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Abstract

The lasso is an important method for sparse, high-dimensional regression problems, with
efficient algorithms available, a long history of practical success, and a large body of theo-
retical results supporting and explaining its performance. But even with the best available
algorithms, finding the lasso solutions remains a computationally challenging task in cases
where the number of covariates vastly exceeds the number of data points.

Marginal regression, where each dependent variable is regressed separately on each
covariate, offers a promising alternative in this case because the estimates can be computed
roughly two orders faster than the lasso solutions. The question that remains is how the
statistical performance of the method compares to that of the lasso in these cases.

In this paper, we study the relative statistical performance of the lasso and marginal
regression for sparse, high-dimensional regression problems. We consider the problem of
learning which coefficients are non-zero. Our main results are as follows: (i) we compare
the conditions under which the lasso and marginal regression guarantee exact recovery in
the fixed design, noise free case; (ii) we establish conditions under which marginal regres-
sion provides exact recovery with high probability in the fixed design, noise free, random
coefficients case; and (iii) we derive rates of convergence for both procedures, where per-
formance is measured by the number of coefficients with incorrect sign, and characterize
the regions in the parameter space recovery is and is not possible under this metric.

In light of the computational advantages of marginal regression in very high dimensional
problems, our theoretical and simulations results suggest that the procedure merits further
study.
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1. Introduction

Consider a regression model,

Y = Xβ + z, (1)

with response Y = (Y1, . . . , Yn)T , n × p design matrix X, coefficients β = (β1, . . . , βp)
T ,

and noise variables z = (z1, . . . , zn)T . A central theme in recent work on regression is that
sparsity plays a critical role in effective high-dimensional inference. Loosely speaking, we
call the model sparse when most of β’s components equal 0, and we call it high dimensional
when p� n.

An important problem in this context is variable selection: determining which compo-
nents of β are non-zero. For general β, the problem is underdetermined, but recent results
have demonstrated that under particular conditions on X, to be discussed below, sufficient
sparsity of β allows (i) exact recovery of β in the noise-free case [26] and (ii) consistent selec-
tion of the non-zero coefficients in the noisy-case [5, 2, 4, 6, 8, 15, 16, 18, 20, 26, 28, 33, 34].
Many of these results are based on showing that under sparsity constraints, the lasso—a
convex optimization procedure that controls the `1 norm of the coefficients—has the same
solution as an (intractable) combinatorial optimization problem that controls the number
of non-zero coefficients.

Recent years, the lasso [25, 5] has become one of the main practical and theoretical
tools for sparse high-dimensional variable selection problems. In the regression problem,
the lasso estimator is defined by

β̂lasso = argmin
β
‖Y −Xβ‖22 + λ‖β‖1, (2)

where ‖β‖1 =
∑

j |βj | and λ ≥ 0 is a tuning parameter that must be specified. The lasso
gives rise to a convex optimization problem and thus is computationally tractable even
for moderately large problems. Indeed, the LARS algorithm [12] can compute the entire
solution path as a function of λ in O(p3 +np2) operations. Gradient descent algorithms for
the lasso are faster in practice, but have the same computational complexity. The motivation
for our study is that when p is very large, finding the lasso solutions is computationally
demanding.

Marginal regression (also called correlation learning, simple thresholding [6], and sure
screening [15]) is an older and computationally simpler method for variable selection in
which the outcome variable is regressed on each covariate separately and the resulting
coefficient estimates are screened. To compute the marginal regression estimates for variable
selection, we begin by computing the marginal regression coefficients which, assuming X
has been standardized, are

α̂ ≡ XTY. (3)

Then, we threshold α̂ using the tuning parameter t > 0:

β̂j = α̂j1{|α̂j | ≥ t}. (4)

The procedure requires O(np) operations, two orders faster than the lasso for p � n.
This is a decided advantage for marginal regression because the procedure is tractable for
much larger problems than is the lasso. The question that remains is how the statistical
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performance of marginal regression compares to that of the lasso. In this paper, we begin
to address this question.

We study the relative performance of the lasso and marginal regression for variable
selection in three regimes: (a) exact variable selection in the noise-free and noisy cases with
fixed design and coefficients, (b) exact variable selection in the noise-free case with fixed
design and random coefficients, and (c) statistical variable selection in the noisy case where
performance is measured by the number of coefficients with incorrect sign. Our goal is
to reopen the case for marginal regression as a plausible alternative to the lasso for large
problems. If marginal regression exhibits comparable statistical performance, theoretically
and empirically, then its computational advantages make it a good choice in practice. Put
another way: for very high dimensional problems, marginal regression only needs to tie to
win.

