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Impossibility of successful classification when useful
features are rare and weak
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We study a two-class classification problem with a large number of
features, out of which many are useless and only a few are useful,
but we do not know which ones they are. The number of features
is large compared with the number of training observations. Cali-
brating the model with 4 key parameters—the number of features,
the size of the training sample, the fraction, and strength of use-
ful features—we identify a region in parameter space where no
trained classifier can reliably separate the two classes on fresh data.
The complement of this region—where successful classification is
possible—is also briefly discussed.

higher criticism | phase diagram | region of impossibility | region of possibility |
threshold feature selection

A n overwhelming trend in modern research activity is the ten-
dency to gather very large databases and use them to search

for good data-based classifier rules. For example, currently, a very
large number of research teams in the medical sciences seek to
gather and study gene expression microarray data in hopes of
obtaining empirical rules that separate healthy patients from those
affected by a disease—thus allowing for automatic diagnosis.

Much of the current surge of enthusiasm for such studies stems
from the advent of high-thoughput methods that automatically,
on each subject, make measurements of a very large numbers of
features. In genomics, proteomics, and metabolomics it is now
common to take several thousand automatic measurements per
study subject. The opportunity to survey so many features at once
is thought to be valuable: optimists will say that “surely somewhere
among these many features will be a few useful ones allowing for
successful classification!”

Advocates of the optimistic viewpoint must contend with the
growing awareness in at least some fields that many published asso-
ciations fail to replicate—i.e., the published classification rules
simply do not work when applied to fresh data. Such failure has
been the focus of meetings and special publications (1). Although
there may be many reasons for failure to replicate (2, 3), we focus
here on one specific cause: there may simply be too many use-
less features being produced by high-throughput devices, so that,
even where there really are decisive features to be found in the
high-throughput measurements, they simply cannot be reliably
identified.

In fact, we establish in this article a specific “region of impossi-
bility” for feature selection in classifier design. We identify settings
with large numbers of measurements, some useful, some useless,
where the subset of useful measurements, if only it were known a
priori, would allow for training of a successful classifier; however,
when the subset of useful features is not known, we show that no
classifier-training procedure can be effective.

Specifically, we study a model problem introduced in refs. 4 and
5 where there are a large number of features, many of which are
useless and a few of which are useful. In this model we consider a
two-class classification problem where there are parameters con-
trolling the fraction of useful features, the strength of the useful
features, and the ratio between the number of observational units
(e.g., patients) and the number of measured features (e.g., gene
expression measurements). We identify a region in parameter
space where, with prior knowledge of at least some useful fea-
tures, success is possible, but absent such prior knowledge about

the subset of useful features, no classifier built from the dataset is
likely to separate the two classes on fresh data.

In companion work (5), we show that in the complement of this
region, a specific method for classifier training—Higher Criticism
Threshold feature selection (4)—does work, and so the results
here are definitive.

Classification When Features Are Rare and Weak
Consider a two-class classification setting where we have a set of
labeled training samples (Yi, Xi), i = 1, 2, . . . , n. Each label Yi = 1
if Xi comes from class 1 and Yi = −1 if Xi comes from class 2,
and each feature vector Xi ∈ Rp. For simplicity, we suppose that
the training set contains equal numbers of samples from each of
the two classes, and that the feature vector obeys Xi ∼ N(Yiμ, Ip),
i = 1, 2, . . . , n, for an unknown mean contrast vector μ ∈ Rp.
Also, we suppose that the feature covariance matrix is the identity
matrix. Extension to correlated cases is possible if side information
about the feature covariance is available (see ref. 6, for example).

Following the two companion papers (4, 5), we consider the fol-
lowing rare/weak feature model (RW model), where the vector μ is
nonzero in only an ε faction of coordinates, and the nonzero coor-
dinates of μ share a common amplitude μ0. Formally speaking,
let I1, I2, . . . , Ip be samples from Bernoulli(ε), and let

μ(j) = μ0 · Ij, 1 ≤ j ≤ p.

Let Z denote the vector of z scores corresponding to the training
set: Z(j) = (1/

√
n)
∑n

i=1 Yi ·Xi(j). The j th z score arises in a formal
normal-theory test of whether the j th feature is useless or useful.
Under our assumptions, Z ∼ N(

√
nμ, Ip); thus each coordinate of

Z has expectation either 0 or τ = √
nμ0.

We assume p � n, ε is small, and τ is either small or moderately
large (e.g., p = 10, 000, n = 100, ε = 0.01, τ = 2). Because zero
coordinates of μ are entirely noninformative for classification, the
useful features are those with nonzero coordinates in μ. The para-
meters ε and τ can be set to make such useful features arbitrarily
rare (by setting ε close to 0) and weak (setting τ small); we denote
an instance of the rare/weak model by RW (ε, τ; n, p).

