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SUMMARY. Recent discussion of the success of feature selection
methods has argued that focusing on a relatively small number of fea-
tures has been counterproductive. Instead, it is suggested, the number
of significant features can be in the thousands or tens of thousands,
rather than (as is commonly supposed at present) approximately in
the range from five to fifty. This change, in orders of magnitude, in
the number of influential features, necessitates alterations to the way
in which we choose features and to the manner in which the success
of feature selection is assessed. In this paper we suggest a general ap-
proach that is suited to cases where the number of relevant features is
very large, and we consider particular versions of the approach in de-
tail. We propose ways of measuring performance, and we study both
theoretical and numerical properties of the proposed methodology.
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1 INTRODUCTION

In this paper we develop statistical methods for determining features that enable ef-

fective discrimination between two populations of very high dimensional data, when

the number of component-wise differences that provide leverage for discrimination is

relatively large but the sizes of those differences are potentially small. By way of con-

trast, conventional approaches to solving this problem tend to rely on relatively large

differences and relatively small numbers of components where differences occur.
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In such problems it is generally going to be of substantial practical interest to iden-

tify, with reasonable accuracy, the components that have greatest leverage for correct

discrimination. Simply constructing a classifier, which might depend in a difficult-

to-determine way on differences between two populations, is generally not going to

provide all the information that is sought. However, particularly when the number

of such components is large, we may not be able to identify the components without

error. How accurate can we be, and in what circumstances is accuracy high? In this

paper we shall endeavour to answer these questions.

Achieving reasonable accuracy can involve relatively computer-intensive methods,

for example algorithms that need O(p2) rather than O(p) time if the problem is p-

dimensional. However, if we use an initial, deterministic dimension reduction step,

which decreases dimension to q where q � p, then O(p2) calculations can be reduced

to O(p log p + q2), where p log p is the computational cost of ordering the initial p

components. In many cases we expect q to be a rather crude upper bound to the true

number, r say, of components that impact on performance of the classifier. The four-

stage algorithm that we shall introduce in section 2 enables us to reduce computational

expense from O(p log p+q2) to O(p log p+r2). (These order-of-magnitude calculations

ignore the effects of training sample size, n say, since in the problems we are considering

n is typically much less than p, q or r and so has relatively little impact on the final

result.)

Support for the conjecture that r can be quite large, for example in genomics prob-

lems, has been given by Goldstein (2009), who, in the words of J.N. Hirschhorn in

the same issue of the New England Journal of Medicine, “builds a speculative math-

ematical model and infers that there will be tens of thousands of common variants

influencing each disease and trait” (Hirschhorn, 2009). Goldstein’s (2009) calculations

are also consistent with r being in the thousands, not just the tens of thousands:

. . . the genetic burden of common diseases must be mostly carried by large

numbers of rare variants. In this theory, schizophrenia, say, would be caused

by combinations of 1,000 rare genetic variants, not of 10 common genetic

variants.

(See Wade, 2009.) Kraft and Hunter (2009) argue that “many, rather than few, vari-

ant risk alleles are responsible for the majority of the inherited risk of each common

disease.” Again, r is large rather than small.
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In the discussion above one might interpret p and r as representing numbers of

single nucleotide polymorphisms (SNPs), alleles, or perhaps genes. There are believed

to be between 10 and 30 million SNPs on a human chromosome, and some 25,000

genes. However, genomic analyses based on decoding the full DNA of individuals who

suffer from specific conditions (Wade, 2009) increase the values of both p and r by

orders of magnitude. (In practice r will be chosen empirically, and so will actually be

a function of the data, but at the level of the discussion in the present section there is

little to be gained by making this distinction.)

Methods for feature selection based on the linear model are generally considered

only in cases where the number of features is relatively small. Otherwise, the value of

the response variable can be unreasonably insensitive to changes in a single feature.

Examples of approaches founded on the linear model include the nonnegative garrotte

(e.g. Breiman, 1995, 1996; Gao, 1998), the lasso (Tibshirani, 1996), the Dantzig selector

(Candes and Tao, 2007), and related techniques (e.g. Donoho and Huo, 2001; Fan and

Li, 2001, 2006; Donoho and Elad, 2003; Tropp, 2005; Donoho, 2006a, 2006b; Fan

and Ren, 2006; Fan and Fan, 2008). The feature-ranking approach that we consider is

more closely related to correlation-based approaches of Fan and Lv (2008) and Hall and

Miller (2008), but it is does not assume the existence of a response variable. Instead

it utilises class labels via a logistic model. Monograph-length treatments of classifiers

and related methodology include those of Duda et al. (2001), Hastie et al. (2001) and

Shakhnarovich et al. (2005).

Section 2.1, immediately below, proposes a general algorithm for determining fea-

tures that appear to have significant influence on whether a data vector comes from

one population or another. Sections 2.2 and 2.3 discuss particular approaches to im-

plementing the algorithm, and section 2.4 addresses computational labour. Section 3

develops theoretical properties of the component ranking stage in the algorithm, under

the assumption that there is a large number of relatively small differences among com-

ponent means. Section 4 explores properties of the adaptive dimension reduction stage,

section 5 discusses numerical properties, and section 6 outlines technical arguments.

2 METHODOLOGY

2.1. Data and algorithm. Denote the two populations of interest by Π0 and Π1.

Training data from each are acquired as p-vectors Xi = (Xi1, . . . , Xip), for 1 ≤ i ≤ n.
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We also record the value of a label Ii, for each i; it equals 0 or 1, indicating the index

of the population from which Xi came.

One potential algorithm for identifying indices j, of vector components Xij which

capture differences between Π0 and Π1, has four stages, (1)–(4) below. The goal of the

algorithm is to determine empirically a set {̂1, . . . , ̂r} of indices, a subset of {1, . . . , p},
such that the features with indices ̂1, . . . , ̂r have significant influence on whether Xi

comes from Π0 or Π1. Those features can then be combined into a classifier, for example

the support vector machine or a centroid-based method, to effect discrimination.

(1) Component ranking. Using a method such as that suggested in section 2.2, rank

all components in terms of their individual influence on Ii, interpreted as a zero-one

response variable. This stage takes O(p log p) time to run, and produces a permutation

̂1, . . . , ̂p, say, of 1, . . . , p, where the order of the sequence ̂1, . . . , ̂p is of major impor-

tance and signifies that, for each k, the component with rank ̂k has greater leverage

than the component with rank ̂k+1 on a measure of our ability to predict Ii from Xi.

(2) Deterministic dimension reduction. Truncate at q (where 1 ≤ q ≤ p) the sequence

we derived in step (1). From this point we work only with q-vectors comprised of the

components with indices ̂1, . . . , ̂q. The value of q is determined largely by our com-

putational resources, bearing in mind that the computational expense of constructing

the classifier could be as high as O(q2).

(3) Adaptive dimension reduction. In this stage we use an empirical method to reduce

dimension from q, chosen in stage (3), to r, so that the final choice of feature indices is

̂1, . . . , ̂r. Potential approaches are discussed in section 2.3, and include methods based

on: (3a) thresholding, (3b) change-point methods, or (3c) application of classifiers to

blocks of components.

(4) Backing and filling. In practice it can be advantageous to rerun stage (3) of the

algorithm using several of the values of j chosen early in stage (2), or early in the

implementation of stage (3), bearing in mind that there is potential for noise in the

choice of ̂1, for example, to throw the algorithm off course for a period. At this point

we could, for example, experiment with different choices of block size in method (3c).

2.2. Method for ranking components. Given an index j between 1 and p, and scalar

parameters α and β, we capture the relationship between Ii and Xij by assuming a

logit model:

P (Ii = 0 |Xij) = {1 + exp(α + β Xij)}−1 , P (Ii = 1 |Xij) = 1− P (Ii = 0 |Xij) .
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The likelihood of Ii, given Xij, is

Lij(Ii |α, β ;Xij) =
( tij

1 + tij

)Ii ( 1

1 + tij

)1−Ii
=

tIiij
1 + tij

,

where tij = exp(α + β Xij). Therefore the negative log-likelihood is

`ij(α, β) = − logLij(Ii |α, β ;Xij) = −Ii (α+β Xij) + log
{

1 + exp(α+β Xij)
}
, (2.1)

and its counterpart for X1j, . . . , Xnj is

`j(α, β) =
1

n

n∑
i=1

`ij(α, β) . (2.2)

Define (α̂j, β̂j) to be the value of (α, β) that minimises `j(α, β), and put

ˆ̀
j = `j(α̂j, β̂j) . (2.3)

The ordering ̂1, . . . , ̂p mentioned in step (1) of the algorithm in section 2.1 is deter-

mined by the values of ˆ̀
j. Specifically, ˆ̀̂

1 ≤ . . . ≤ ˆ̀̂
p .

2.3. Methods for adaptive dimension reduction. Several approaches are feasible, in-

cluding: (3a) Thresholding. Here we compute, from the data, a subsidiary criterion
˜̀
j, for 1 ≤ j ≤ p (we might simply choose ˜̀

j ≡ 0) and a threshold t; we take k0 ≥ 0

to be an integer; and we define r ∈ [k0 + 1, q], a function of the data, to be the least

integer in that range such that ˆ̀̂
r+k
− ˜̀̂

r+k
> t for 1 ≤ k ≤ k0. See section 4 for an

example. (3b) Change-point methods. Here we look for a change-point in the sequence
ˆ̀̂
1 , . . . ,

ˆ̀̂
p , and we take ̂r to be the location of that point. (There is a vast literature on

methodology and theory for change-point detection. It includes book-length accounts

by Carlstein et al. (1994), Csörgő and Horváth (1997), Chen and Gupta (2000) and

Wu (2005).) (3c) Application of classifiers. For k ≥ 1, let Bk = {̂(k−1)b+1, . . . , ̂kb}
denote the kth block of feature indices; here, b denotes block length. (Theoretical con-

siderations suggest that taking b ∼ const. n is appropriate.) In step s of stage (3c) we

construct the classifier that is based on the training data vectors where all but the com-

ponents with indices in ∪1≤k≤s Bk have been stripped away. We use cross-validation to

measure classifier performance, and in this way we determine whether progressing from

step s to step s+ 1 gives an improvement. If it does not then, subject to the “jiggling”

suggested in stage (4), we stop at step s. If performance is improved by passing to

the (s+ 1)st block then we proceed to step s+ 1, where we again assess performance.
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However, this approach can be biased in favour of low apparent error rate, without

having the same impact on actual error rate; see section 5.3 for discussion.