Our main results are as follows:

• In the fixed design (X fixed), noise free (z = 0), and fixed effects (β fixed) case,
both procedures guarantee exact reconstruction of | sgnβ| under distinct but generally
overlapping conditions.

We analyze these conditions and give examples where each procedure fails while the
other succeeds. The lasso has the advantage of providing exact reconstruction for a
somewhat larger class of coefficients, but marginal regression has a better tolerance
for collinearity and is easier to tune. These results are discussed in Sections 2 and 2.4.

• In the fixed design, noise free, and random effects (β random) case, we give con-
ditions under which marginal regression gives exact reconstruction of | sgnβ| with
overwhelming probability.

Our condition is closely related to both the Faithfulness condition [24, 20] and the
Incoherence condition [8]. The latter depends only on X, making it easy to check in
practice, but in controlling the worst case it is quite conservative. The former depends
on the unknown β but is less stringent. Our condition strikes a compromise between
the two. These results are discussed in Section 3.

• In the fixed design, noisy, fixed effects case, we obtain convergence rates of the two
procedures in Hamming distance between the sign vectors sgnβ and sgn β̂.

Under a stylized family of signals, we derive a new “phase diagram” that partitions the
parameter space into regions in which (i) exact variable selection is possible (asymp-
totically); (ii) reconstruction of most relevant variables, but not all, is possible; and
(iii) successful variable selection is impossible. We show that both the lasso and
marginal regression, properly calibrated, perform similarly in each region. These re-
sults are described in Section 4.

To support these theoretical results, we also present simulation studies in Section 5. Our
simulations show that marginal regression and the lasso perform similarly over a range of
parameters in realistic models. Section 6 gives the proofs of all theorems and lemmas in
the order they appear.

Notation. For a real number x, let sgn(x) be -1, 0, or 1 when x < 0, x = 0, and x > 0;
and for vector u, v ∈ Rk, define sgn(u) = (sgn(u1), . . . , sgn(uk))

T , and let (u, v) be the inner
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product. We will use ‖ · ‖, with various subscripts, to denote vector and matrix norms,
and | · | to represent absolute value, applied component-wise when applied to vectors. With
some abuse of notation, we will write minu (min |u|) to denote the minimum (absolute)
component of a vector u. Inequalities between vectors are to be understood component-
wise as well.

Consider a sequence of noiseless regression problems with deterministic design matrices,
indexed by sample size n,

Y (n) = X(n)β(n). (5)

Here, Y (n) is an n×1 response vector, X(n) is an n×p(n) matrix and β(n) is a p(n)×1 vector,
where we typically assume p(n) � n. We assume that β(n) is sparse in the sense that it has
s(n) nonzero components where s(n) � p(n). By rearranging β(n) without loss of generality,
we can partition each X(n) and β(n) into “signal” and “noise” pieces, corresponding to the
non-zero or zero coefficients, as follows:

X(n) =
(
X

(n)
S , X

(n)
N

)
β(n) =

(
βS
βN

)
. (6)

Finally, define the Gram matrix C(n) = (X(n))TX(n) and partition this as

C(n) =

(
C

(n)
SS C

(n)
SN

C
(n)
NS C

(n)
NN

)
, (7)

where of course C
(n)
NS = (C

(n)
SN )T . Except in Sections 4–5, we suppose X(n) is normalized so

that all diagonal coordinates of C(n) are 1.

These (n) superscripts become tedious, so for the remainder of the paper, we suppress
them unless necessary to show variation in n. The quantities X, C, p, s, ρ, as well as the
tuning parameters λ (for the lasso; see (2)) and t (for marginal regression; see (4)) are all
thus implicitly dependent on n.

2. Noise-Free Conditions for Exact Variable Selection

We restrict our attention to a sequence of regression problems in which the signal (non-zero)
components of the coefficient vector have large enough magnitude to be distinguishable from
zero. Specifically, assume that βS ∈ Ms

ρ for a sequence ρ(≡ ρ(n)) > 0 (and not converging
to zero too quickly) with

Mk
a =

{
x = (x1, . . . , xk)

T ∈ Rk : |xj | ≥ a for all 1 ≤ j ≤ k
}
, (8)

for positive integer k and a > 0. (We use Mρ to denote the space Ms
ρ ≡Ms(n)

ρ(n) .)