Formally, our goal is to use the training data to design a classi-
fier for use on fresh data. If we are given a new unlabeled feature
vector X , we must then label it with a class prediction, i.e., attach
a label Ŷ = 1 or Ŷ = −1. We hope that our predicted label Ŷ is
typically correct. The central problem is for which combinations
(ε, τ, n, p) it is possible to train a classifier that can label Y correctly,
and for which combinations is it not possible to do so?

Linking Rarity and Weakness to Number of Features. We now adopt
an asymptotic viewpoint. We let the number of features p be the
driving problem size descriptor, and for the purposes of calcula-
tion, we let p tend to infinity, and other quantities vary with p. We
have checked that our asymptotic calculations are descriptive of
actual classifier performance in realistic finite-sized problems, say
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Table 1. Regimes and their definitions

Regime Label Definition

No growth (N) np = n0 for some constant n0

Slow growth (S) np → ∞, but np/pθ → 0, ∀ θ > 0
Regular growth (R) np = pθ for some θ ∈ (0, 1)

with p in the few thousands, as is now common in genomics and
proteomics. Other problem parameters (fraction and strength of
useful features, sample size n) will depend on p as follows. Fixing
parameters (β, r) ∈ (0, 1)2, let

ε = εp = p−β, τ = τp = √
2r log p.

As p → ∞, the useful features become increasingly rare; an
asymptotically negligible fraction of the components in the vector
Z. The parameters (β, r) describe the linkage between rareness
and weakness of the entries in the parameter vector; they have
been used before in classification studies (5) and more generally
in detection studies (7–9). The domain (β, r) ∈ (0, 1)2 has been
shown in earlier work to have an interesting two-phase structure;
one can show there is a curve such that certain procedures succeed
asymptotically when (β, r) lies above the curve and fail when (β, r)
lies below the curve. We call a depiction of this domain and its
phases a phase diagram. In this article, we exhibit a phase diagram
such that, in the failure phase, every sequence of classification
rules must fail for large p.

Linking Number of Observations to Number of Features. In classical
statistical theory, one held p fixed and let n increase indefinitely.
However, in modern scientific practice it seems the reverse is hap-
pening: one forms the impression that n stays fixed or grows very
weakly while p grows dramatically (as high-throughput devices
measure ever more features).

The phase diagram depends on the relationship between the
number of features p and the number of study units n. Again, in
our work it is convenient to make p the driving variable, and so
n = np.

We can identify three regimes for the linkage between n and
p: n = np can have no growth, slow growth, or regular growth. Our
labels for these regimes and their definitions are listed in Table 1.

The case of slow growth in our setting was previously studied
in ref. 5; there, the focus was on the performance of a specific
classifier-training procedure. Here, we study several types of link-
ages between n and p, and we also briefly discuss the case where
n has an irregular growth, (see below). We are interested in limits
that all classifier-training procedures must obey.

Asymptotic Rare/Weak Model (ARW). Combining the two linkages
we have just discussed gives us the asymptotic rare/weak model
ARW (β, r, np). For each linkage type np we seek to identify ranges
of (β, r) where successful classification is possible and impossible,
respectively.

Impossibility of Classification. We will show that in each of the three
growth regimes, there is a curve r = ρ�(β) (� = N , S, R) which par-
titions the β-r plane into two components: a region of impossibility
below the curve and and region of possibility above it. In detail,
define the standard phase boundary function

ρ(β) =
⎧⎨
⎩

0, 0 < β ≤ 1/2,
β − 1/2, 1/2 < β < 3/4,
(1 − √

1 − β)2, 3/4 ≤ β < 1.
[1]

The function ρ has appeared before in determining phase bound-
aries in a seemingly unrelated problem of multiple hypothesis
testing (7–9). Define

Fig. 1. Display of r = ρ�(β), the boundary separating the region of impossi-
bility and region of possibility, for the three types of growth of n: no growth
(blue), slow growth (red), and regular growth (green). Also included is the
diagonal line (magenta dashed) that illustrates the relationship in Eq. 2.

ρN (β) = ρN (β, n) = n
n + 1

ρ(β), 0 < β < 1,

ρS(β) = ρ(β), 0 < β < 1,

ρR(β) = (1 − θ)ρ(β/(1 − θ)), 0 < β < (1 − θ).

See Fig. 1. Note that in the definition of ρR(β), we limit β to the
range (0, 1 − θ). Note also that for all three cases,

ρ�(β) ≤ β, � = N , S, R. [2]

Definition 1: Fix (β, r) ∈ (0, 1)2. Fix one of the three types of growth
of n by choosing � ∈ {S, N , R}. We say (β, r) fall in the region of
impossibility of the ARW if r < ρ�(β).

