ≥ Lpp2κ+θ and conse-
quently,

√
npmp(t) ≥ Lpp2κ+θ and vp(t) ≥ Lpp2κ+θ. By Lemma 5.14 and

using similar arguments as those in Lemma 5.13, we can prove that for each
t ∈ Ac

p,

P
( |M̃p(t)−mp(t)|

mp(t)
≥ Lpp

−κ
)
≤ o(

1

p3
), P

( |Ṽp(t)− vp(t)|
vp(t)

≥ Lpp
−κ

)
≤ o(

1

p3
).

Using the grid point method as that for proving (3.1) shows that P (Bp) ≥
1− o(1/p).

We now show (b). On the event Bp,

M̃p(t)/
√

Ṽp(t) ≤ (1 + Lpp
−κ)mp(t)/

√
vp(t) ≤ (1 + Lpp

−κ)
1

2
sup

0<t≤τp+s̃p
S̃ep(t).

(5.92)

This together with the definition of E(t) completes the proof of claim (b).
By (5.92), uniformly over all 0 < t ≤ τp + s̃p,

P (Y Lt(X,Ω) < 0|t) ≥ Φ̄
(
(1 + Lpp

−κ)
1

2
sup

0<t≤τp+s̃p
S̃ep(t)

)
P (Bp)

≥ Φ̄
(
(1 + Lpp

−κ)
1

2
sup

0<t≤τp+s̃p
S̃ep(t)

)
(1− o(

1

p
)).

This, together with (5.87), proves (5.91) and completes the proof of the
theorem. #
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5.25. Proof of Lemma 5.15. Write for short S̃ep(t) = S̃ep(t, εp, τp,Ω),
M̃p(t) = Mp(t, Z̃, µ), Ṽp(t) = Vp(t, Z̃,Ω), mp(t) = mp(t, εp, τp,Ω), and
vp(t) = vp(t, εp, τp,Ω). Define event

Bp = {|Ṽp(tp)−vp(tp)| ≤ Lpp
−θ/2pF̃ (tp), |M̃p(tp)−mp(tp)| ≤ Lpp

−θ/2mp(tp)}.

The key is to first show that (a)

(5.93) P (Bc
p) ≤ exp

(
− 1

2
log(p)(S̃ep(tp))

2 · (1 + o(1)
)
,

and then show that (b) on the event Bp. Combining (a) and (b) proves the
desired claim holds.

We first prove claim (a). Note that by Lemma 5.4, vp(t) ≥ CpF̃ (t) with
some constant C > 0, where the value of C depends on whether r ≥ β
or r < β. Further by Lemma 5.12, 0 <

√
npmp(t) ≤ K2

p(log p)
3/2pF̃ (t) ≤

CK2
p(log p)

3/2vp(t), and so that
√
npmp(t) ≥ Cnpm2

p(t)/[K
2
p (log p)

3/2vp(t)] =

Cnp

K2
p(log p)

3/2 (S̃ep(t))
2. Taking λp = Kp(log p)

(√
npS̃ep

2
(tp)

c2mp(tp)

)1/2
mp(tp), then λp ≤

Lpmp(tp). It follows that P
(√

np|M̃p(tp)−mp(tp)| ≥ CK3
p(log(p))

2·Lpmp(tp)
)
≤

P (
√
np|M̃p(tp) − mp(tp)| ≥ CK3

p(log(p))
2λp), where by Lemma 5.14, the

right hand side

≤ CK3
p(log p)

2 exp
(
−

(
S̃ep(tp)

)2
(log p)

)
.

Since S̃ep(tp) ≥ Lppκ → ∞, it follows easily that
(5.94)

P
(
|M̃p(tp)−mp(tp)| ≥ Lpp

−θ/2mp(tp)
)
≤ exp

(
−
(
S̃ep(tp)

)2
(log p)(1+o(1))

)
.