2.4. Duration of algorithm. Stage (3) of the algorithm takes O(r2) time to complete,

where r, in the range 1 ≤ r ≤ q, denotes the final number of components on which we

determine that the classifier should depend. In particular, the algorithm concludes with

a list of r components, say ̂`1 , . . . , ̂`r where {̂`1 , . . . , ̂`r} = ∪k≤ŝ Bk ⊆ {̂1, . . . , ̂q},
on which the final classifier is based. The O(r2) figure is derived as follows: Con-

structing the classifier from s batches takes O(sb) time, so the total time needed is

O(
∑

1≤s≤ŝ sb) = O(ŝ2b) = O(r2). Here, since b is generally of order n (see section #)

and ŝ2b = O(r2b), we have replaced r2b by r2 since, in the problems we are treating, n

is generally so much less than r that it can be treated as fixed. Provided the number

of reruns in stage (4) is only O(1), the order of magnitude of the time taken to run the

algorithm to completion is O(p log p+ r2).

2.5. Discussion. The procedures above are intended to reflect methodologies already

used in practice. Our main aim is to show that such techniques can be used to address

not just contemporary problems where there is believed to be considerable sparsity

and only a small number of significant features (for example, five or ten genes out of

thousands or tens of thousands), but also reduced sparsity and a larger total number

of features (for instance, thousands or tens of thousands of DNA sequences out of tens

or hundreds of thousands of possibilities). Additionally we show that the methods con-

tinue to work well under minimal distributional assumptions (for example, normality

is not needed), and minimal conditions about the correlation structure among features.

In all these senses, procedures such as those described above are particularly versatile.

3 PROPERTIES OF FEATURE RANKING

3.1. Main result on ranking. Let π = E(Ii) denote the proportion of data that come

from population Π1. We assume below that 0 < π < 1, and that when the training

data are drawn randomly from the union of Π0 and Π1, the prior probability that any

given datum Xi is from Π1 equals π. Therefore the corresponding probability for Π0

is 1 − π. We take n, representing the total size of the training sample, to be the key

asymptotic parameter, and interpret the dimension, p, of Xi as a function of n.

Next we describe our model. Write Xi = (Xi1, . . . , Xip), and, when Xi comes from
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Π1, take

Xij = µj + Zij (3.1)

where µj ≥ 0 are constants and, for simplicity, we assume that the variables Zij are

identically distributed as Z, say. (This condition can be relaxed; see (2.4) below.) Take

Xij = Zij when Xi is drawn from Π0. The vectors (Zi1, . . . , Zin) and variables Ii, for

1 ≤ i ≤ n, are assumed to be totally independent. We allow the µjs to be functions

of n.

Write α̂j and β̂j for the values of α and β that jointly minimise ˆ̀
j(α, β) within

radius n−c of (α0, 0), where α0 = log{π/(1− π)}, for any given c ∈ (0, 1
2
). (A separate

argument can be used to prove that if α̂j and β̂j are chosen without constraint then,

under the conditions of Theorem 1 below, they satisfy α̂j = α0 + Op(n
−c) and β̂j =

Op(n
−c) uniformly in 1 ≤ j ≤ p, for some c ∈ (0, 1

2
).) Define

Sj =

∑
i (Ii − π)Xij

nπ (1− π)
, (3.2)

and note that E(Sj) = 0. Put λ = (n−1 log n)1/2.

Theorem 1. Assume that for each n, |µj| ≤ const. λ for 1 ≤ j ≤ p; that p = p(n)→∞
and, for constants B1 > 0 and B2 > 2 max(B1 +3, 2B1), p = O(nB1) and 0 < E|Z|B2 <

∞; and that E(Z) = 0. Then, uniformly in 1 ≤ j ≤ p,

ˆ̀
j = `j(α̂j, β̂j) = R− 1

2
π (3− 2π)

(
EZ2

)−1
(Sj + µj)

2 +Op

(
λ3
)
, (3.3)

where the random variable R = R(n) does not depend on j. More particularly, the

Op(λ
3) term in (3.3) can be written as Θj λ

3, where, for a constant B3 depending on

B1 and B2, and with B4 = 1
4
{B2 − 2 max(B1 + 3, 2B1)} − ε for any ε > 0, the random

variables Θj, for 1 ≤ j ≤ p, satisfy:

p∑
j=1

P (|Θj| > B3) = O
(
n−B4

)
(3.4)

as n→∞.

The statistic Sj is, up to normalisation, the well-known z-score statistic for testing

whether the jth feature is significant or not; see for example Donoho and Jin (2008,

2009) and Jin (2009). In (3.3), since the first term, R, does not depend on j then the

second term is the one that reflects the strengths of individual features. As a result,
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ranking features according to ˆ̀
j gives close, but not necessarily the same, results as

ranking features according to |Sj + µj|.

The assumption that each Zij has the same distribution is made to simplify dis-

cussion and notation, and is readily relaxed. For example, it suffices to assume that

each Zij, for 1 ≤ i ≤ n, is distributed as Zj, say, where, instead of the assumptions

imposed on Z in the theorem, we ask that:

E(Zj) = 0, E(Z2
j ) is bounded away from zero and infinity uniformly

in j, and P (|Zj| > x) ≤ P (|Z| > x) for all x > 0 and some random
variable Z, where E|Z|B2 <∞.

(3.5)

In this case the moment E(Z2) in (3.3) would be replaced by E(Z2
j ). The conclusions

that we draw, below, from Theorem 1 are unchanged, provided we interpret µj as

µj/(EZ
2
j )1/2 during discussion.

Although we ask that the vectors Xi be independent, we make no assumption about

the relationships among their components. For example, the values of Zi1, . . . , Zip can

be highly correlated (indeed, in an extreme case, equal to one another) or completely

independent. The latter instance is actually the most difficult, in terms of rigorously

establishing that (3.3) and (3.4) hold. At the other end of the spectrum, the case

where Zi1 = . . . = Zip with probability 1 is trivial, since there effectively only a single

component index, with different candidate values for the mean, has to be treated.

3.2. Expected number of misrankings. Assume that some of the µjs are zero and all

the others are strictly positive. Ideally, we would like the criterion ˆ̀
j to be a good

indicator of the positivity of µj, in particular to take a lesser (or larger negative) value

if µj is positive than it does when µj = 0. Reflecting this aspiration, if there exist

component indices j1 and j2 such that µj1 > 0 and µj2 = 0, but ˆ̀
j2 <

ˆ̀
j1 , then we shall

say that a misranking has occurred. The expected total number of misrankings,

νmisrank =
∑

j1 :µj1
>0

∑
j2 :µj2

=0

P (ˆ̀
j2 <

ˆ̀
j1) ,

is a measure of the performance of ˆ̀
j as a criterion for distinguishing between positive

and zero values of µj; lower values of νmisrank correspond to higher performance.

Since the random variable Sj in (3.2) and (3.3) has standard deviation of size n−1/2

then, if the positive µjs are of smaller order than n−1/2, with probability converging

to 1
2

any attempt to rank any pair of means µj using the values of ˆ̀
j will produce

the wrong result about half the time. The following theorem makes this clear. Let p1
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denote the number of indices j for which µj > 0, and put

σ2
j1j2,± = π (1− π) var (Z1j1 ± Z1j2) (3.6)

for respective choices of the plus and minus signs.

Theorem 2. Assume the conditions of Theorem 1, that supj≤p µj = o(n−1/2), and

that σ2
j1,j2,± is bounded away from zero uniformly in j1, j2 and choices of the ± signs.

Then P (ˆ̀
j2 <

ˆ̀
j1) → 1

2
uniformly in 1 ≤ j1, j2 ≤ p, in particular uniformly in pairs

j1, j2 such that µj1 > 0 and µj2 = 0. Moreover, νmisrank = 1
2
p1 (p− p1) + o{p1 (p− p1)}

as n→∞.

Likewise, if the positive µjs are of size n−1/2 then the probability of incorrectly

ranking the j1th component lower than the j2th component, even though µj1 > 0 and

µj2 = 0, does not converge to zero. The next theorem quantifies this property. There

we define Φ to be the standard normal distribution function.

Theorem 3. Assume the conditions of Theorem 1, and that each nonzero µj equals

c n−1/2 where c > 0. Then

P
(
ˆ̀
j2 <

ˆ̀
j1

)
= Φ(−c/σj1j2,+) Φ(c/σj1j2,−) + Φ(c/σj1j2,+) Φ(−c/σj1j2,−) + o(1) ,

uniformly in j1, j2 such that µj1 > 0 and µj2 = 0. Furthermore,

νmisrank =
∑

j1 :µj1
>0

∑
j2 :µj2

=0

{
Φ(−c/σj1j2,+) Φ(c/σj1j2,−)

+Φ(c/σj1j2,+) Φ(−c/σj1j2,−)
}

+ o{p1 (p− p1)}

as n→∞.

Here, by default, Φ(−∞) = 0 and Φ(∞) = 1. This is relevant when σj1j2,± = 0.

If the number of components where the mean is positive is large, for example if

it equals a non-negligible proportion of the total number, p, of components, then the

number of misrankings can generally not be reduced to low levels unless we take the

nonzero means to be a little larger than n−1/2 in order of magnitude terms. It is enough

to take the positive mean to be a logarithmic factor larger; specifically, the mean should

equal c λ where, as before, c > 0 and λ = (n−1 log n)1/2. Theorem 4, below, shows

that in this case the expected number of misrankings can be reduced to a quantity of
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smaller order than p, or even to a number that converges to zero polynomially fast,

depending on how large we choose c.