Theorem 1. Fix a growth regime np and fix a point (β, r) in the region
“below” the corresponding graph (β, ρ�(β)). Consider the sequence of
problems ARW (r, β, np) for increasing p and a sequence of classifier-
training methods, perhaps also dependent on p. The misclassification
error rate of the resulting sequence of trained classifiers → 1/2 with
increasing p.

In this region, the measurements are effectively noninforma-
tive, and random guessing does almost as well. However, note
that there are useful features among the p features, and if we only
knew which features they were, we could reliably separate the classes!
Indeed, simply summing the coordinates known to be useful fea-
tures and taking the signum would do the trick. In this sense,
the region of impossibility is precisely the region where the effect
mentioned in the introduction shows up; the attempt to find the use-
ful features among many useless ones is simply doomed. Note that
Fan and Fan (10) studied a closely related setting and identified a
different region of impossibility. See details therein.

Conversely, one can show that fixing (β, r) in the region of pos-
sibility, successful classifier training is possible, and there is a
sequence of trained classifiers whose misclassification probability
→ 0 as p → ∞. However, that is beyond the scope of this research
announcement; we refer the reader to the author’s related papers.
See Fig. 2 for a display of region of impossibility and region of
possibility.

Proof of Theorem 1: To understand the role of the training data, we
compare the problem of classification with Z and that without Z.
When Z is not available, the test features X contains ≈ pεp useful
features, each of which has a strength of ±τp/

√
n (with sign “+” if
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X is from class 1 and “−” otherwise). In this case, the classification
problem reduces to the testing problem studied in our previous
work (8), and it is possible to successfully classify if and only if
r/

√
n > ρ(β) (7, 8).

When Z is available to us, the picture is very different. For any
1 ≤ i ≤ p, the probability that the ith coordinate of X contains a
useful feature is no longer εp, but instead the posterior probability
ηi = η(Zi; p), where

η(z; p) = εpϕ(z − τp)/[(1 − εp)ϕ(z) + εpϕ(z − τp)], [3]

with ϕ being the density of N(0, 1). This is a monotone function,
≈ 0 for small z and ≈ 1 for large z. Intuitively, a large coordinate
amplitude in Z suggests a useful feature, and a moderate or small
amplitude suggests a useless one. Seemingly, this is a different
model from the previous case, the study of which needs different
analytic technique.

First, denote the density of N(0, Ip) by f (p)
0 = f (p)

0 (x1, x2, . . . , xp).
Second, for k = 1, 2, denote the conditional density of (X |Z) when
X ∼ Class k by

f (p)
k = f (p)

k (x1, x2, . . . , xp|Z; εp, τp, np, p),

and denote the conditional density of (X1|Z1) by

f (1)
k = f (1)

k (x1|Z1; εp, τp, np, p).

Here, X1 and Z1 are the first coordinates of X and Z, respectively.
Finally, for two density functions f and g, define the Hellinger affin-
ity by H(f , g) = ∫ √

f (x)g(x)dx. Let the (conditional)-Hellinger
affinity between f (p)

0 and f (p)
1 be H(f (p)

0 , f (p)
1 ; Z, εp, τp, np, p), and that

between f (1)
0 and f (1)

1 be H(f (1)
0 , f (1)

1 ; Z1, εp, τp, np, p). We have the
following lemma.

Lemma 1. Fix np and (β, r) ∈ (0, 1)2 in the ARW (β, r, np) model. For
any classifier T = T(X , Z; p)

|P{misclassification|T} − 1/2|
≤ C

(
1 − E

[
H
(
f (p)
0 , f (p)

1 ; Z, εp, τp, np, p
)])1/2.

We omit the proof of Lemma 1. Relationships between classifi-
cation error rate and Hellinger affinity are well known. In this case,
the added wrinkle is to condition on the training data Z. Besides
that feature, the argument is standard; see ref. 11 for example.

The following lemma is elementary; we omit the proof.

Lemma 2. E[H(f (p)
0 , f (p)

1 ; Z, εp, τp, np, p)] = (E[H(f (1)
0 , f (1)

1 ; Z1, εp,
τp, np, p)])p.

The heart of the proof of Theorem 1 is the following lemma. Its
proof is relatively long, so we leave it to later sections.

Lemma 3. Fix one of the three growth types; for any fixed para-
meters (β, r) in the corresponding region of impossibility of the
ARW (β, r, np), E[H(f (1)

0 , f (1)
1 ; Z1, εp, τp, np, p)] = 1 + o(1/p),

p → ∞.

Combining these lemmas gives Theorem 1.

Extension to Cases Where n Grows Irregularly. So far, we considered
np growing with p according to one of three specific regimes: (N),
(S), (R). However, the conclusion of Theorem 1 can be obtained
in a much broader range of cases, where n grows somewhat
irregularly.