We will begin by specifying conditions on C, ρ, λ, and t such that in the noise-free
case, exact reconstruction of β is possible for the lasso or marginal regression, for all co-
efficient vectors for which the (non-zero) signal coefficients βS ∈ Mρ. These in turn lead
to conditions on C, p, s, ρ, λ, and t such that in the case of homoscedastic Gaussian
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noise, the non-zero coefficients can be selected consistently, meaning that for all sequences

β
(n)
S ∈Ms(n)

ρ(n) ≡Mρ,

P

(∣∣∣sgn(β̂(n))
∣∣∣ =

∣∣∣sgn(β(n))
∣∣∣)→ 1, (9)

as n → ∞. (This property was dubbed sparsistency by Pradeep Ravikumar [22].) Our
goal in this section is to compare the conditions for the two procedures. We focus on the
noise-free case, although we comment on the noisy case briefly.

2.1 Exact reconstruction conditions for the lasso in the noise-free case

We begin by reviewing three conditions in the noise-free case that are now standard in the
literature on the lasso:

Condition E. The minimum eigenvalue of CSS is positive.

Condition I. max
∣∣CNSC−1

SS sgn(βS)
∣∣ ≤ 1.

Condition J. min
∣∣βS − λC−1

SS sgn(βS)
∣∣ > 0.

Because CSS is symmetric and non-negative definite, Condition E is equivalent to CSS
being invertible. Later we will strengthen this condition. Condition I is sometimes called
the irrepresentability condition; note that it depends only on sgnβ, a fact that will be
important later.

For the noise-free case, Wainwright [28, Lemma 1] proves that Conditions E, I, and J are
necessary and sufficient for exact reconstruction of the sign vector, i.e., for the existence of
a lasso solution β̂ such that sgn β̂ = sgnβ. (See also [33]). Note that this result is stronger
than correctly selecting the non-zero coefficients, as it gets the signs correct as well.

It will be useful in what follows to give strong forms of these conditions. Maximizing
the left side of Condition I over all 2s sign patterns gives ‖CNSC−1

SS‖∞, the maximum-
absolute-row-sum matrix norm. It follows that Condition I holds for all βS ∈ Mρ if and
only if ‖CNSC−1

SS‖∞ ≤ 1. Similarly, one way to ensure that Condition J holds overMρ is to
require that every component of λC−1

SS sgn(βS) be less than ρ. The maximum component
of this vector over Mρ equals λ‖C−1

SS‖∞, which must be less than ρ. A simpler relation, in
terms of the smallest eigenvalue of CSS is

√
s

eigenmin(CSS)
=
√
s‖C−1

SS‖2 ≥ ‖C
−1
SS‖∞ ≥ ‖C

−1
SS‖2 =

1

eigenmin(CSS)
, (10)

where the inequality follows from the symmetry of CSS and standard norm inequalities.
This yields the following:

Condition E’. The minimum eigenvalue of CSS is no less than λ0 > 0, where λ0

does not depend on n.

Condition I’. ‖CNSC−1
SS‖∞ ≤ 1− η, for 0 < η < 1 small and independent of n.

Condition J’. λ <
ρ

‖C−1
SS‖∞

. (Under Condition E’, we can instead use λ < ρ λ0√
s
.)
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Theorem 1 In the noise-free case, Conditions E’ (or E), I’ (or I), and J’ imply that for
all βS ∈Mρ, there exists a lasso solution β̂ with sgn(β̂) = sgn(β).

These conditions can be weakened in various ways, but we chose these because they
transition nicely to the noisy case. For instance, [28] shows that a slight extension of
Conditions E’, I’, and J’ gives sparsistency in the case of homoscedastic Gaussian noise.

2.2 Exact reconstruction conditions for marginal regression in the noise-free
case

As above, define α̂ = XTY and β̂j = α̂j1{|α̂j | ≥ t}, 1 ≤ j ≤ p. Exact reconstruction for

variable selection requires that β̂j 6= 0 whenever βj 6= 0, or equivalently |α̂j | ≥ t whenever
βj 6= 0. In the literature on causal inference [24], this assumption has been called faithfulness
and is also used in [1, 15]. The usual justification for this assumption is that if β is selected
at random from some distribution, then faithfulness holds with high probability. [23] has
criticized this assumption because results which hold under faithfulness cannot hold in any
uniform sense. We feel that despite the lack of uniformity, it is still useful to investigate
results that hold under faithfulness, since as we will show, it holds with high probabilty
under weak conditions.

By simple algebra, we have that

α̂ =

(
α̂S
α̂N

)
=

(
XT
SXSβS

XT
NXSβS

)
.