Next we consider Ṽp(t). Let λp = S̃ep(tp)
√

(log p)KppF̃ (tp). Using the

same technique as for proving (5.94) we obtain that λp ≤ Lpp−θ/2pF̃ (t).
Further, by Lemma 5.14 we have
(5.95)

P (|Ṽp(tp)−vp(tp)| ≥ Lpp
−θ/2pF̃ (tp)) ≤ exp

(
−
(
S̃ep(tp)

)2
(log p)

(
1+o(1)

))
.

Combing (5.94) with (5.95) proves (5.93).

On the set Bp, since vp(tp) ≥ CpF̃ (tp) by Lemma 5.4, we have Ṽp(tp)
vp(tp)

=

1 + o(1), M̃p

mp(tp)
= 1 + o(1). Therefore,

(5.96)
M̃p(tp)√
Ṽp(tp)

=
mp(tp)√
vp(tp)

(
1 + o(1)

)
= S̃ep(tp)

(
1 + o(1)

)
.
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Combining (5.93) with (5.96), the misclassification rate can be bounded
as

P (Y Lt(X,Ω) < 0|tp) ≤ Φ̄

(
1

2
S̃ep(tp)

(
1 + o(1)

))
+ P (Bc

p) " Φ̄

(
1

2
S̃ep(tp)

(
1− o(1)

))
,

and

P (Y Lt(X,Ω) < 0|tp) ≥ Φ̄

(
1

2
S̃ep(tp)

(
1 + o(1)

))
P (Bp) ! Φ̄

(
1

2
S̃ep(tp)

(
1 + o(1)

))
.

Thus the claim follows easily. #

5.26. Proof of Lemma 5.16. Recall that P (Y Lt(X,Ω) < 0|t) = Φ̄
(
M̃p(t)/

√
Ṽp(t)

)
.

By (5.87), to prove the lemma, it suffices to prove that uniformly for all
t ∈ Ap,

M̃p(t)/
√

Ṽp(t) ≤ (1 + o(1))
1

2
sup
t∈Ap

S̃ep(t).(5.97)

Write S̃ep(t) = S̃ep(t, εp, τp,Ω) for short. We consider the cases (a) pF̃ (t) ≥
K7

p(log p)
7,

√
npmp(t) ≥ K7

p(log p)
7, (b)

√
npmp(t) ≤ K7

p(log p)
7, pF̃ (t) ≥

K7
p(log p)

7, and (c)
√
npmp(t) ≥ K7

p(log p)
7, pF̃ (t) ≤ K7

p(log p)
7 separately.

For case (a), define the event

Bp = { sup
t∈Ap

|M̃p(t)−mp(t)|
mp(t)

≤ 1√
log p

, sup
t∈Ap

|Ṽp(t)− vp(t)|
pF̃ (t)

≤ 1√
log p

}.

We will first prove P (Bc
p) ≤ o(1/p). Let λ = λp = CK−3

p (log p)−5/2√npmp(t)
with C > 0 some constant. Then by Lemma 5.14, using similar arguments
as those in Lemma 5.13 we obtain that with probability at least 1− o(p−3),
|M̃p(t)−mp(t)| ≤ (log p)−1/2mp(t). Using the grid points method as that in
Theorem 3.1, we can prove that except for a probability of o(1/p),

sup
t∈Ap,

√
npmp(t)≥(log p)19

|M̃p(t)−mp(t)|
mp(t)

≤ (log p)−1/2

As for Ṽp(t), using similar argument and by Lemma 5.13 we obtain that
with probability at least 1− o(1/p),

sup
t∈Ap,pF̃ (t)≥(log p)19

|Ṽp(t)− vp(t)|
pF̃ (t)

≤ (log p)−1/2.(5.98)
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Thus we have proved the desired claim that P (Bp) ≥ 1− o(1/p).