Lemma 4 below says that E[H(f (p)
0 , f (p)

1 ; Z, ε, τ, n, p)] is a mono-
tone function of the sample size n. This implies that, if np is
eventually sandwiched between two sequences obeying one of our

Fig. 2. Display of region of impossibility (cyran) and region of possibility
(white and yellow) in the case of slow growth [only the range of β ∈ (1/2, 1)
is shown]. In the Certainty region, it is not only possible to have successful
classification, but also possible to identify nearly all useful features.

growth regimes, then its behavior is also sandwiched between the
results at those two regular situations.

Lemma 4. Fixing p, τ > 0 and ε ∈ (0, 1) in the RW (ε, τ; n, p),
E[H(f (p)

0 , f (p)
1 ; Z1, ε, τ, n, p)] is a monotone increasing function of n.

Proof: By Lemma 2, it suffices to show that E[H(f (1)
0 , f (1)

1 ; Z1, ε,
τ, n, p)] is a monotone increasing function of n. Note that f (1)

0 is the
density of N(0, 1), and that f (1)

1 (x) = (1−η(Z1))ϕ(x)+η(Z1)ϕ(x−
μp), withη(Z1) = η(Z1; p) being defined in Eq. 3, andμp = τp/

√
n.

By direct calculations,

H
(
f (1)
0 , f (1)

1 ; Z1
) = E0

⎡
⎣(1 − η(Z1) + η(Z1)eμpX1− μ2

p
2

)1/2
⎤
⎦ , [4]

where we have suppressed parameter dependencies and E0
denotes the expectation with respect to the law of X ∼ N(0, 1).
Observe that H(f (1)

0 , f (1)
1 ; Z1, ε, τ, n, p) depends on n only through

μp, and that μp is monotone decreasing in n. It is sufficient to show
that for any numbers η ∈ (0, 1) and μ′ ≥ μ,

E0

⎡
⎣
√

(1 − η) + ηeμ′X− μ′2
2

⎤
⎦ ≤ E0

⎡
⎣
√

(1 − η) + ηeμX− μ2
2

⎤
⎦ .

[5]

Toward this end, write μ′X1 = μU + δW , where U and W are iid
samples from N(0, 1) and δ2 = (μ′)2 − μ2. Inserting this into the
left-hand side of Eq. 5 gives

E0

[√
(1 − η) + η · eμ′X1−(μ′)2/2

]

= E0

[√
(1 − η) + η · eμU−μ2/2eδW−δ2/2

]
.

It follows from Jensen’s inequality that

E0

⎡
⎣
√

(1 − η) + ηeμ′X− μ′2
2

⎤
⎦

≤ E0

[√
(1 − η) + η · eμU−μ2/2E[eδW−δ2/2]

]
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where the right-hand side reduces to that of Eq. 5. This gives the
claim.

Gaussian Assumption. We now discuss the Gaussian assumption on
Z (that on Xi has a less important effect). When n is relatively large
(e.g., n ≥ 20), the assumption is reasonable. When n is very small,
it might be better to assume that Z(j) are t-distributed. Because
the tail of the t distribution is heavier than that of the Gaussian,
it is harder to successfully classify in the t-error model than in the
Gaussian model, given that the parameters (p, n, ε, τ) are the same
in two settings. Therefore, the region of impossibility continues to
be valid in the t setting. Of course, the exact boundary separating
region of possibility and region of impossibility depends on the
specific tail behavior of the marginal density of Z(j), and may be
different from that in this note.

Numerical Examples. In companion articles (4, 5), we show that
threshold feature selection has an optimal region of classifi-
cation performance for the ARW model, when the threshold
t is chosen ideally. Such a classifier has the form L(X ; t) =∑p

j=1 sgn(Zj)1{|Zj |≥t}X (j). Therefore, we can use L(X ; t) with an
ideal choice of t to investigate the minimum misclassification error
that one can achieve. Call the minimum error the ideal error
and the minimizing t the ideal threshold; both quantities can be
conveniently calculated assuming that we know (ε, τ).

Fix p = 105, let n = 2, 10, and 100, representing the three
types of growth (N), (S), and (R) [the parameter θ = 0.4 in
(R)]. When n = 2, 10, let β = 0.55, 0.65, 0.75 and ε = p−β ≈
178/56/18 × 10−5. When n = 100, let β = 0.35/0.45/0.55 and
ε = p−β ≈ 1, 778/562/178 × 10−5. For each triplet (p, n, ε), let
τ range from 0.5 to 3 with an increment of 0.1, and calculate
the ideal error. Define τ
 = τ
(p, n, ε) as the largest τ such that
the ideal error ≥ 40% (say); this can be thought of as the criti-
cal value below which successful classification is quasi-impossible.
(Note: the choice of 40% for the critical value is arbitrary; other
choices produce quantitatively similar but not identical results).
When n = 2 (and β takes corresponding values as above),
τ
 ≈ 0.9/1.5/2.0; when n = 10, τ
 ≈ 1.3/1.9/2.4; when n = 100,
τ
 ≈ 0.7/1.3/1.9.