The following condition is thus required to correctly identify the non-zero coefficients:

Condition F. max |CNSβS | < min |CSSβS |. (11)

Because this is reminiscent of (although distinct from) the faithfulness condition mentioned
above, we will refer to Condition F as the Faithfulness Condition.

Theorem 2 Condition F is necessary and sufficient for exact reconstruction to be possible
for some t > 0 with marginal regression.

Unfortunately, as the next theorem shows, Condition F cannot hold for all βS ∈ Mρ.
Applying the theorem to CSS shows that for any ρ > 0, there exists a βS ∈Mρ that violates
equation (11).

Proposition 3 Let D be an s× s positive definite, symmetric matrix that is not diagonal.
Then for any ρ > 0, there exists a β ∈Ms

ρ such that min |Dβ| = 0.

Despite the seeming pessimism of Theorem 3, the result is not as grim as it seems. Since
Cβ ≡ XTY , the theorem says that if we fix X and let Y = Xβ range through all possible
β ∈ Ms

ρ, there exists a Y such that min |XTY | = 0. However, to mitigate the pessimism,

note that once X and Y are are observed, if we see that min |XTY | > 0, we can rule out
the result of Theorem 3.
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2.3 Comparison of the conditions for exact recovery of sign vector in the
noise-free case

In this subsection, we use several simple examples to get insight into how the exact-recovery
conditions for the lasso and marginal regression compare. The examples illustrate the
following points:

• (Examples 1 and 2) The conditions for the two procedures are generally overlapping.

• (Example 3) When CSS = I, the lasso conditions are relatively weaker.

• (Example 4) Although the conditions for marginal regression do not hold uniformly
over any Mρ, they have the advantage that they do not require invertibility of CSS
and hence are less sensitive to small eigenvalues.

The bottom line is that the two conditions appear to be closely related, and that there are
cases where each succeeds while the other fails.

Example 1. For s = 2, assume that

CSS =

(
1 ρ
ρ 1

)
, βS =

(
2
1

)
.

For a = (a1, a2) a row of CNS , Conditions I and J require that we choose λ > 0 small enough
so that |a1 +a2| ≤ 1 +ρ, while Condition F requires |2a1 +a2| ≤ min{(2 +ρ), |1 + 2ρ|}. For
many choices of ρ, both of these inequalities are satisfied (e.g., ρ = −0.75). Figure 1 shows
the sets of (a1, a2) for which the respective conditions are satisfied. The two regions show
significant overlap, and to a large extent, the conditions continue to overlap as ρ and βS
vary. Examples for larger s can be constructed by letting CSS be a block diagonal matrix,
where the size of each main diagonal block is small. For each row of CNS , the conditions
for the lasso and marginal regression are similar to those above, though more complicated.

Example 2. In the special case where βS ∝ 1S , Condition I for the lasso becomes
|CNSC−1

SS1N | ≤ 1N , where the inequality should be interpreted as holding component-wise,
and the condition for marginal regression (Condition F) is max{|CNS1S |} ≤ min{|CSS1S |}.
Note that if in addition 1S is an eigen-vector of CSS , then the two conditions are equivalent
to each other. This includes but is not limited to the case of s = 2.

Example 3. Fix n and consider the special case in which CSS = I. For the lasso,
Condition E’ (and thus E) is satisfied, Condition J’ reduces to λ < ρ, and Condition I
becomes ‖CNS‖ ≤ 1. Under these conditions, the lasso gives exact reconstruction, but
Condition F can fail. To see how, let β̃ ∈ {−1, 1}s be the vector such that max |CNS β̃| =
‖CNS‖∞ and let ` be the index of the row at which the maximum is attained, choosing
the row with the biggest absolute element if the maximum is not unique. Let u be the
maximum absolute element of row ` of CNS with index j. Define a vector δ to be zero
except in component j, which has the value ρβ̃j/(u‖CNS‖∞). Let β = ρβ̃ + ρδ. Then,

|(CNSβ)`| = ρ

(
‖CNS‖∞ +

1

‖CNS‖∞

)
> ρ = min |βS |, (12)

so Condition F fails.
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Figure 1: Let CSS and βS be as in Section 2.3 Example 2, where ρ = −0.75. For a row of
CNS , say, (a1, a2). The interior of the red box and that of the green box are the
regions of (a1, a2) satisfying the respective conditions in Example 1.

On the other hand, suppose Condition F holds for all βS ∈ {−1, 1}s. (It cannot hold
for all Mρ by Theorem 3). Then, for all βS ∈ {−1, 1}s, max |CNSβS | ≤ 1, which implies
that ‖CNS‖∞ ≤ 1. Choosing λ < ρ, we have Conditions E’, I, and J’ satisfied, showing by
Theorem 1 that the lasso gives exact reconstruction. It follows that the conditions for the
lasso are weaker in this case.