As a prelude to stating Theorem 4 we introduce an assumption which asks that

the random variables Zj satisfy a pairwise Cramér continuity condition. Here it is

convenient to assume that there exists an infinite stochastic process Z1, Z2, . . . such

that:

(a) Each Zj has the distribution of Z (in this sense the pro-
cess Z1, Z2, . . . is weakly stationary), (b) if Xi = (Xi1, . . . , Xip) is
drawn from Π0 then Xi1, . . . , Xip has the same joint distribution as
Z1, . . . , Zp, and (c) if Xi is drawn from Π1 then Xi1, . . . , Xip has the
same joint distribution as Z1 + µ1, . . . , Zp + µp, where the µjs are the
nonnegative constants introduced prior to Theorem 1.

(3.7)

The Cramér continuity condition we impose is the following:

lim sup
t→∞

sup
|t1|+|t2|>t

sup
1≤j1<j2<∞

|E{exp(it1 Zj1 + it2 Zj2)}| < 1 , (3.8)

where on this occasion i =
√
−1. For example, (3.8) would hold if the process Zj

were strictly stationary and each pair (Zj1 , Zj2) had a joint density fj1j2 that satisfied

supj1,j2
∫∫
|f̈j1j2| < ∞, where f̈j1j2(x1, x2) = (∂2/∂x1∂x2) fj1j2(x1, x2). It would also

hold if the variables Zj were independent with a common nonsingular distribution.

Recall that p1 equals the number of indices j such that µj > 0, and that B4 =

B4(ε) = 1
4
{B2 − 2 max(B1 + 3, 2B1)} − ε where ε > 0. Define σj1j2,± by (3.6) and put

κn = (log n)1/2.

Theorem 4. Assume the conditions of Theorem 1, that (3.7) and (3.8) hold, and

that B2, in the moment condition E|Z|B2 < ∞, is so large that for some ε > 0,

p1 (p−p1) = o(nB4). Take each nonzero µj to equal c (n−1 log n)1/2, where c > 0. Then

νmisrank = {1 + o(1)}
∑

j1 :µj1
>0

∑
j2 :µj2

=0 {Φ(−c κn/σj1j2,+)

+Φ(−c κn/σj1j2,−)}+ o(1) (3.9)

as n→∞.

Elucidation of (3.9) requires information about the covariance of the process Zj,

in (3.7). For simplicity let us assume that the variables Zj are uncorrelated. Then by
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(3.6), σ2
j1j2,± = 2π (1−π)E(Z2) ≡ (2c0)

−1, say, for either choice of the ± signs. Hence

(3.9) implies that

νmisrank = {1 + o(1)} p1 (p− p1)
{

2 π c (2 c0 log n)1/2
}−1

n−c0c
2

+ o(1) .

Therefore, if c is chosen so large that p1 (p−p1) (log n)−1/2 n−c0c
2 → 0 then the expected

number of misranks will converge to zero. For smaller positive values of c the expected

number will be of smaller order than the potential number of misranks, p1 (p−p1), but

it will not necessarily be negligible itself.

The results in Theorems 2–4 have benefited from a simplification afforded by the

assumption that the variables Zij all have the same distribution, and in particular

have the same variance. As noted below Theorem 1, that condition can be relaxed

and the assumption (3.5) imposed instead. In practice, however, one could standard-

ise, in a componentwise fashion, the values of Xij for scale, and in that case it is

possible to state versions of Theorems 2–4 in settings where E(Z2
ij) varies with j.

The model that we have been using, i.e. Xij = Zij + c (n−1 log n)1/2 Ii where the Zijs

are independent, is (for moderate n) a good approximation to the standardised form

X ′ij = Z ′ij + c (n−1 log n)1/2 Ii, where the Z ′ijs satisfy (3.5). Detailed arguments here

are similar to those given by Hall and Wang (2008).

3.3. Effects of dependence of the process Zj on interpretations of (3.3). The expected

value of the number of misrankings, which we treated in section 3.3, is not as much

affected by dependence among components of the Zj process as are other aspects

of the distribution of the number of misrankings. For example, if the Zjs (in the

stochastic process Z1, Z2, . . . introduced in (3.7)) are all independent then the quantities

Sj, defined at (3.2) and on which the values of ˆ̀
j predominantly depend (see (3.3)),

are also independent, and so decisions based on the respective values of ˆ̀
j are made

virtually independently of one another. In this case the variance of the total number

of misrankings is relatively low. However, if the Zjs are highly correlated then the

variance can be higher, although it depends on how the positive means are distributed

among the components of Xi. In the present section we briefly discuss these issues.

Let the process Z1, Z2, . . . in (3.7) be ζ-dependent, meaning that any subsequence

Zj1 , . . . , Zjk such that j`+1 − j` > ζ, for each `, is comprised entirely of independent

random variables. We permit ζ to diverge with n, and we suppose that p1, the number

of nonzero values of µj, can also increase with n and that lim supn→∞ p1/p < 1. One

approach to arranging the nonzero means is to distribute them randomly, for example

taking µj = Jj µ for 1 ≤ j ≤ p, where J1, . . . , Jp is a random permutation of p1 ones
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and p − p1 zeros and is independent of the Zjs in (3.7). In this setting the clustering

that arises through dependence is often negligible, even if the dependence in the process

Z1, . . . , Zp is quite strong.

To appreciate why, note that the expected number of nonzero means in each string

of ζ consecutive components of Xi, when Xi is drawn from Π1, equals ζ × p−1 p1; and

that if (ζp1)
2 = o(p) then the probability that none of the approximately p/ζ strings

(placed end to end) of ζ consecutive components that contain one or more nonzero

means are adjacent, and the probability that none of the strings contains more than

one component, both converge to zero. Therefore, in view of the assumption of ζ-

dependence, if we treat the Zjs as independent and identically distributed when making

a statement about properties of rankings deduced from (3.3), the probability that we

commit an error in the statement converges to zero as n→∞. It can then be deduced

that, in cases where the positive means are randomly distributed and (ζp1)
2 = o(p),

the variance of the number of misrankings is relatively low.

Alternatively, rather than scatter the nonzero means µj randomly throughout the

vector (Z1, . . . , Zp), we could place them all down one end. This makes the distribution

of those quantities just about as “clumpy” as possible, by exploiting the ζ-dependence

property. For example, if p1 ≤ ζ then all of the nonzero means are attributed to the first

p1 variables in the sequence Xi1, . . . , Xip, when Xi is drawn from population Π1. The

assumption of ζ-dependence permits Xi1 = . . . = Xip1 with probability 1, whenever

Xi comes from either Π0 or Π1. This reduces the amount of available information,

since all the components that contain information for discriminating between Π0 and

Π1 are simply copies of one another; there are no independent sources of corroborating

information. Moreover, the values of Sj in (3.3) are identical for 1 ≤ j ≤ p1, and so

the values of ˆ̀
j are the same too, up to remainders of order λ3, which implies that the

total number of misranks is approximately equal to p1 times the number of times that

a specific component with a positive mean is misranked.

Of course, this increases the variance of the number of misranks. The setting p1 ≤ ζ

can encompass instances where (ζp1)
2 = o(p), which was shown two paragraphs above

to result in a relatively high amount of information about the differences between Π0

and Π1 when the nonzero means are scattered randomly in the data vector. These

examples illustrate the more general rule that, in cases where the positive means are

distributed consecutively in relatively long-range dependent vectors Xi, the variance

of the number of misranks tends to be higher than in cases where those means are
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distributed at random.

We conclude this section by comparing the notion of misranking with that of

(feature) False Discovery Rate (FDR); for the latter, see for example Benjamini and

Hochberg (1995) and Abramovich et al. (2006). For any set of selected features, FDR

equals the fraction of falsely selected features. This concept and that of misranking

both provide informative measures of how well important features are ranked, but they

are nevertheless different in important respects. To appreciate why, let us focus on a

specific feature. If we adhere to the notion of FDR then all that matters is whether

the feature is selected or not. If we instead we use the concept of misranking then

the order or rank of the feature being selected also matters. Technically there are also

important differences. For instance, misrankings are defined quite simply in terms of

pairwise comparisons of individual features, while FDR can involve higher-order rela-

tionships among different features. If we consider the influence, on these measures, of

the correlation structure among features, then misranking depends only on pairwise

correlations, but FDR may depend on high-order correlations. As a result, FDR can

be significantly more difficult to characterise than misranking, and requires much more

heavily constrained assumptions about dependence than are necessary using the mis-

ranking measure. Therefore, since the central problem is how well important features

are ranked, it is more appropriate to assess performance here using misranking, rather

than FDR.

The number of misrankings bears a close relationship to both the Wilcoxon rank-

sum test and the area under curve (AUC) of the ROC plot (see Hanley and McNeil,

1982). In this case the ROC is constructed with respect to whether each variable is

correctly classified as having nonzero mean on not. In fact, it is possible to show that

AUC = 1− {p1(p− p1)}−1 (# misrankings) . (3.10)

Thus we may interpret properties of νmisrank in Theorems 2–4 in the context of AUC.

For instance, under the assumptions of Theorem 2 the AUC score decays to 0.5, this

being the score for the random guessing model.

4 THRESHOLDING FOR ADAPTIVE DIMENSION REDUCTION

Recall that in Theorem 1 we showed that ˆ̀
j equals −Uj1, where

Uj1 = 1
2
π (3− 2 π)

(
EZ2

)−1
(Sj + µj)

2 , (4.1)
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plus a quantity that does not depend on j, plus a remainder term that is uniformly

smaller in size. The feature-ranking step (stage (1) in the algorithm in section 2.1)

aspires to re-order the indices j such that the indices for which µj 6= 0 are ranked

first, and those for which µj = 0 are listed together at the end of the sequence. If this

objective is largely achieved then the main task that remains is to choose the point in

the ranking where the change occurs; this is stage (3) of the algorithm in section 2.1.

In the present section we explore method (3a), based on thresholding; see section 2.3.