We compare τ
 with the asymptotic critical value τ� ≡√
2ρ�(β) log p as in Theorem 1. Given p = 105, when n = 2 (and

β takes corresponding values as above), τ� ≈ 0.88/1.5/1.96; when
n = 10, τ� ≈ 1.07/1.86/2.40; when n = 100, τ� ≈ 1.07/1.86/2.64.
Both critical values—τ
 and τ�—are close to each other, especially
when n = 2, 10. When n = 100, the differences between two crit-
ical values are large but still get smaller for larger p. This suggests
that the asymptotic separating boundary r = ρ�(β) is valid already
for p = 105.

Last, for each combination (p, n, ε, τ), we calculate the ideal
threshold t∗ = t∗(p, n, ε, τ), and apply L(X ; t∗) to samples gener-
ated according to RW (p, n, ε, τ). In Table 2, we report the average
(empirical)-misclassification errors across 1,000 independent rep-
etitions. (To save space, only part of the results are reported.) Cells
in boldface/nonboldface correspond to τ’s that fall below/above τ�,
respectively. As predicted in Theorem 1, most boldface numbers
≥40%, and most nonboldface numbers <40% and get increas-
ingly smaller as τ increases. Also, the results suggest that in the
region of impossibility, L(X ; t) performs poorly even with ideal
threshold.

Relation to Higher Criticism. We briefly discuss the region of possi-
bility. In the interior of this region, it is possible to train classifiers
whose misclassification probability on fresh data → 0 under the
ARW model. Such a classifier can be trained by adopting the recent
notion of Higher Criticism (HC) Threshold feature selection.

HC was first introduced in our previous work (8) as follows.
Given a collection π(1), . . . , π(p) of sorted P values, one calculates
the HC objective values

Table 2. Misclassification errors for L(X ; t) with ideal thresholds
(p = 105, ε = p−β)

n = 2 (N) n = 10 (S) n = 100 (R), θ = 0.4
τ β = 0.55/0.65/0.75 β = 0.55/0.65/0.75 β = 0.35/0.45/0.55

0.6 0.406/0.480/0.492 0.501/0.512/0.473 0.411/0.464/0.503
0.9 0.387/0.466/0.470 0.441/0.474/0.508 0.354/0.466/0.477
1.2 0.285/0.423/0.456 0.434/0.443/0.477 0.249/0.388/0.485
1.5 0.197/0.376/0.474 0.358/0.435/0.487 0.137/0.354/0.420
1.8 0.067/0.329/0.456 0.245/0.419/0.490 0.028/0.283/0.414
2.1 0.002/0.170/0.412 0.109/0.341/0.428 0.002/0.139/0.348
2.4 0.000/0.054/0.315 0.016/0.232/0.392 0.000/0.018/0.276
2.7 0.000/0.013/0.180 0.001/0.088/0.350 0.000/0.001/0.151
3.0 0.000/0.000/0.082 0.000/0.017/0.220 0.000/0.000/0.055

Cells in boldface correspond to τ’s that fall below the critical value τ� =√
2ρ�(β) log p. These exhibit high classification errors, as predicted. The

strength of useful features is τ/
√

n, so the classification problem is increasingly
harder for larger n.

HCObj(k) = √
p

π(k) − k/p√
k/p(1 − k/p)

, k = 1, . . . , p.

The HC statistic is the maximum of the objective function. It can
be used to assess significance of the whole body of P values. Given
the feature vector X as in the ARW (but not any class labels),
test whether the mean vector μ = 0 identically, or whether μ
contains a fraction εp > 0 of nonzero coordinates, each of them
equal to an unknown parameter τp. The testing problem is a mod-
ification of the classification problem we study in this note, where
the training set is not available. Similarly, the testing problem was
shown in refs. 7 and 8 to have a phase diagram (β, r) with a region
of impossibility and a region of possibility. In fact, if we express
τp = √

2r′ log p and εp = n−β, then the region of impossibility is
the range of (β, r) that satisfy r′ < ρ(β) and 0 < β < 1, where ρ
is the standard phase boundary function introduced in Eq. 1 and
r′ = r′(r, �) is the calibration of r appropriate to growth regime
� ∈ {N , S, R}. The region of possibility is r′ > ρ(β) and 0 < β < 1.
In the whole region of possibility, HC was shown in ref. 8 to yield
a successful test: the sum of type I and type II errors of the test
→ 0 as p → 0. See ref. 8 (and also refs. 7 and 9) for details.