Example 4. For simplicity, assume that βS ∝ 1S , although the phenomenon to be
described below is not limited to this case. For 1 ≤ i ≤ s, let λi and ξi be the i-th eigenvalue
and eigenvector of CSS . Without loss of generality, we can take ξi to have unit `2 norm. By
elementary algebra, there are constants c1, . . . , cs such that 1S = c1ξ1 + c2ξ2 + . . .+ csξs. It
follows that

C−1
SS · 1S =

s∑
i=1

ci
λi
ξi and CSS · 1S =

s∑
i=1

(ciλi)ξi.

Fix a row of CNS , say, a = (a1, . . . , as). Respectively, the conditions for the lasso and
marginal regression require

|(a,
s∑
i=1

ci
λi
ξi)| ≤ 1 and |(a, 1S)| ≤ |

s∑
i=1

ciλiξi|. (13)

Without loss of generality, we assume that λ1 is the smallest eigenvalue of CSS . Consider
the case where λ1 is small, while all other eigenvalues have a magnitude comparable to 1.
In this case, the smallness of λ1 has a negligible effect on

∑s
i=1(ciλi)ξi, and so has a

negligible effect on the condition for marginal regression. However, the smallness of λ1 may
have an adverse effect on the performance of the lasso. To see the point, we note that∑s

i=1
ci
λi
ξi ≈ c1

λ1
ξ1. Compare this with the first term in (13). The condition for the lasso is

roughly |(a, ξ1)| ≤ c1λ1, which is rather restrictive since λ1 is small.
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MR (for all c)

−1

0
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0

1

−1

0

1

Lasso (c = .5)

−1

0

1 −1

0

1

−1

0

1

Lasso (c = .7)

−1

0

1 −1

0

1

−1

0

1

Lasso (c = .85)

Figure 2: The regions sandwiched by two hyper-planes are the regions of a = (a1, a2, a3)
satisfying the respective exact-recovery conditions for marginal regression (MR,
panel 1) and for the lasso (panels 2–4). See Section 2.3 Example 4. Here, c =
0.5, 0.7, 0.85 and the smallest eigenvalues of CSS are λ1(c) = 0.29, 0.14, 0.014. As
c varies, the regions for marginal regression remain the same, while the regions
for the lasso get substantially smaller.

Figure 2 shows the regions in a = (a1, a2, a3), a row of CNS , where the respective exact
recover sequences hold for

CSS =

 1 −1/2 c
−1/2 1 0
c 0 1

 .

To better visualize these regions, we display their 2-D section (i.e., setting the first coordi-
nate of a to 0). The Figures suggest that as λ1 gets smaller, the region corresponding to
the lasso shrinks substantially, while that corresponding to marginal regression remains the
same.

While the examples in this subsection are low dimensional, they shed light on the high
dimensional setting as well. For instance, the approach here can be extended to the following

high-dimensional model: (a) | sgn(βj)|
iid∼ Bernoulli(ε), (b) each row of the design matrix

X are iid samples from N(0,Ω/n), where Ω is a p × p correlation matrix that is sparse in
the sense that each row of Ω has relatively few coordinates, and (c) 1� pε� n� p (note
that pε is the expected number of signals). Under this model, it can be shown that (1) CSS
is approximately a block-wise diagonal matrix where each block has a relatively small size,
and outside these blocks, all coordinates of CSS are uniformly small and have a negligible
effect, and (2) each row of CNS has relatively few large coordinates. As a result, the study
on the exact reconstruction conditions for the lasso and marginal regression in this more
complicated model can be reduced to a low dimensional setting, like those discussed here.
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MR (for all c)
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1
Lasso (c = .7)

−1 −0.5 0 0.5 1
−1
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0
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1
Lasso (c = .85)

Figure 3: Displayed are the 2-D sections of the regions in Figure 2, where we set the first
coordinate of a to 0. As c varies, the regions for marginal regression remain the
same, but those for the lasso get substantially smaller as λ1(c) decrease. x-axis:
a2. y-axis: a3.

And the point that there is no clear winner between the to procedures continues to hold in
greater generality.