Next by Lemma 5.4, pF̃ (t)/vp(t) ≤ C for all 0 < t ≤ τp+ s̃p. Then on the
event Bp,

M̃p(t)

mp(t)
= 1 + o

( 1√
log p

) Ṽp(t)

vp(t)
= 1 + o

( 1√
log p

)pF̃ (t)

vp(t)
= 1 + o(

1√
log p

),

where the o(1) is uniformly over all t. Therefore, for any t ∈ Ap,

M̃p(t)/
√

Ṽp(t) = (1 + o(1))mp(t)/
√

vp(t) ≤ (1 + o(1))
1

2
sup
t∈Ap

S̃ep(t),

and (5.97) has been proved.
Now we consider case (b). By the proof of Lemma 5.13 we obtain that

except for a probability of o(1/p), for any t ∈ Ap, M̃p(t) ≤ mp(t)+Lpn
−1/2
p ≤

Lpn
−1/2
p . Since we assumed that pF̃ (t) ≥ K7

p(log p)
7, by (5.98) and the

same argument as that for (5.84), we have Ṽp(t)
vp(t)

= 1 + o( 1√
log p

). Since by

lemma 5.4, vp(t) ≥ CpF̃ (t) ≥ C(log p)−1/2 with some constant C > 0 whose
value depends on whether r ≥ β or r < β. Thus, with probability at least
1− o(1/p), for any t ∈ Ap,

(5.99) M̃p(t)/
√

Ṽp(t) ≤ Lpn
−1/2
p /

√
vp(t) ≤ Lpn

−1/2
p .

Thus, the claim in the lemma follows automatically by the assumption that
supt∈Ap

{S̃ep(t)} ≥ pκ with κ > 0.

Finally we consider case (c). By Lemma 3.1, pF̃p(t) ≤ Lp. Thus, using the
same arguments as those for proving Lemma 3.4, part (1b) we obtain that

M̃p(t)/
√

Ṽp(t) ≤ Lpn
−1/2
p .(5.100)

Using similar arguments as in case (b), we prove that (5.97) continue to hold
in case (c). This completes the proof of the lemma. #

6. Appendix.

6.1. Proof of Lemma 5.12. Recall that Φ̄ = 1−Φ is the survival function
of N(0, 1). The following lemma is proved below.

Lemma 6.1. For any t > 0 and u > 0, there are universal constants

C1 > 0 and C2 ≥ 1 such that C1min{t, 1
u} ≤ 1

u · Φ̄(t−u)−Φ̄(t+u)
Φ̄(t−u)+Φ̄(t+u)

≤ C2(1 + t).
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We now show Lemma 5.12. Let µ̃ = Ωµ for short. First, by definitions,√
npmp(t) =

∑p
j=1E[

√
npµ̃(j)sgn(z̃(j))1{|Z̃(j)| ≥ t}] =

∑p
j=1E[

√
npµ̃(j)(Φ̄(t−

√
npµ̃(j))− Φ̄(t+

√
npµ̃(j)))]. Noting that for any fixed t > 0, u[Φ̄(t− u)−

Φ̄(t+ u)] is a symmetric function,

(6.1)
√
npmp(t) =

p∑

j=1

E[|√npµ̃(j)|(Φ̄(t− |√npµ̃(j)|)− Φ̄(t+ |√npµ̃(j)|))].

Similarly, we have

(6.2) npup(t) =
p∑

j=1

E[npµ̃
2(j)(Φ̄(t− |√npµ̃(j)|) + Φ̄(t+ |√npµ̃(j)|))].

Since that Ω isKp-sparse and that |√npµ(j)| ≤ τp ≤
√
2 log(p), |√npµ̃(j)| =∑p

k=1 |Ω(j, k)| · |√npµ(k)| ≤ Kp

√
2 log(p). Comparing (6.1) and (6.2), the

first claim follows by Lemma 6.1. The second claim follows easily from the
first claim and that |√npµ̃(j)| ≤ Kpτp. #

6.2. Proof of Lemma 6.1. Consider the first inequality first. Let φ(·) be
the density of N(0, 1). For any real number v, write

Φ̄(t− v)