HC can be used to select thresholds for feature selection (4).
One maximizes the HC objective over the interval 1 ≤ k ≤ α0 · p.
The P value π(k∗) at the maxmizer can be converted into a two-
sided Z score, say z(k∗). Select all features whose feature Z scores
exceed z(k∗) in absolute value. The trained classifier is the weighted
sum of the standardized feature values, with weights obtained by
thresholding the training set Z scores at the HCT z(k∗). The con-
cept, numerical performance, and practical features of HCT are
reported in ref. 4, and an idealized HCT was carefully studied in
ref. 5 in the slow-growth regime (S). It was shown that in the slow-
growth regime (S), ideal HCT works throughout the possibility
region of the phase diagram. The idea of component-wise thresh-
olding is closely related to that in ref. 10 (see also refs. 12 and 13
where the focus is on hypothesis testing and dimension reduction,
respectively).

HCT Achieves Separation Throughout the Possibility Region. First,
we show that if we perform ideal feature selection with an ora-
cle threshold—i.e., if an oracle tells us the unknown parameters
(β, r)—then the resulting trained classifier yields successful classi-
fication throughout the region of possibility. Second, we show that
that the HCT converges to the oracle threshold asymptotically (but
does not require help from any oracle).

HC can also been used directly for classification (14) without
feature selection (for comparison with the method above, see
ref. 5).
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In this article, we have attempted to draw the attention of work-
ing scientists to a basic phenomenon that might affect many high-
throughput studies. The mathematical scientist interested in this
phenomenon will want to know that independently, Ingster, Pouet,
and Tsybakov (15) have analyzed a setting more general than the
present one and identified similar phase transitions phenomena.

Proof of Lemma 3: We now show Lemma 3 for the case of no growth
and the case of regular growth. Once these are proved, the case
of slow growth follows by the monotonicity result in Lemma 4 and
the way ρ�(β) is defined.

The case of no growth (N). In this case, n is a fixed integer. It
suffices to show for fixed (β, r) with r < n+1

n ρ(β),

E
[
H
(

f (1)
0 , f (1)

1 ; Z1
)] = 1 + o(1/p). [6]

Note that in the ARW, the density of Z1 is (1−εp)ϕ(x)+εpϕ(x−τp).
By Eq. 4 and direct calculations,

E
[
H
(

f (1)
0 , f (1)

1 ; Z1
)] = (1 − εp)I + εpII, [7]

where

I = E0,0

(
(1 − εp) + εpeτpZ−τ2

p/2eμpX−μ2
p/2

(1 − εp) + εpeτpZ−τ2
p/2

)1/2

,

II = E0,0

(
(1 − εp) + εpeτpZ+τ2

p/2eμpX−μ2
p/2

(1 − εp) + εpeτpZ+τ2
p/2

)1/2

,

and E0,0 is the expectation with respect to the law that X and Z
are iid samples from N(0, 1). Write for short E0 = E0,0 when-
ever there is no confusion. Introduce ap = 1/(1 − εp), V1(θ, ζ) =
( 1+apθζ

1+apθ
)1/2 −1− 1

2 apθζ+ 1
2 apθ, and V2(θ, ζ) = ( 1+apθζ

1+apθ
)1/2 −1. Note

that

E0
[
eτpZ+μpX−τ2

p/2−μ2
p/2] = 1, E0

[
eμpX−μ2

p/2] = 1. [8]

It follows from direct calculations that

I = 1 + apεp

2
(
E0
[
eτpZ+μpX−τ2

p/2−μ2
p/2]− E0

[
eτpZ−τ2

p/2])
+ E

[
V1
(
εpeτpZ−τ2

p/2, eμpX−μ2
p/2)]

= 1 + E0
[
V1
(
εpeτpZ−τ2

p/2, eμpX−μ2
p/2)], [9]

and, similarly,

II = 1 + E0
[
V2
(
εpeτpZ−τ2

p/2, eμpX−μ2
p/2)]. [10]

Combine Eqs. 7–10; to show Eq. 6, it is sufficient to show

E0
[
V1
(
εpeτpZ−τ2

p/2, eμpX−μ2
p/2)] = o(1/p), [11]

and

E0
[
V2
(
εpeτpZ−τ2

p/2, eμpX−μ2
p/2)] = o(pβ−1). [12]

Toward this end, introduce

ψ1(x) =
{

2x − 1, x > 1,
x2, x ≤ 1, ψ2(x) = min{x, 1}.

We need the following lemma, the proof of which is elementary
so we omit it.

Lemma 5. For sufficiently large p, there is constant C > 0 such that
for any θ > 0 and ζ > 0, |V1(θ, ζ)| ≤ C[ψ1(θζ) + (1 + ζ)ψ1(θ)] and
|V2(θ, ζ)| ≤ C(1 + ζ)ψ2(θ).