2.4 Exact reconstruction conditions for marginal regression in the noisy case

We now turn to the noisy case of model (1), taking z to be N(0, σ2
n · In), where we assume

that the parameter σ2
n is known. The exact reconstruction condition for the lasso in the

noisy case has been studied extensively in the literature (see for example [25]). So in this
section, we focus on marginal regression. First, we consider a natural extension of Condition
F to the noisy case:

Condition F′. max |CNSβS |+ 2σn
√

2 log p < min |CSSβS |. (14)

Second, when Condition F’ holds, we show that with an appropriately chosen threshold t
(see (4)), marginal regression fully recovers the support with high probability. Finally, we
discuss how to determine the threshold t empirically.

Condition F’ implies that it is possible to separate relevant variables from irrelevant
variables with high probability. To see this, let X = [x1, x2, . . . , xp], where xi denotes the
i-th column of X. Sort |(Y, xi)| in the descending order, and let ri = ri(Y,X) be the ranks
of |(Y, xi)| (assume no ties for simplicity). Introduce

Ŝn(k) = Ŝn(k;X,Y, p) = {i : ri(X,Y ) ≤ k}, k = 1, 2, . . . , p.

Recall that S(β) denotes the support of β and s = |S|. The following lemma says that,
if s is known and Condition F’ holds, then marginal regression is able to fully recover the
support S with high probability.
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Lemma 4 Consider a sequence of regression models as in (5). If for sufficiently large n,
Condition F’ holds and p(n) ≥ n, then

lim
n→∞

P

(
Ŝn(s(n);X(n), Y (n), p(n)) 6= S(β(n))

)
= 0.

Lemma 4 is proved in the appendix. We remark that if both s and (p − s) tend to ∞
as n tends to ∞, then Lemma 4 continues to hold if we replace 2σn

√
2 log p in (14) by

σn(
√

log(p− s) +
√

log s). See the proof of the lemma for details.

The key assumption of Lemma 4 is that s is known so that we know how to set the
threshold t. Unfortunately, s is generally unknown. We propose the following procedure to
estimate s. Fix 1 ≤ k ≤ p, let ik be the unique index satisfying rik(X,Y ) = k. Let V̂n(k) =

V̂n(k;X,Y, p) be the linear space spanned by xi1 , xi2 , . . . , xik , and let Ĥn(k) = Ĥn(k;X,Y, p)

be the projection matrix from Rn to V̂n(k) (here and below, the ̂ sign emphasizes the
dependence of indices ik on the data). Define

δ̂n(k) = δ̂n(k;X,Y, p) = ‖(Ĥn(k + 1)− Ĥn(k))Y ‖, 1 ≤ k ≤ p− 1.

The term δ̂2
n(k) is closely related to the F-test for testing whether βik+1

6= 0. We estimate
s by

ŝn = ŝn(X,Y, p) = max

{
1 ≤ k ≤ p : δ̂n(k) ≥ σn

√
2 log n

}
+ 1

(in the case where δ̂n(k) < σn
√

2 log n for all k, we define ŝn = 1).

Once ŝn is determined, we estimate the support S by

Ŝ(ŝn, X, Y, p) = {ik : k = 1, 2, . . . , ŝn}.

It turns out that under mild conditions, ŝn = s with high probability. In detail, sup-
pose that the support S(β) consists of indices j1, j2, . . . , js. Fix 1 ≤ k ≤ s. Let ṼS
be the linear space spanned by xj1 , . . . , xjs , and let ṼS,(−k) be the linear space spanned by

xj1 , . . . , xjk−1
, xjk+1

, . . . , xjs . Project βjkxjk to the linear space ṼS∩Ṽ ⊥S,(−k). Let ∆n(k, β,X, p)

be the `2 norm of the resulting vector (which can be interpreted as the strength of the k-th
signal after the collinearity between the k-th predictor and other predictors removed), and
let

∆∗n(β,X, p) = min
1≤k≤s

∆n(k, β,X, p).

The following theorem says that if ∆∗n(β,X, p) is slightly larger than σn
√

2 log n, then ŝn = s
and Ŝn = S with high probability. In other words, marginal regression fully recovers the
support with high probability. Theorem 5 is proved in the appendix,

Theorem 5 Consider a sequence of regression models as in (5). Suppose that for suffi-
ciently large n, Condition F’ holds, p(n) ≥ n, and

lim
n→∞

(
∆∗n(β(n), X(n), p(n))

σn
−
√

2 log n

)
=∞.

11
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Then

lim
n→∞

P

(
ŝn(X(n), Y (n), p(n)) 6= s(n)

)
→ 0,

and

lim
n→∞

(
Ŝn(ŝn(X(n), Y (n), p(n));X(n), Y (n), n, p(n)) 6= S(β(n))

)
→ 0.