φ(t− v)
=

∫∞
0 φ(x+ (t− v))dx

φ(t+ v)
=

∫ ∞

0
e−(t−v)xe−x2/2dx,

where the right hand side is strictly monotone in v. Therefore, Φ̄(t−u)/φ(t−
u) ≥ Φ̄(t+u)/φ(t+u) or equivalently, Φ̄(t+u)/Φ̄(t−u) ≤ φ(t+u)/φ(t−u).
Combining this with basic algebra,
(6.3)

1

u

[
Φ̄(t− u)− Φ̄(t+ u)

Φ̄(t− u) + Φ̄(t+ u)

]
≥ 1

u

[
φ(t− u)− φ(t+ u)

φ(t− u) + φ(t+ u)

]
=

t

ut

[
etu − e−tu

etu + e−tu

]
.

When 0 < ut ≤ 1, the right hand side ≥ t·inf0<x<1{ 1
x
ex−e−x

ex+e−x}. When ut ≥ 1,

by the monotonicity of the function (ex − e−x)/(ex + e−x), the right hand
side ≥ (1/u) · [(etu−e−tu)/(etu+e−tu)] ≥ (1/u) · [(e−e−1)/(e+e−1)]. Letting

C1 = min{inf0<x<1{ 1
x
ex−e−x

ex+e−x }, (e− e−1)/(e + e−1)} gives the claim.
Consider the second inequality. When u > 1, the claim follows trivially,

so we consider the case 0 < u ≤ 1 only. By Taylor expansion, there is a
constant c3 ≥ 1 such that

(6.4)
1

u

Φ̄(t− u)− Φ̄(t+ u)

Φ̄(t− u) + Φ̄(t+ u)
≤

2umax{t−u<s<t+u}{φ(s)}
Φ̄(t− u)

≤ c3
φ(t− u)

Φ̄(t− u)
,
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where in the second inequality we have used t > 0 and u < 1. At the
same time, By Mills’ ratio [41], there is a constant c4 > 0 such that Φ̄(t) ≤
c4 · (tφ(t)). Therefore, φ(t−u)/Φ̄(t−u) ≤ c4(1+ |t−u|) ≤ 2c4(1+ t). Insert
this into (6.4). The claim follows by letting C2 = max{1, 2c3c4}. #

6.3. Proof of Lemma 5.3. Note that P (|X| ≥ t, |Y | ≥ t) = P (X ≥
t, Y ≥ t) + P (−X ≥ t, Y ≥ t) + P (X ≥ t,−Y ≥ t) + P (−X ≥ t,−Y ≥ t) ≡
I1 + I2 + I3 + I4. Consider I3. Define Ỹ = 2τ − Y . Then (X, Ỹ ) has joint
normal distribution with mean (0, τ) and correlation −ρ. Since τ > 0, it is
seen that I3 = P (X ≥ t, Ỹ ≥ t+ 2τ) ≤ P (X ≥ t, Ỹ ≥ t). Similarly, we can
obtain that I4 ≤ P (X̃ ≥ t, Ỹ ≥ t) with X̃ = −X and Ỹ = 2τ − Y . So we
only need to bound I1 and I2.

Since the proofs are similar, we only show the case ρ ≥ 0. Write P (X ≥
t|Y ≥ t) = P (X ≥ t, Y ≥ t)/P (Y ≥ t). First, by elementary calculus,

P (X ≥ t, Y ≥ t) ≤

{
Cexp(− t2

2 ), (t− τ) ≤ ρt,

Cexp(− t2−2ρt(t−τ)+(t−τ)2
2(1−ρ2) ), (t− τ) ≥ ρt.

Second, note that when 0 ≤ t ≤ τ , P (Y ≥ t) ≥ 1/2, and that when t ≥ τ ,
P (Y ≥ t) = Φ̄(t−τ) ≥ C[1+(t−τ)]−1φ(t−τ) (e.g. by Mills’ ratio [41]), where
we note that [1 + (t− τ)]−1 ≥ (1 + t)−1. Combining these with elementary
algebra,

P (X ≥ t|Y ≥ t) ≤






Cexp(−t2/2), 0 ≤ t ≤ τ,

C(1 + t)exp(− t2−(t−τ)2
2 ), τ < t < τ

1−ρ ,

C(1 + t)exp(− ((1−ρ)t+ρτ)2
2(1−ρ2) ), t > 1

1−ρτ.