We now show Eqs. 11 and 12. Consider Eq. 11 first. Denote

σp = (
τ2

p + μ2
p

)1/2, W = (τpZ + μpX )/σp. [13]

As X and Z are iid samples from N(0, 1), so W ∼ N(0, 1). Using
Lemma 5,∣∣E0

[
V1
(
εpeτpZ−τ2

p/2, eμpX−μ2
p/2)]∣∣ [14]

≤ C
[
E0
[
ψ1
(
εpeτpZ+μpX−τ2

p/2−μ2
p/2)]

+ E0
[(

1 + eμpX−μ2
p/2)

ψ1
(
εpeτpZ−τ2

p/2)]]
= C

[
E0

[
ψ1

(
εpeσpW− σ2

p
2

)]
+ E0

[
ψ1

(
εpeτpZ− τ2

p
2

)]]
. [15]

The second term in Eq. 15 is no greater than the first term. To
see this, writing ψ1(εpeσpW−σp2/2) = ψ1(εpeτpZ−τ2

p/2eμpX−μ2
p/2), it

follows from Eq. 8, the convexity of ψ1, and Jensen’s inequality,
that

E0

[
ψ1

(
εpeτpZ−τ2

p/2
)]

= E0

[
ψ1

(
εpeτpZ− τ2

p
2 E0

[
eμpX− μ2

p
2

])]

≤ E0

[
ψ1

(
εpeσpW−σ2

p/2
)]

,

which validates the aforementioned point. Combining this with
Eq. 15 gives∣∣∣∣∣E0

[
V1

(
εpeτpZ− τ2

p
2 , eμpX− μ2

p
2

)]∣∣∣∣∣ ≤ CE0

[
ψ1

(
εpeσpW− σp2

2

)]
.

[16]

We now analyze E0[ψ1(εpeσpW− σp2

2 )]. Introduce r0 = n+1
n r.

Recall that τ2
p = 2r log p and that μ2

p = (2/n)r log p. It follows
from the definition of σp and r0 that σp = √

2r0 log p. In addition,
we introduce two thresholds tp = tp(r, β) and t0

p = t0
p(r0, β) by

tp = β + r
2r

· τp, t0
p = β + r0

2r0
· σp. [17]

By these definitions and basic algebra,

εpeσpW−σp2/2 > 1 if and only if W > t0
p [18]

Combining Eq. 18 with the definition of ψ1,

E0
[
ψ1
(
εpeσpW−σp2/2)]
≤ 2

∫ ∞

t0p

εpeσpw−σp2/2ϕ(w)dw +
∫ t0p

−∞
ε2

pe2σpw−σp2
ϕ(w)dw

= 2εpΦ
(− (

t0
p − σp

))+ ε2
peσp2

Φ
(
t0
p − 2σp

)
, [19]

where Φ is the cdf of N(0, 1).
In addition, by the assumption r < n

n+1 ρ(β), we have r0 < ρ(β).
In view of the definitions of tp, σp, and ρ(β), it follows from basic
algebra that

1 <
tp
σp

≤ 2 if r0 ≥ β/3;
tp
σp

> 2 if r0 > β/3. [20]

Note also that

Φ(t) ≤ Cϕ(|t|) for t ≤ 0 and Φ(t) ≤ 1 for all t. [21]

Combining Eqs. 19–21 gives

E0

[
ψ1

(
εpeσpW−σp2/2

)]

≤

⎧⎪⎪⎨
⎪⎪⎩

Cp
− (β+r0)2

4r0 , if r0 ≥ β/3,

C

[
p

− (β+r0)2
4r0 + p−(2β−2r0)

]
, if r0 < β/3.
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Recall that r0 < ρ(β). It follows from the definition of ρ(β) that
(β+r0)2

4r0
> 1, and that 2β − 2r0 > 1. As a result,

E0
[
ψ1
(
εpeσpW−σp2/2)] = o(1/p). [22]

Inserting Eq. 22 into Eq. 16 gives Eq. 11.
Next, consider Eq. 12. Similarly, by Lemma 5, Eq. 8, and that X

and Z are independent,∣∣∣E0

[
V2

(
εpeτpZ+τ2

p/2, eμpX−μ2
p/2
)]∣∣∣ ≤ CE0

[(
1 + eμpX−μ2

p/2)
× ψ2

(
εpeτpZ+τ2

p/2)] = CE0
[
ψ2
(
εpeτpZ+τ2

p/2)]. [23]

Similarly, as that εpeτpZ+τ2
p/2

> 1 if and only if Z > tp − τp, by the
definition of ψ2 and elementary calculus,

E0

[
ψ2

(
εpeτpZ+τ2

p/2
)]

[24]

≤
∫ ∞

tp−τp

ϕ(z)dz +
∫ tp−τp

−∞
εpeτpz+τ2

p/2
ϕ(z)dz

= Φ(−(tp − τp)) + εpeτ2
pΦ(tp − 2τp). [25]

Combine Eq. 25 with Eqs. 20 and 21,

E0

[
ψ2

(
εpeτpZ+τ2

p/2
)]

≤

⎧⎪⎪⎨
⎪⎪⎩

Cp− (β−r)2
4r , r ≥ β/3,

C
[

p− (β−r)2
4r + p−(β−2r)

]
, r < β/3.