Theorem 5 says that the tuning parameter for marginal regression (i.e. the threshold t) can
be set successfully in a data driven fashion. In comparison, how to set the tuning parameter
λ for the lasso has been a longstanding open problem in the literature.

We briefly discuss the case where the noise variance σ2
n is unknown. The topic is ad-

dressed in some of recent literature (e.g. [4, 32]). It is noteworthy that in some applications,
σ2
n can be calibrated during data collection and so it can be assumed as known [4, Rejoin-

der]. It is also noteworthy that in [32], Sun and Zhang proposed a procedure to jointly
estimate β and σ2

n using scaled lasso. The estimator was show to be consistent with σ2
n

in rather general situations, but unfortunately it is computationally more expensive than
either the lasso or marginal regression. How to find an estimator that is consistent with
σ2
n in general situations and has low computational cost remains an open problem, and we

leave the study to the future.
With that being said, we conclude this section by mentioning that both the lasso and

marginal regression have their strengths and weakness, and there is no clear winner between
these two in general settings. For a given data set, whether to use one or the other is a case
by case decision, where a close investigation of (X,β) is usually necessary.

3. The Deterministic Design, Random Coefficient Regime

In this section, we study how generally the Faithfulness Condition holds. We approach
this question by modeling the coefficients β as random (the matrix X remains fixed) and
deriving a condition (F′′) under which the Faithfulness Condition holds with high proba-
bility. The discussion in this section is closely related to the work by Donoho and Elad [8]
on the Incoherence condition. Compared to the Faithfulness Condition, the advantage of
the Incoherence Condition is that it does not involve the unknown support of β, so it is
checkable in practice. The downside of the Incoherence Condition is that it aims to control
the worst case so it is conservative. In this section, we derive a condition—Condition F”—
which can be viewed as a middle ground between the Faithfulness Condition and the Inco-
herence Condition: it is not tied to the unknown support so it is more tractable than the
Faithfulness Condition, and it is also much less stringent than the Incoherence Condition.

In detail, we model β as follows. Fix ε ∈ (0, 1), a > 0, and a distribution π, where

the support of π ⊂ (−∞,−a] ∪ [a,∞). (15)

For each 1 ≤ i ≤ p, we draw a sample Bi from Bernoulli(ε). When Bi = 0, we set βi = 0.
When Bi = 1, we draw βi ∼ π. Marginally,

βi
iid∼ (1− ε)ν0 + επ, (16)

where ν0 denotes the point mass at 0. This models the case where we have no information
on the signals, so they appear at locations generated randomly. In the literature, it is known

12
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that the least favorable distribution for variable selection has the form as in (16), where π
is in fact degenerate. See [3] for example.

We study for which quadruples (X, ε, π, a) the Faithfulness Condition holds with high
probability. Recall that the design matrix X = [x1, . . . , xp], where xi denotes the i-th
column. Fix t ≥ 0 and δ > 0. Introduce

gij(t) = Eπ[etu·(xi,xj)]− 1, ḡi(t) =
∑
j 6=i

gij(t),

where the random variable u ∼ π and (xi, xj) denotes the inner product of xi and xj . As
before, we have suppressed the superscript (n) for gij(t) and ḡi(t). Define

An(δ, ε, ḡ) = An(δ, ε, ḡ;X,π) = min
t>0

(
e−δt

p∑
i=1

[eεḡi(t) + eεḡi(−t)]

)
,

where ḡ denotes the vector (ḡ1, . . . , ḡp)
T . Note that 1 + gij(t) is the moment generating

function of π evaluated at the point (xi, xj)t. In the literature, it is conventional to use
moment generating function to derive sharp inequalities on the tail probability of sums of
independent random variables. The following lemma is proved in the appendix.

Lemma 6 Fix n, X, δ > 0, ε ∈ (0, 1), and distribution π. Then

P (max |CNSβS | ≥ δ) ≤ (1− ε)An(δ, ε, ḡ;X,π), (17)

and

P (max |(CSS − IS)βS | ≥ δ) ≤ εAn(δ, ε, ḡ;X,π). (18)

Now, suppose the distribution π satisfies (15) for some a > 0. Take δ = a/2 on the right
hand side of (17)-(18). Except for a probability of An(a/2, ε, ḡ),

max |CNSβS | ≤ a/2, min |CSSβS | ≥ min |βS | −max |(CSS − I)βS | ≥ a/2,

so max |CNSβS | ≤ min |CSSβS | and the Faithfulness Condition holds. This motivates the
following condition, where (a, ε, π) may depend on n.