Observe that if Uj1 is as at (4.1) then Uj1 = Uj2 + Uj3, where

Uj2 = 1
2
π (3− 2π)

(
EZ2

)−1
S2
j , Uj3 = 1

2
π (3− 2π)

(
EZ2

)−1 (
µ2
j + 2µj Sj) . (4.2)

If we can construct a good approximation, Ûj2 say, to Uj2 then we can subtract it from
ˆ̀
j, leaving only Uj3 plus a small remainder. The value of Uj3 is exactly zero if µj = 0,

and is strictly positive with high probability if µj > 0. The quantity ˜̀
j = −Ûj2 is

referred to in that notation in method (3a) in section 2.3. If we choose an appropriate

threshold, t say, then we can implement (3a) as follows:

define r ∈ [k0 + 1, q], a random variable, to be the least integer in that
range such that ˆ̀̂

r+k
− ˜̀̂

r+k
> t for 1 ≤ k ≤ k0,

(4.3)

where k0 ≥ 0 is a fixed integer. Then, subject to the jiggling step in stage (4) of the

algorithm, we determine that the features with indices ̂1, . . . , ̂r are the ones that have

greatest influence on whether a data value Xi came from Π0 or Π1.

To define Ûj2, put π̂ = n−1
∑

i Ii and X̄j = n−1
∑

i Xij, define our estimator of

τ 2 = E(Z2) by τ̂ 2 = (np)−1
∑

i

∑
j (Xij − X̄j)

2, and let Ŝj = {n π̂ (1− π̂)}−1
∑

i (Ii −
π̂) (Xij − X̄j); compare the definition of Sj at (3.2). Then, motivated by the definition

of Uj2 at (4.2), put

−˜̀
j = Ûj2 ≡ 1

2
π̂ (3− 2 π̂) τ̂−1/2 Ŝ2

j .

Theorem 5, below, shows in effect that this is a good approximation to Uj2. Let B4 be

as in Theorem 1.

Theorem 5. Under the conditions of Theorem 1 we can write

ˆ̀
j − ˜̀

j = R− Uj3 + Ωj λ
3 , (4.4)

where R is as in (3.3) and, for a constant B > 0, the random variables Ωj satisfy

p∑
j=1

P (|Ωj| > B) = O
(
n−B4

)
. (4.5)
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Finally we describe implementation of method (3a) in stage (3) in section 2.3.

We shall assume we are in the context of Theorem 4, where the nonzero µjs equal

c (n−1 log n)1/2. Here it is appropriate to take the threshold t = t(n) to be a sequence

of negative numbers such that |t| is of strictly larger order than λ3 and of strictly

smaller order than λ2; that is, such that

|t| = o
(
λ2
)

and λ3 = o(|t|) . (4.6)

Let k1 denote the number of nonzero means added to the components of Xi when

Xi is drawn from Π1. To simplify discussion we assume that k1 is nonrandom, although

of course it may depend on n. Below Theorem 4 we discussed a case where the expected

number of misrankings converged to zero, and hence the probability of a misranking

occurring also tended to zero. In this setting,

with probability converging to 1, µ̂k > 0 for k ≤ k1 and µ̂k = 0 for
k > k1,

(4.7)

and it can be shown that if t < 0 satisfies (4.6) then the definition of r at (4.3) produces

a random variable which, with probability converging to 1 as n → ∞, equals k0 + k1.

Therefore, taking k0 = 0 in the rule at (4.3) ensures that, with probability converging

to 1, r is exactly equal to k1. Cases where the nonzero means are of size c (n−1 log n)1/2,

but c is not sufficiently large to ensure that (4.7) holds, can be treated satisfactorily

by choosing t < 0 to satisfy (4.6) but taking k0 ≥ 1. Depending on the strength of

correlation between components of the vector X it is possible to choose a fixed k0 such

that, with probability converging to 1, r is within Cρk1 of k1, where C > 0 and ρ

equals the expected proportion of feature indices that have positive means when Xi is

drawn from Π1, but are incorrectly ranked at a low level.

5 NUMERICAL PROPERTIES

5.1. Stability of misranking totals. Here we simulate under the model at (3.1), where

the signals are represented by µj and the noise by Zij. If we measure performance in

terms of the total number of misrankings, or equivalently in terms of AUC (see (3.10)),

and if the µjs decrease at rate n−1/2, then Theorem 3 implies that performance should

be stable as a function of sample size, n. That is, it should depend very little on n. To

explore this property numerically we consider the cases n = 20, 50, 100 and 200, with
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p = 0.4×n2. We take 90% of the µjs to equal zero and the others to equal c0 (20/n)1/2,

where c0 = 0.4, 0.8, . . . , 0.16. The noise variables Zij are independent and identically

distributed as N(0, 1).

Figure 1 shows how the expected value of AUC varies with n. The dashed lines on

either side of each curve are 95% pointwise confidence bands for the AUC estimate, and

quantify the uncertainty of the simulation study. The key feature is that, as predicted

by Theorem 3, AUC changes very little with n, even when n is small. As expected,

and as predicted by Theorems 2–4, AUC increases with increasing c0.
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Figure 1: AUC scores in simulation study with µj = c0 (20/n)1/2, in the example of
section 5.1.

We also explored cases where the nonzero µjs took random values, in particular

where they were drawn randomly and uniformly from the interval [0, c0 (20/n)1/2]. This

case is more challenging, since the genuine signals are now strictly smaller than in the

previous situation. Therefore it comes as no surprise to learn that the AUC levels for

each c0 are reduced. However, the overall pattern of stability with respect to n is still

evident, with very slightly more variation than in the case of fixed µjs.

5.2. Influence of correlation on misranking performance. Next we discuss the effects of

correlated noise Zij in the model at (3.1). We take the noise to be a moving average of

order 1, i.e. Zij = ρZi,j−1 + (1− ρ2)1/2 εi,j, where the εi,js are independent and normal

N(0, 1). Thus, Zij and Zik are correlated for all pairs (j, k), with the coefficient of

correlation decaying exponentially fast in |j − k|. The value of c0 is fixed at 1.2, and

nonzero µjs are chosen uniformly in [0, c0 (20/n)1/2]. The values of n, p and the number

of true signals are as in section 5.1.
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Table 1 gives values of Monte Carlo approximations to the means and standard

deviations of AUC scores when the variables, or features, for which µj is nonzero are

grouped together among the lowest values of j, as in the discussion following Theorem 4.

The main observation is that while mean AUC remains stable across the table, the

variability of AUC is much greater when strong correlation exists. For instance, if

n = 200 then when ρ = 0.99 the standard deviation of AUC scores is ten times larger

than when ρ = 0. The presence of correlation makes the problem significantly more

difficult; it effectively inserts an element of randomness into the process of correctly

ranking important features.

Table 2 shows results in the same setting, except that the indices of variables

where µj is nonzero are distributed randomly between 1 and p. There is again a

high degree of stability, but variability is comparatively less than that in Table 1,

consistent with the discussion in section 3.3. In particular, by randomly distributing

the indices of the nonzero µjs we effectively reduce dependence among the variables

that are important, and so, reflecting the results in Table 1, the problem becomes less

statistically challenging.

AUC means AUC std dev.
ρ n = 20 n = 50 n = 100 n = 200 n = 20 n = 50 n = 100 n = 200

-0.99 0.725 0.698 0.706 0.709 0.136 0.078 0.039 0.018
-0.75 0.704 0.717 0.715 0.712 0.064 0.022 0.012 0.006
-0.50 0.650 0.705 0.718 0.711 0.070 0.024 0.011 0.006
-0.25 0.702 0.725 0.706 0.716 0.062 0.025 0.012 0.007
0.00 0.699 0.707 0.711 0.714 0.070 0.027 0.012 0.006
0.25 0.687 0.714 0.707 0.712 0.080 0.032 0.015 0.007
0.50 0.666 0.682 0.713 0.713 0.094 0.037 0.017 0.009
0.75 0.715 0.710 0.718 0.719 0.101 0.047 0.025 0.013
0.99 0.662 0.725 0.708 0.704 0.259 0.157 0.107 0.065

Table 1: Mean and standard deviation of AUC scores for simulation with correlated
noise and grouped effects.

5.3. Prediction in a large simulated problem. Here we present the analysis of a sin-

gle simulated dataset, demonstrating how our approach performs when the centroid

classifier is used. We take p = 10,000 and n = 100 (50 for each class). Ten percent

of the variables Xij (in the model at (3.1)) include a nonzero signal. These µjs are

drawn from the uniform distribution on [0, 0.35], and the noise variables Zij are in-

dependent N(0, 1). This is a particularly difficult problem, since the signals are very
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AUC means AUC std dev.
ρ n = 20 n = 50 n = 100 n = 200 n = 20 n = 50 n = 100 n = 200

-0.99 0.712 0.712 0.713 0.715 0.139 0.058 0.032 0.016
-0.75 0.702 0.710 0.713 0.714 0.078 0.030 0.014 0.008
-0.50 0.705 0.710 0.711 0.714 0.076 0.032 0.015 0.008
-0.25 0.706 0.705 0.713 0.714 0.078 0.032 0.015 0.007
0.00 0.696 0.709 0.714 0.712 0.077 0.030 0.015 0.007
0.25 0.698 0.712 0.710 0.714 0.078 0.034 0.016 0.008
0.50 0.703 0.713 0.714 0.714 0.081 0.030 0.016 0.007
0.75 0.698 0.712 0.711 0.714 0.088 0.034 0.016 0.008
0.99 0.741 0.721 0.712 0.710 0.195 0.091 0.053 0.024

Table 2: Mean and standard deviation of AUC scores for simulation with correlated
noise and randomised effects.
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Figure 2: Ideal prediction success for the example of section 5.3.

weak compared to the noise, and sample size is quite small.

Figure 2 shows the prediction performance of the centroid classifier on a test set of

1,000 replicates in the case of “ideal variable selection,” where the 1,000 variables with

nonzero signals are selected first, in decreasing order of signal strength, followed by the

9,000 variables where the signal is not present. In particular, the order is not chosen

empirically. The minimum of the graph occurs at 449 variables (out of a maximum

of 1,000), and corresponds to a misclassification rate of only 0.5%. The decrease in

predictive performance caused by less useful, or redundant, variables is apparent from

the figure; the weaker genuine variables actually hurt prediction performance because

they contain more noise than signal. Also of note is the fact that a large number of

18



variables is needed to obtain good prediction. For example, if attention is confined

only to the strongest 50 variables then the misclassification rate increases to 16%.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

False Positive rate

S
en

si
tiv

ity

Figure 3: ROC plot for feature ranking in the example of section 5.3.