[26]

Now, since r < ρ(β), then (β−r)2

4r > (1 − β) and (β − 2r) > 1 − β.
Inserting these into Eq. 26 gives Eq. 12, and concludes the proof
for the case of no growth.

The case of regular growth (R). By Eq. 2, we can limit (β, r) to the
range of 0 < r < β and 0 < r < 1. Define

δ(r, β) =
⎧⎨
⎩

r − (
β − 1

2

)
, if r ≤ β/3,

r −
(
β − 1

2 − (β−3r)2

8r

)
, if r > β/3.

[27]

Basic algebra shows that the assumption r < (1 − θ)ρ(β/(1 − θ))
is equivalent to 2δ(r, β) < θ. Recall that the sample size n = pθ. It
is sufficient to show that for fixed (β, r, θ) satisfying 2δ(r, β) < θ,

E[H(f0, f1; Z)] = 1 + o(1/p). [28]

Rewrite H(f0, f1; Z) = E0[(1 + ηp(Z)(eμpX−μ2
p/2 − 1))1/2]. Since

that |√1 + x − 1 − x/2| ≤ Cx2 for any x > −1. then∣∣∣∣H(f0, f1; Z) − 1 − 1
2
ηp(Z)E0

[
eμpX−μ2

p/2 − 1
]∣∣∣∣

≤ Cη2
p(Z)E0

[(
eμpX−μ2

p/2 − 1
)2
]

. [29]

Recalling n = pθ and μp = τp/
√

n, direct calculations show that

E0
(
eμpX−μ2

p/2 − 1
) = 0, [30]

E0
(
eμpX−μ2

p/2 − 1
)2 = eμ2

p − 1 ≤ C log(p)p−θ. [31]

Combining Eqs. 30 and 31 with Eq. 29 gives
∣∣H(f0, f1; Z) − 1

∣∣ ≤
C log(p)p−θη2

p(Z). If we can show that for any (β, r) in the range
of 0 < r < β and 0 < β < 1,

E
[
η2

p(Z)
] ≤ Cp−2+2δ(r,β), [32]

then |E[H(f0, f1)] − 1| ≤ E[|H(f0, f1) − 1|] ≤ C log(p)p−1+2δ(r,β)−θ,
and Eq. 28 follows from the assumption of 2δ(r, β) < θ.

We now show Eq. 32. Write E[η2(Z)] = I + II, where

I = (1 − εp)E0[η2(Z)], II = εpE0[η2(τp + Z)], [33]

with E0 being the expectation with respect to the law of Z ∼
N(0, 1). It is sufficient to show that

I ≤ Cp−1+2δ(r,β), II ≤ Cp−1+2δ(r,β). [34]

Consider the first claim of Eq. 34. Recall that τp = √
2r log p

and tp = tp(r, β) = β+r
2r τp, and note that for sufficiently large p,

(1 − εp) + εpeτpZ−τ2
p/2 ≥ 1/2. Combine this with the way that η(Z)

is defined, η(Z) ≤ 2εpeτpZ−τ2
p/2 when Z ≤ tp and η(Z) ≤ 1 oth-

erwise. It follows from these inequalities and elementary calculus
that

I ≤ C
[
ε2

peτ2
pΦ(tp − 2τp) + Φ(−tp)

]
. [35]

By arguments similar to that in the proof for the case of no growth,

Φ(−tp) ≤ Cϕ(tp) ≤ Cp− (β+r)2
4r , [36]

and

ε2
peτ2

pΦ(tp − 2τp) ≤
{

ε2
pτ

2
p = n2r−2β, if r ≤ β/3,

Cn2r−2β− (β−3r)2
4r , if r > β/3.

[37]

Inserting Eqs. 36 and 37 into Eq. 35 gives the claim.
Consider the second claim of Eq. 34. By similar argument,

II ≤ C[ε3
pe3τ2

pΦ(tp − 3τp) + εpΦ(−(tp − τp))],

ε3
pe3τ2

pΦ(tp − 3τp) ≤
{

n6r−3β, r ≤ β/5,

Cn2r−2β− (β−3r)2
4r , r > β/5,

and εpΦ(−(tp −τp)) ≤ Cn2r−2β− (β−3r)2
4r . Since (6r −3β) < (2r −2β)

when r ≤ β/5, combining these results gives the second claim of
Eq. 34, and concludes the proof for the case of regular growth.
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