Since 0 ≤ ρ ≤ a, the claim follows by basic algebra. #

6.4. Proof of Lemma 5.9. Write h(t) = Φ̄(t)/φ(t) for short. For positive
functions f(t) and g(t) defined over (0,∞), we say that f(t) 1 g(t) if there
are constants C2 > C1 > 0 such that C1 ≤ f(t)/g(t) ≤ C2 for all t > 0. The
following claims can be proved by elementary calculus and Mills’ ratio [41] so
we omit the proof. (a) h(t) 1 Cmin{1, 1/t}, (b) h′(t)/h(t) = t− 1/h(t) and
(t−1−t−3) < h(t) < (t−1−t−3+6t−5), and (c) h′(−t)/h(−t) ≤ −Cmax{1, t}
for all t > 0.

To show the lemma, it suffices to show that m′
2(t) < 0 for all t > 0. Write

m2(t) =
1

h(t)

Φ̄(t− τp) + Φ̄(t+ τp)

φ(t− τp) + φ(t+ τp)
≡ 1

h(t)

h(t− τp)φ(t− τp) + h(t+ τp)φ(t+ τp)

φ(t− τp) + φ(t+ τp)
.

We show this for the case of t ≥ τp and the case of t < τp separately.
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Consider the first case. By direct calculations, it is seen
(6.5)

m2(t) =
1

1 + e−2τpt
[h(t−τp)/h(t)]+

e−2τpt

1 + e−2τpt
[h(t+τp)/h(t)] ≡ m2a(t)+m2b(t).

Write for short ξ(t) = h′(t− τp)/h(t− τp)−h′(t)/h(t). By (a)-(b) and direct
calculations,

|m′
2b(t)| ≤ Cτpe

−tτp , m′
2a(t) = ξ(t)[h(t− τp)/h(t)] +O(τpte

−τpt),

where we note h(t − τp)/h(t) ≥ C. Note that the claim follows trivially
if t ≤ τp + 3. Therefore, to show the claim, it is sufficient to show ξ(t) ≤
−Cτ−1

p min{1, (τp/t)2} for all t > τp+3. Toward this end, note that by basic
algebra and (b),

ξ(t) = −τp−
1

h(t− τp)
+

1

h(t)
≤ −τp−

(t− τp)

(1− (t− τp)−2 + 6(t− τp)−4)
+

t

1− t−2
.

By basic algebra, we have that for sufficiently large τp and t > τp + 3,

ξ(t) ≤ −(t− τp)
−1

[ 1− 6(t− τp)−2

1− (t− τp)−2 + 6(t− τp)−4

]
+ 1/t+ 2t−3.

The claim now follows from elementary calculus.
Consider the second case. Rewrite

m2(t) =
1

[1 + e−2τpt]h(t)
h(t−τp)+

e−2τpt

1 + e−2τpt

h(t+ τp)

h(t)
≡ m2c(t)h(t−τp)+m2d(t),

and so
m′

2(t) = m′
2c(t)h(t− τp) +m2c(t)h

′(t− τp) +m′
2d(t).

Similarly, by (a)-(c),

|m′
2d(t)| ≤ Cτ−1

p , m′
2c(t) ≤ C, m2c(t)h

′(t−τp) ≤ −Cmax{1, t}·max{1, (τp−t)}h(t−τp).

Combining these gives

m′
2(t) ≤ C[−max{1, t} ·max{1, (τp − t)}+ C]h(t− τp) + C.

Since h(t − τp) ≥ C, it is seen that m′
2(t) < 0 for sufficiently large τp and

the claim follows.
The second claim m2(t) > 1 follows directly from the first claim and

limt→∞m2(t) = 1, which can be obtained immediately by (6.5). #
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