For the same dataset we undertook variable ranking based on the values of ˆ̀
j,

defined at (2.3). The result was the ROC chart in Figure 3. There the value of k in

the ranking ̂1, . . . , ̂k, ̂k+1, . . . , ̂p, defined in the sentence below (2.3), is represented

as k/p on the horizontal axis, and the vertical axis depicts the value of ˆ̀̂
k/

ˆ̀̂
1 , a

ratio of two negative numbers. The area under the empirical curve, i.e. AUC, equals

0.626, meaning that a fraction 1 − 0.626 ≈ 37% of the paired scores correspond to a

misranking. The ROC curve is indexed by model size, with bottom left denoting an

empty model and the top right a full model. For a given model size, we can read off

the chart the corresponding sensitivity, or proportion of true variables included, and

the false positive rate, or proportion of redundant variables in the model. Ideally a

model should have high sensitivity and low false positive rate, and the chart indicates

the tradeoff between the two for various model sizes.

Figure 4 shows how prediction accuracy varies with model size. Performance is

now clearly a long way from that represented in Figure 2, where the 1,000 variables

with nonzero signals were listed first in decreasing order of strength. The minimum

misclassified rate is now 13.7%, and requires the use of 3,258 of the 10,000 features. As

discussed in the previous paragraph, every model size corresponds to a position on the

ROC plot in Figure 3, in this case (0.31,0.51). Hence the optimal model found here

contains 51% of the genuine variables, and 31% of the redundant ones.
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Figure 4: Performance using variable ranking and centroid classifier for the example
of section 5.3.

We next explore stage (3) of the four-stage algorithm suggested in section 2.1,

addressing in turn each of the approaches (3a)–(3c) discussed in section 2.3. We imple-

ment the threshold method, (3a), by comparison with a randomised model where the

observed classes Ii are scrambled and likelihoods recalculated, and employ the approach

suggested in the second paragraph of section 4; see (4.3). In particular, the threshold

is chosen by computing the 100αth percentile of scores for the scrambled data. Doing

this for α = 0.2 corresponds to seeking a false positive rate of 0.2. In the numerical

example that we are considering here, this recovers a model with 2,159 predictors and

produces a test set misclassification rate of 16.8%. A model this size corresponds to

the point (0.196, 0.40) on the ROC chart. Notice that we have effectively targeted the

false positive rate of α = 0.2 via this approach.

To provide an example of the change-point method, (3b), suggested in section 2.3

for choosing model size, we consider the ratio of the sorted likelihoods from the original

and scrambled rankings. These are plotted in Figure 5, along with a 45◦ line. Starting

with the weakest variables, we expect the ratio to remain near 1 until a sizeable number

of variables that genuinely contain a positive signal cause the ratio to shrink. For this

purpose we can use the simple change-point statistic for detecting a change in the mean

(see Chapter 2 of Csörgő and Horváth, 1997),

T (t) = n−1/2 {S(nt)− t S(n)} ,

where S(k) equals the cumulative sum of the first k ratios, and t ∈ (0, 1) denotes the
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Figure 5: Comparison of actual and randomised log-likelihoods in the example of sec-
tion 5.3.

examined proportion of the dataset. This leads to a model with 1,760 variables and

a misclassification rate of 16.2%, comparable to that when using method (3a). This

model size corresponds to the point (0.16, 0.36) on the ROC plot.

Finally, in reference to the classifier-based approach (3c) suggested in section 2.3,

we note that the apparent error rate can be driven quickly to zero without the actual

error rate being reduced as much as it is if we employ methods (3a) or (3b). For

example, when using (3c) in conjunction with the centroid classifier the “best” model,

with apparent error rate equal to zero, occurs when just 39 variables are selected; but

the misclassification rate on the test set is 32.5%, almost twice that obtained for either

of methods (3a) and (3b).

5.4. Results for real data examples. A challenge when using our methodology to analyse

previously considered real datasets is that the latter were possibly considered because

they illustrate cases where only a very small number of variables determine the class

label. In particular, contrary to the concerns raised by Goldstein (2009), the number of

influential components is quite small. To simplify matters, we demonstrate here that

likelihood based ranking is a powerful tool for improving a wide variety of classifiers.

We make use of three well-known sets of microarray data. These relate respectively

to leukemia (Golub et al., 1999), colon cancer (Alon et al., 1999) and prostate cancer

(Singh et al., 2002) and have 7,129, 2,000 and 6,033 components respectively. Dettling

(2004) and Donoho and Jin (2008) discuss the performance of a variety of classifiers

on these datasets, using a two-thirds/one-third split of the data into training and test
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samples. Their results are reported in Table 3. Readers may refer to the above papers

for details on specific methods.

Method Leukemia Colon Prostate
Bagboo 4.08 16.10 7.53
Boost 5.67 19.14 8.71

RanFor 1.92 14.86 9.00
SVM 1.83 15.05 7.88

DLDA 2.92 12.86 14.18
KNN 3.83 16.38 10.59
PAM 3.55 13.53 8.87
HCT 2.86 13.77 9.47

Table 3: Percentage misclassification rate of different methods on microarray datasets.

To test the effectiveness of likelihood-based ranking we chose the best classifica-

tion method and the random forest classifier (a consistent performer) for each of the

datasets. An extra step was added to each cross-validation fold; the two-thirds training

data was used to rank variables based on the likelihood score, and then only a pro-

portion of the top-ranked variables were used to estimate the final model. The results

are presented in Table 4. The last row of the table shows results for the full dataset;

they should in theory match those in Table 3, with differences attributable to tuning

approaches. We could not reproduce the accuracy reported for DLDA on the colon

dataset, and so used the next best method (PAM).

In each case accuracy can be improved by reducing the model size. For the best

classifiers on each dataset, this effect was small but noticeable; for the leukemia data,

dimension was reduced by 25% and error by 5%; for the colon dataset, dimension

was reduced by 62.5% and error by 1%; and for the prostate dataset, dimension was

reduced by 62.5% and error by 3%. For the random forest models the results were even

more pronounced, with marked imporvement in prediction and significant dimension

reduction. For the prostate dataset, the error was reduced by 25%, using just 0.005

of the available variables in each fold. This suggests that the likelihood based ranking

method can effectively control the sparsity of a model and potentially improve model

performance.

While firm conclusions are difficult here, we argue that this analysis presents evi-

dence for a large number of relatively weak effects contributing to a model. Indeed, in

all but one case we would prefer a model size larger than the dozens, or fewer, used in
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Prop. Leukemia Colon Prostate
SVM RanFor RDA RanFor RanFor

0.0025 34.72 4.58 14.29 16.58 8.82 8
0.005 34.61 3.78 13.00 15.71 8.37 7.67
0.01 6.86 3.36 13.13 15.77 7.84 7.73
0.025 1.89 2.97 13.10 15.74 7.16 8.20
0.05 1.67 2.58 13.26 15.16 7.29 8.55
0.10 1.58 2.50 13.19 14.94 7.02 8.90
0.15 1.67 2.22 13.16 14.94 7.10 9.14
0.25 1.64 2.36 12.90 15.03 7.06 9.49
0.375 1.61 2.11 12.87 15.52 6.82 9.67
0.50 1.58 2.22 13.00 15.58 6.82 9.90
0.75 1.53 2.36 12.97 16.13 7.02 9.80
1.00 1.61 2.31 13.00 16.32 7.04 10.24

Table 4: Performance of best methods on reduced datasets, using likelihood based rank-
ing.

many conventional approaches to variable selection. Furthermore, our variable ranking

appears to be a useful means of determining the effective model size.

6 TECHNICAL ARGUMENTS

6.1. Proof of Theorem 1. Define `ij(α, β) and `j(α, β) as at (2.1) and (2.2), respectively,

and put `(α, β) = E{`ij(α, β)}. To simplify notation, and since for the most part we

shall work with one j at a time, we omit mention of j in the notation `(α, β), and

likewise we drop the subscript j on µj.

The event that Xi comes from Π1 occurs with probability π if Xi is sampled from

the union of Π0 and Π1. Thus, conditional on the sampling operation, Xij = µ + Zij

with probability π, and Xij = Zij with probability 1− π, where each Zij is distributed
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as Z. Therefore,

`(α, β) = −π (α + β µ) + π E[log{1 + exp(α + β µ+ β Z)}]

+(1− π)E[log{1 + exp(α + β Z)}] ,

d10(α, β) ≡ ∂

∂α
`(α, β) = 1− π − π E

[
{1 + exp(α + β µ+ β Z)}−1

]
−(1− π)E

[
{1 + exp(α + β Z)}−1

]
, (6.1)

d01(α, β) ≡ ∂

∂β
`(α, β) = −π E

[
(µ+ Z) {1 + exp(α + β µ+ β Z)}−1

]
−(1− π)E

[
Z {1 + exp(α + β Z)}−1

]
, (6.2)

where we have used the fact that E(Z) = 0.

Let ρ = eα/(1+eα). Since E|Z|4 <∞ then Taylor expansion shows that, uniformly

in |α|, |µ| ≤ C for a fixed constant C > 0, and as β → 0,

E
[
{1+exp(α + β µ+ β Z)}−1

]
=
(
1 + eα

)−1
E

([
1 + ρ

{
β (µ+ Z) + 1

2
β2 (µ+ Z)2 + . . .

}]−1
)

= (1− ρ)E
[
1− ρ

{
β (µ+ Z) + 1

2
β2 (µ+ Z)2

}
+ ρ2 β2 (µ+ Z)2

]
+O

(
|β|3
)

= (1− ρ)
{

1− ρ β µ+ ρ
(
ρ− 1

2

)
β2
(
µ2 + EZ2

)}
+O

(
|β|3
)
, (6.3)

E
[
(µ+Z) {1 + exp(α + β µ+ β Z)}−1

]
= (1− ρ)E

(
(µ+ Z)

[
1− ρ

{
β (µ+ Z) + 1

2
β2 (µ+ Z)2

}
+ ρ2 β2 (µ+ Z)2

])
+O
(
|β|3
)

= (1− ρ)
{
µ− ρ β

(
µ2 + EZ2

)
+ ρ

(
ρ− 1

2

)
β2
(
µ3 + 3µEZ2 + EZ3

)}
+O
(
|β|3
)
. (6.4)

Combining (6.1)–(6.4) we deduce that, uniformly in |α|, |µ| ≤ C and as β → 0,

d10(α, β) = 1− π − (1− ρ)
{

1− ρ β π µ+ ρ
(
ρ− 1

2

)
β2
(
π µ2 + EZ2

)}
+O
(
|β|3
)
, (6.5)

d01(α, β) = −(1− ρ)
{
π µ− ρ β

(
π µ2 + EZ2

)
+ρ
(
ρ− 1

2

)
β2
(
π µ3 + 3 π µEZ2 + EZ3

)}
+O

(
|β|3
)
. (6.6)
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Put ρ = π + η. By Taylor expansion from (6.5) and (6.6),

d10(α, β) = η + π (1− π)
{
β π µ−

(
π − 1

2

)
β2EZ2

}
+O

(
δ3
)
, (6.7)

d01(α, β) = −(1− π − η)
{
π µ− (π + η) β EZ2 + π

(
π − 1

2

)
β2EZ3

}
+O

(
δ3
)

= −π (1− π)µ+ η π µ+ {π (1− π) + (1− 2π) η} β E
(
Z2
)

−π (1− π)
(
π − 1

2

)
β2E

(
Z3
)

+O
(
δ3
)
, (6.8)

uniformly in |β| ≤ δ and α such that |ρ− π| ≤ δ, as δ → 0.

Recall that λ = (n−1 log n)1/2. By Taylor expansion from formula (2.2) for `j(α, β),

we have:

∂

∂α
(1− E) `j(α, β)

=
1

n

n∑
i=1

(1− E) (1− Ii)−
1

n

n∑
i=1

{1 + exp(α + β Xij)}−1

=
1

n

n∑
i=1

(1− E) (1− Ii) + ρ (1− ρ) β
1

n

n∑
i=1

(1− E)Xij +Op

(
δ2 λ

)
(6.9)

=
1

n

n∑
i=1

(1− E) (1− Ii) + π (1− π) β
1

n

n∑
i=1

(1− E)Xij +Op

(
δ2 λ

)
, (6.10)

∂

∂β
(1− E) `j(α, β)

=
1

n

n∑
i=1

(1− E) (1− Ii)Xij −
1

n

n∑
i=1

Xij {1 + exp(α + β Xij)}−1

=
1

n

n∑
i=1

(1− E) (1− Ii)Xij − (1− ρ)
1

n

n∑
i=1

(1− E)Xij +Op(δλ) (6.11)

=
1

n

n∑
i=1

(1− E) (1− Ii)Xij − (1− π)
1

n

n∑
i=1

(1− E)Xij +Op(δλ) , (6.12)

uniformly in 1 ≤ j ≤ p, in |α| ≤ C such that |ρ−π| ≤ δ, and in |β| ≤ δ, as δ → 0. Here

we continue to take ρ = eα/(eα + 1) and η = ρ−π. Deriving (6.10) and (6.12) for each

fixed j, α and β is straightforward. In the Appendix we shall show that (6.10) and

(6.12) hold uniformly in those quantities, and more particularly that the remainders

Op(δ
2 λ) and Op(δλ) there can be written as Θj δ

2 λ and Θj δ λ, respectively, where in

both cases Θj satisfies (3.4).

Define

ξ
(1)
j = n−1

n∑
i=1

(1− E)Xij , ξ
(2)
j = n−1

n∑
i=1

(1− E) (1− Ii)Xij
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and put

ξ = −n−1

n∑
i=1

(1− E) Ii = n−1

n∑
i=1

(1− E) (a− Ii) (6.13)

for any constant a. Note that (∂/∂α) `j(α, β) = d10(α, β) + (∂/∂α) (1 − E) `j(α, β),

and that a similar formula applies in the case of (∂/∂β) `j(α, β). Combining these

properties with (6.7), (6.8), (6.10) and (6.12) we deduce that

∂

∂α
`j(α, β) = ξ + π (1− π) β ξ

(1)
j + η

+π (1− π)
{
β π µ−

(
π − 1

2

)
β2EZ2

}
+Op

(
δ3
)
, (6.14)

∂

∂β
`j(α, β) = ξ

(2)
j − (1− π − η) ξ

(1)
j

−π (1− π)µ+ π (1− π) β E
(
Z2
)

+Op

(
δ2
)
, (6.15)

uniformly in 1 ≤ j ≤ p, |α| ≤ C and |β|, |µ| ≤ δ, where we assume δ ≥ λ. The fact that

ξ
(1)
j and ξ

(2)
j equal Op(λ) uniformly in 1 ≤ j ≤ p can be proved as in the Appendix.

Equating the right-hand side of (6.14) to zero, and solving for η, we deduce that

η = ηj ≡ −
[
ξ + π (1− π) β ξ

(1)
j π (1− π)

{
β π µ−

(
π − 1

2

)
β2EZ2

}]
+Op

(
δ3
)
, (6.16)

uniformly in 1 ≤ j ≤ p and solutions (α, β) of the equations

∂

∂α
`j(α, β) = 0 ,

∂

∂β
`j(α, β) = 0 (6.17)

that satisfy |α| ≤ C and |β| ≤ δ, where it is assumed that |µ| ≤ δ and δ ≥ λ. Write

(α̂j, β̂j) for any such solution.

Substituting the expression (6.16) for η into the right-hand side of (6.15), and

equating to zero, we deduce that

ξ
(2)
j − (1− π + ξ) ξ

(1)
j −π (1− π)µ+ π (1− π) β E

(
Z2
)

−π (1− π)
(
π − 1

2

)
β2E

(
Z3
)

= Op

(
δ2
)
, (6.18)

uniformly in 1 ≤ j ≤ p and solutions (α, β) of (6.17) for which |α| ≤ C and |β| ≤ δ.

Solving (6.18) for β we obtain:

β π (1− π)
(
EZ2

)
{1 +Op(δ)} = (1− π) ξ

(1)
j − ξ

(2)
j + π (1− π)µ+Op

(
δ2
)
,

from which it follows that, uniformly in the sense of:

all 1 ≤ j ≤ p and all (α̂j, β̂j) satisfying (6.17), |α̂j| ≤ C and |β̂j| ≤ δ, (6.19)
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we have:

β̂j =
(1− π) ξ

(1)
j − ξ

(2)
j + π (1− π)µ

π (1− π)EZ2
+Op

(
δ2
)
. (6.20)

Recall that α0 = log{π/(1− π)}. Uniformly in the sense of (6.19),

α̂j − α0 = log
( ρ̂j

1− ρ̂j

)
− log

( π

1− π

)
= log

{
1 +

ηj
π (1− π)

}
+Op

(
η2
j

)
=

ηj
π (1− π)

+Op

(
η2
j

)
,

where ρ̂j = exp(α̂j)/{1 + exp(α̂j)} and ηj is given by (6.16). Therefore, in view of

(6.16) and (6.20),

α̂j − α0 =
ηj

π (1− π)
+Op

(
η2
j

)
= − ξ

π (1− π)
+Op

(
δ2
)
, (6.21)

uniformly in the sense of (6.19).

By (6.5) and (6.6), d10(α0, 0) = 0 and d01(α0, 0) = −π (1− π)µ. It can be deduced

from (6.1) and (6.2) that

d20(α, β) = −π E
{

exp(α + β µ+ β Z)

1 + exp(α + β µ+ β Z)

}
−(1− π)E

{
exp(α + β Z)

1 + exp(α + β Z)

}
,

d02(α, β) = −π E
{

(µ+ Z)2 exp(α + β µ+ β Z)

1 + exp(α + β µ+ β Z)

}
−(1− π)E

{
Z2 exp(α + β Z)

1 + exp(α + β Z)

}
,

d11(α, β) = −π E
{

(µ+ Z)
exp(α + β µ+ β Z)

1 + exp(α + β µ+ β Z)

}
−(1− π)E

{
Z

exp(α + β Z)

1 + exp(α + β Z)

}
.

Therefore, d20(α0, 0) = −π, d02 = −π2 µ2 − π E
(
Z2
)

and d11(α0, 0) = −π2 µ.

Combining (6.21) and the results in the previous paragraph, and using Taylor

expansion, we deduce that:

`(α̂j, β̂j) −`(α0, 0)

= (α̂j − α0) d10(α0, 0) + β̂j d01(α0, 0) + 1
2

(α̂j − α0)
2 d20(α0, 0)

+1
2
β̂2
j d02(α0, 0) + (α̂j − α0) β̂j d11(α0, 0) +Op

(
|α̂j − α0|3 + |β̂j|3

)
= −π (1− π) β̂j µ− 1

2
ξ2
{
π (1− π)2

}−1 − 1
2
β̂2
j π EZ

2 +Op

(
δ3
)
, (6.22)
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uniformly in the sense of (6.19). Define R1 = `(α0, 0)− 1
2
ξ2 {π (1− π)2}−1 and S1j =

{(1 − π) ξ
(1)
j − ξ

(2)
j } {π (1 − π)EZ2}−1. (Here and below, R1, R2 and R3 will denote

quantities not depending on j, and in particular do not depend on µ = µj.) In this

notation it follows from (6.20) that

β̂j = S1j + µ (EZ2)−1 +Op

(
δ2
)
, (6.23)

uniformly in the sense of (6.19), and then from (6.22) that

`(α̂j, β̂j) = R1 − π (1− π)
(
S1j +

µ

EZ2

)
µ− 1

2
π
(
S1j +

µ

EZ2

)2
EZ2 +Op

(
δ3
)

= R1 − µS1j {π (1− π) + π}

−µ2
(
EZ2

)−1 {
π (1− π) + 1

2
π
}
− 1

2
π S2

1j EZ
2 +Op

(
δ3
)
. (6.24)

It can be deduced from (2.1) and (2.2), by Taylor expansion, that Dj(α, β) ≡
(1− E) `j(α, β) satisfies

Dj(α, β) =
1

n

n∑
i=1

(1− E) {π β Xij − Ii (α + β Xij)}+Op

(
δ3
)

= β
1

n

n∑
i=1

(1− E) (π − Ii)Xij − α
1

n

n∑
i=1

(1− E) Ii +Op

(
δ3
)

= β
{

(π − 1) ξ
(1)
j + ξ

(2)
j

}
+ α ξ +Op

(
δ3
)
, (6.25)

uniformly in 1 ≤ j ≤ p, |α| ≤ C and |β| ≤ δ, where ξ is as at (6.13). Replacing (α, β)

here by (α̂j, β̂j), and noting from (6.21) that α̂j − α0 = −ξ {π (1− π)}−1 +Op(δ
2) and

also that β̂j satisfies (6.23); and defining R2 = [α0− ξ {π (1−π)}−1] ξ; we deduce from

(6.25) that

Dj(α̂j, β̂j) = S1j S2j + µ
(
EZ2

)−1
S2j +R2 +Op

(
δ3
)
, (6.26)

uniformly in the sense of (6.19), where

S2j = (π − 1) ξ
(1)
j + ξ

(2)
j = −π (1− π) (EZ2)S1j .

Combining (6.24) and (6.26), and observing that `j(α, β) = `(α, β) +Dj(α, β), we find
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that

`j(α̂j, β̂j) = R3 + S1j S2j + µ
(
EZ2

)−1
S2j − µS1j π (2− π)

−µ2
(
EZ2

)−1 1
2
π (3− 2 π)− 1

2
π
(
EZ2

)
S2

1j +Op

(
δ3
)

= R3 − π (1− π)
(
EZ2

)
S2

1j − 1
2
π
(
EZ2

)
S2

1j − π (1− π)µS1j

−π (2− π)µS1j − 1
2
π (3− 2π)

(
EZ2

)−1
µ2 +Op

(
δ3
)

= R3 − 1
2
π (3− 2π)

(
EZ2

)
S2

1j − π (3− 2π)µS1j

−1
2
π (3− 2π)

(
EZ2

)−1
µ2 +Op

(
δ3
)

= R3 − 1
2
π (3− 2π)

(
EZ2

) (
S1j +

µ

EZ2

)2
+Op

(
δ3
)
, (6.27)

where R3 = R1 +R2 and does not depend on j.

Since we assumed that (α̂j, β̂j) minimises `j(α, β) within n−c of (α0, 0), where

0 < c < 1, then we may take δ = n−c. Then, iterating (6.27), we conclude that (6.27)

holds with δ = λ. In that case (6.27) is identical to (3.3).

6.2. Proofs of Theorems 2 and 3. For brevity we treat only pairs j1, j2 such that µj1 > 0

and µj2 = 0. Assume that the conditions of either Theorem 2 or Theorem 3 hold. Put

Wj = n1/2 Sj and δj = n1/2 µj. Then

P
(
ˆ̀
j2 <

ˆ̀
j1

)
= P

{
(Wj1−Wj2 +δj1) (Wj1 +Wj2 +δj1) ≤ Θj1j2 n

−1/2 (log n)3/2
}
, (6.28)

where, by (3.3), the random variable Θj1j2 satisfies

lim
C→∞

lim sup
n→∞

P

(
max

j1 :µj1
>0

max
j2 :µj2

=0
|Θj1j2| > C

)
= 0 (6.29)

for a constant C > 0. Also, defining σ2 = π (1 − π)EZ2 to denote the asymptotic

variance of n1/2 Sj, we have:

cov(Wj1 +Wj2 ,Wj1 −Wj2) = E
(
W 2
j1

)
− E

(
W 2
j2

)
= σ2 − σ2 + o(1)→ 0 .

From this property, the definitions of Wj1 and Wj2 , and the Berry-Esseen bound for

sums of independent random vectors, we find that

P
(
Wj1 +Wj2 ≤ x1,Wj1 −Wj2 ≤ x2

)
= Φ(x1/σj1j2,+) Φ(x1/σj1j2,−

)
+ o(1) , (6.30)

uniformly in real numbers x1, x2 and in j1, j2 such that µj1 > 0 and µj2 = 0, as n→∞.

Combining (6.28)–(6.30) we deduce that if µj1 = n−1/2 cnj1 then

P (ˆ̀
j2 <

ˆ̀
j1) =

{
Φ(−cnj1/σj1j2,+) Φ(cnj1/σj1j2,−

)
+Φ(cnj1/σj1j2,+) Φ(−cnj1/σj1j2,−

)}
+ o(1) , (6.31)
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uniformly in j1, j2 such that µj1 > 0 and µj2 = 0 as n→∞. Theorems 2 and 3 follow

from (6.31). Note that in the context of Theorem 2, cnj → 0 uniformly in 1 ≤ j ≤ p.

6.3. Proof of Theorem 4. Result (6.28) continues to hold, with δj = n1/2 µj =

c (log n)1/2 when µj > 0. In place of (6.29) we use the following result, a consequence

of (3.4): for a constant C > 0,

max
j1 :µj1

>0
max

j2 :µj2
=0
P (|Θj1j2 | > C) = O

(
n−B4

)
,

where B4 = 1
4
{B2 − 2 max(B1 + 3, 2B1)} − ε for any ε > 0. Therefore, since n−1/6 ×

n−1/6 � n−1/2,

P
(
ˆ̀
j2 <

ˆ̀
j1

)
= P

(
Wj1 +Wj2 + δj1 ≤ −1

2
n−1/6 , Wj1 −Wj2 + δj1 >

1
2
n−1/6

)
+P
(
Wj1 +Wj2 + δj1 >

1
2
n−1/6 , Wj1 −Wj2 + δj1 ≤ −1

2
n−1/6

)
+θj1j2 +O

(
n−B4

)
, (6.32)

uniformly in j1, j2 such that µj1 > 0 and µj2 = 0, where

|θj1j2| ≤ φj1j2 = P
(
Wj1 −Wj2 + δj1 ∈

[
− 1

2
n−1/6, 1

2
n−1/6

])
+P
(
Wj1 +Wj2 + δj1 ∈

[
− 1

2
n−1/6, 1

2
n−1/6

])
. (6.33)

Given a random variable V , write (1 − E)V to denote V − E(V ). Define Vj =

{π (1−π)}−1 n−1/2
∑

i (Ii−π)Zij, which has zero mean, and note that π (1−π) (Wj−
Vj) = c (log n)1/2 ∆j, where, defining Iij to be the indicator of the event that µj > 0

(conditional on Xi is from Π1, or equivalently on Ii = 1), we put

∆j = n−1

n∑
i=1

(1− E) (Ii − π) Ii Iij = (1− π)n−1

n∑
i=1

(1− E) Ii Iij .

Bernstein’s inequality can therefore be used to prove that for all B5, B6 > 0,

p∑
j=1

P
(
|∆j| > B5 n

−1/6
)

= O
(
n−B6

)
.

It follows that (6.32) and (6.33) continue to hold if we replace Wj by Vj, and 1
2
n−1/6

by n−1/6, at each appearance:

P
(
ˆ̀
j2 <

ˆ̀
j1

)
= P

(
Vj1 + Vj2 + δj1 ≤ −n−1/6 , Vj1 − Vj2 + δj1 > n−1/6

)
+P
(
Vj1 + Vj2 + δj1 > n−1/6 , Vj1 − Vj2 + δj1 ≤ −n−1/6

)
+φj1j2 +O

(
n−B4

)
, (6.34)
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uniformly in j1, j2 such that µj1 > 0 and µj2 = 0, where

|θj1j2 | ≤ φj1j2 = P
(
Vj1 − Vj2 + δj1 ∈

[
− n−1/6, n−1/6

])
+P
(
Vj1 + Vj2 + δj1 ∈

[
− n−1/6, n−1/6

])
. (6.35)

Property (3.8) implies that the random variables (I1 − π)Z1j satisfy a uniform

pairwise Cramér continuity condition: (3.8) holds if Zj1 and Zj2 there are replaced

by (I1 − π)Z1j1 and (I1 − π)Z1j2 , respectively. This property, and standard methods

for deriving Edgeworth expansions of distributions of random vectors (Bhattacharya

and Rao, 1976), then allow us to prove that, uniformly in j1, j2 such that µj1 > 0 and

µj2 = 0, and in real numbers x1 and x2,

P (Vj1 + Vj2 ≤ x1 , Vj1 − Vj2 ≤ x2) = P (Nj1j2,+ ≤ x1, Nj1j2,− ≤ x2)

+

k0∑
k=1

n−k/2 Pk(x1, x2)φ(x1, x2) +O
(
n−B2

)
, (6.36)

where (Nj1j2,+, Nj1j2,−) denotes a normally distributed random vector having zero mean

and the same covariance matrix as (Vj1 + Vj2 , Vj1 − Vj2), φ is the density of the distri-

bution of (Nj1j2,+, Nj1j2,−), the quantities Pk are polynomials of degree 3k− 1 with the

same parity as k + 1 and uniformly bounded coefficients (for k ≤ k0), and k0 equals

the largest integer strictly less than B2 (recall that in Theorem 1, and hence also in

Theorem 4, we assumed that E|Z|B2 < ∞). Here we have used the fact that, in view

of (3.8),

E(Vj1 ± Vj2)2 is bounded away from zero uniformly in values of j1, j2
satisfying 1 ≤ j1 ≤ j2 and j1 6= j2, and for both choices of the ± signs.

(6.37)

Now, E{(Vj1 + Vj2) (Vj1 − Vj2)} = E(V 2
j1

)− E(V 2
j2

) = 0, and so Nj1j2,+ and Nj1j2,− are

independent. Therefore (6.36) implies that, uniformly in the sense there,

P (Vj1 + Vj2 ≤ x1 , Vj1 − Vj2 ≤ x2) = P (Nj1j2,+ ≤ x1)P (Nj1j2,− ≤ x2)

+

k0∑
k=1

n−k/2 Pk(x1, x2)φ+(x1)φ−(x2) +O
(
n−B2

)
, (6.38)

where φ± denotes the density of Nj1j2,± for respective values of the signs.

Put κn = (log n)1/2and recall that σj1j2,± is defined at (3.6). Using (6.37) and
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(6.38) it can be deduced that∑
j1 :µj1

>0

∑
j2 :µj2

=0

P
(
Vj1 + Vj2 + δj1 ≤ −n−1/6 , Vj1 − Vj2 + δj1 > n−1/6

)
∼

∑
j1 :µj1

>0

∑
j2 :µj2

=0

P
(
Nj1j2,+ ≤ −n−1/6 − c κn

)
P
(
Nj1j2,− > n−1/6 − c κn

)
∼

∑
j1 :µj1

>0

∑
j2 :µj2

=0

P
(
Nj1j2,+ ≤ −n−1/6 − c κn

)
∼

∑
j1 :µj1

>0

∑
j2 :µj2

=0

Φ(−c κn/σj1j2,+) , (6.39)

and similarly,∑
j1 :µj1

>0

∑
j2 :µj2

=0

P
(
Vj1 +Vj2 + δj1 > −n−1/6 , Vj1 − Vj2 + δj1 ≤ n−1/6

)
∼

∑
j1 :µj1

>0

∑
j2 :µj2

=0

Φ(−c κn/σj1j2,−) , (6.40)

and that both of these quantities are of a strictly larger order of magnitude than∑
j1 :µj1

>0

∑
j2 :µj2

=0

P
(
Vj1 ± Vj2 + δj1 ∈

[
− n−1/6, n−1/6

])
,

for either choice of the ± sign. Write (P) to denote the latter property. (Note that

if N is a standard normal random variable then P (N > t) ∼ P (N > t + δt) as

t → ∞, for any quantity δt that satisfies t δt → 0, and that if in addition δt > 0,

P (N ∈ [t− δt, t+ δt]) ∼ (2/π)1/2 δt exp(−t2/2).) Combining (P), (6.34), (6.35), (6.39)

and (6.40), and noting that by assumption p1 (p− p1) = o(nB4), we deduce that (3.9)

holds.

6.4. Proof of Theorem 5. Result (4.4), with the remainder term satisfying (4.5), will

follow from Theorem 1 if we show that for a constant B7 > 0,

p∑
j=1

P
(∣∣Ûj2 − Uj2∣∣ > B7 λ

3
)

= O
(
n−B4

)
. (6.41)

Bernstein’s inequality can be used to prove that, for any given B8 > 0, we can choose

B9 > 0, depending on B8, such that

P (|π̂ − π| > B9 λ) = O
(
n−B8

)
. (6.42)
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Put Z̄j = n−1
∑

i Zij and Z̄
(2)
j = n−1

∑
i (Z

2
ij − EZ2). Then, since E|Z|B2 < ∞, we

have for constants B10, B11 > 0 and all ε > 0:

p∑
j=1

{P (|Z̄j| > B10 λ) + P (|Sj| > B10 λ)} = O
(
nB1+ε−(B2−1)/2

)
, (6.43)

P
(∣∣Z̄(2)

∣∣ > B11 λ
)

= O
(
n1+ε−(B2/4)

)
. (6.44)

(The method of proof is that leading to (A.1) in the Appendix.) Define

Tj =
1

n

n∑
i=1

(Ii − π)Xij = π (1− π)Sj , T̂j =
1

n

n∑
i=1

(Ii − π̂) (Xij − X̄j) ,

and note that

T̂j = Tj − {Z̄j + π̂ µj + (π̂ − π)µj} (π̂ − π) . (6.45)

Result (6.41) follows from (6.42)–(6.45), the bound |µj| ≤ c λ, and the property

Ûj2 =
π̂ (3− 2 π̂) T̂ 2

j

2 τ̂ 1/2 {π̂ (1− π̂)}2
, Uj2 =

π (3− 2π)T 2
j

2 τ 1/2 {π (1− π)}2
.

Here we used the fact that, by the definition of B4, B4 <
1
4
B2 − 1.

A APPENDIX: Proof that (6.10) and (6.12) hold uniformly

in 1 ≤ j ≤ p, |α| ≤ C such that |ρ− π| ≤ δ, and |β| ≤ δ

We shall give proofs of (6.11) and (6.12). Derivations of (6.9) and (6.10) are almost

identical, and in fact passing from (6.9) to (6.10), and from (6.11) to (6.12), requires

only the properties |ρ− π| ≤ δ, which is an assumption, and

sup
1≤j≤p

∣∣∣∣ 1n
n∑
i=1

(1− E)Xij

∣∣∣∣ = Op(λ) ,

which follows from standard moderate-deviation results (see Rubin and Sethuraman,

1965; Amosova, 1972). Indeed, those results imply the following stronger property: for

a constant B3 > 0, depending on B1 and B2 in Theorem 1,

p∑
j=1

P

{∣∣∣∣ 1n
n∑
i=1

(1− E)Xij

∣∣∣∣ > B3 λ

}
= O

(
nB1+ε−(B2−1)/2

)
(A.1)

for each ε > 0.

33



The claim that (6.11) holds uniformly in 1 ≤ j ≤ p, in |α| ≤ C and in |β| ≤ δ will

follow if we show that, with ∆ij(α, β) = {1 + exp(α + β Xij)}−1 − (1− ρ), we have:

sup
1≤j≤p, |α|≤C, |β|≤δ

∣∣∣∣ 1n
n∑
i=1

(1− E)Xij ∆ij(α, β)

∣∣∣∣ = Op(δλ) , (A.2)

uniformly in the same sense. In fact, it follows from (A.8) and (A.9) below that a

sharper form of (A.2),

p∑
j=1

P

{
sup

|α|≤C, |β|≤δ

∣∣∣∣ 1n
n∑
i=1

(1− E)Xij ∆ij(α, β)

∣∣∣∣ > const. δλ

}
= O

(
n−B4

)
,

where B4 = 1
4
{B2−2 max(B1 +3, 2B1)}− ε for any ε > 0, holds. This stronger bound,

together with (A.1), implies that (6.11) and (6.12) hold in the stronger sense that

the remainder Op(δλ) there can be replaced by Θj δλ, where
∑

j P (|Θj| > const. ) =

O(n−B4) and B4 = 1
4
{B2 − 2 max(B1 + 3, 2B1)} − ε. That result gives the sharper

version, implied by (3.4), of (3.3) in Theorem 1.

With probability 1,

|∆ij(α, β)| ≤ K1 min(1, |β Xij|) ,
|∆ij(α1, β1)−∆ij(α2, β2)|
|α1 − α2|+ |β1 − β2|

≤ K1 (1+ |Xij|) , (A.3)

uniformly in |α|, |α1|, |α2|, |β|, |β1|, |β2| ≤ C, where, here and below, K1, K2, . . . are

fixed positive constants. Using the first part of (A.3), and standard arguments for

proving moderate-deviation results for sums of independent random variables (Rubin

and Sethuraman, 1965; Amosova, 1972); and assuming that E|Z|2(B+1+ε) <∞, where

B, ε > 0; it can be shown that

sup
1≤j≤p, |α|≤C, |β|≤δ

P

{∣∣∣∣ 1n
n∑
i=1

(1− E) Xij ∆ij(α, β)

∣∣∣∣
> K2 δ

(
B n−1 log n

)1/2} ≤ K3 n
−B . (A.4)

Partition [−C,C] and [−δ, δ] into lattices of equal edge width dn, where 0 < dn ≤ δ,

and let V1 and V2 denote the respective sets of lattice vertices. The number of vertices

in each lattice equals O(d−1
n ), and so by (A.4),

sup
1≤j≤p

P

{
sup

α∈V1, β∈V2

∣∣∣∣ 1n
n∑
i=1

(1− E) Xij ∆ij(α, β)

∣∣∣∣
> K2 δ

(
B n−1 log n

)1/2} ≤ K3 d
−2
n n−B . (A.5)
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Given α1 ∈ [−C,C] and β1 ∈ [−δ, δ], let α2 and β2 be the lattice vertices nearest to

α1 and β1, respectively; ties can be broken arbitrarily. In view of the second part of

(A.3), for all α1 ∈ [−C,C] and all β1 ∈ [−δ, δ], and with probability 1,∣∣∣∣ 1n
n∑
i=1

(1− E)Xij ∆ij(α1, β1)

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

(1− E)Xij ∆ij(α2, β2)

∣∣∣∣+ 4K1 dn
1

n

n∑
i=1

(1 + |Xij|)2 . (A.6)

Since E|Z|2(B+1+ε) <∞ then, by Markov’s inequality, for each K4 ≥ E(µ2 + Z2) + 1,

sup
1≤j≤p

P

{
n−1

n∑
i=1

(1 + |Xij|)2 > K4

}
≤ K5 n

−(B+1+ε)/2 . (A.7)

Combining (A.5), (A.6) and (A.7) we deduce that

≡ P

{
sup

1≤j≤p, |α|≤C, |β|≤δ

∣∣∣∣ 1n
n∑
i=1

(1−E)Xij ∆ij(α, β)

∣∣∣∣ > K6

(
δ λ+ dn

)}
= O

{
p
(
d−2
n n−B + n−(B+1+ε)/2

)}
. (A.8)

Take dn = δλ and δ ≥ λ. Then (A.2) follows from (A.8) provided that p (λ−2 n−B+

n−(B+1+ε)/2)→ 0. Since p = O(nB1) then it is sufficient that B > max(B1 +1, 2B1−1).

That is, we should ensure that E|Z|B2 < ∞ where B2 > 2 max(B1 + 3, 2B1), which

assumption is imposed in the theorem. In this case it follows from (A.8) that

the left-hand side of (A.8) equals O(n−B4) where B4 = 1
4
{B2 −

2 max(B1 + 3, 2B1)} − ε.
(A.9)
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Sankhyā Ser. A 27, 325–346.

WADE, N. (2009). Genes show limited value in predicting diseases. New York Times
April 15. www.nytimes.com/2009/04/16/health/research/16 gene.html

WU, Y. (2005). Inference for Change-Point and Post-Change Means After a CUSUM
Test. Lecture Notes in Statistics 180. Springer, New York.

38