Condition F′′. lim
n→∞

An(an/2, εn, ḡ
(n);X(n), πn) = 0. (19)

The following theorem says that if Condition F” holds, then Condition F holds with high
probability.

Theorem 7 Consider a sequence of noise-free regression models as in (5), where the noise
component z(n) = 0 and β(n) is generated as in (16). Suppose Condition F” holds. Then as
n tends to ∞, except for a probability that tends to 0,

max |CNSβS | ≤ min |CSSβS |.

Theorem 7 is the direct result of Lemma 6 so we omit the proof.
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3.1 Comparison of Condition F” with the Incoherence Condition

Introduced in Donoho and Elad [8] (see also [9]), the Incoherence of a matrix X is defined
as

max
i 6=j
|Cij |,

where C = XTX is the Gram matrix as before. The notion is motivated by the study
in recovering a sparse signal from an over-complete dictionary. In the special case where
X is the concatenation two orthonormal bases (e.g. a Fourier basis and a wavelet basis),
maxi 6=j |Cij | measures how coherent two bases are and so the term of incoherence; see [8, 9]
for details. Consider Model (1) in the case where both X and β are deterministic, and the
noise component z = 0. The following results are proved in [5, 8, 9].

• The lasso yields exact variable selection if s <
1+maxi6=j |Cij |
2 maxi 6=j |Cij | .

• Marginal regression yields exact variable selection if s < c
2 maxi6=j |Cij | for some constant

c ∈ (0, 1), and that the nonzero coordinates of β have comparable magnitudes (i.e.
the ratio between the largest and the smallest nonzero coordinate of β is bounded
away from ∞).

In comparison, the Incoherence Condition only depends on X so it is checkable. Condi-
tion F depends on the unknown support of β. Checking such a condition is almost as hard
as estimating the support S. Condition F” provides a middle ground. It depends on β only
through (ε, π). In cases where we either have a good knowledge of (ε, π) or we can estimate
them, Condition F” is checkable (for literature on estimating (ε, π), see [17, 29] for the case
where we have an orthogonal design, and [19, Section 2.6] for the case where XTX is sparse
in the sense that each row of XTX has relatively few large coordinates. We note that even
when successful variable selection is impossible, it may be still possible to estimate (ε, π)
well).

At the same time, the Incoherence Condition is conservative, especially when s is large.
In fact, in order for either the lasso or marginal regression to have an exact variable selection,
it is required that

max
i 6=j
|Cij | ≤ O

(
1

s

)
, (20)

In other words, all coordinates of the Gram matrix C need to be no greater than O(1/s).
This is much more conservative than Condition F.

However, we must note that the Incoherence Condition aims to control the worst case:
it sets out to guarantee uniform success of a procedure across all β under minimum con-
straints. In comparison, Condition F aims to control a single case, and Condition F” aims
to control almost all the cases in a specified class. As such, Condition F” provides a middle
ground between Condition F and the Incoherence Condition, applying more broadly than
the former, while being less conservative than the later.

Below, we use two examples to illustrate that Condition F” is much less conservative
than the Incoherence Condition. In the first example, we consider a weakly dependent case
where maxi 6=j |Cij | ≤ O(1/ log(p)). In the second example, we suppose the matrix C is
sparse, but the nonzero coordinates of C may be large.
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3.1.1 The weakly dependent case

Suppose that for sufficiently large n, there are two sequence of positive numbers an ≤ bn
such that the support of πn is contained in [−bn,−an] ∪ [an, bn], and that

bn
an
·max
i 6=j
|Cij | ≤ c1/ log(p), c1 > 0 is a constant.

For k ≥ 1, denote the k-th moment of πn by

µ(k)
n = µ(k)

n (πn). (21)

Introduce mn = mn(X) and v2
n = v2

n(X) by

mn(X) = pεn · max
1≤i≤p

{∣∣∣∣1p∑
j 6=i

Cij

∣∣∣∣}, v2
n(X) = pεn · max

1≤i≤p

{
1

p

∑
j 6=i

C2
ij

}
.

Corollary 3.1 Consider a sequence of regression models as in (5), where the noise compo-
nent z(n) = 0 and β(n) is generated as in (16). If there are constants c1 > 0 and c2 ∈ (0, 1/2)
such that

bn
an
·max
i 6=j
{|Cij |} ≤ c1/ log(p(n)),

and

lim
n→∞

(
µ

(1)
n (πn)

an
mn(X(n))

)
≤ c2, lim

n→∞

(
µ

(2)
n (πn)

a2
n

v2
n(X(n)) log(p(n))

)
= 0, (22)

then

lim
n→∞

An(an/2, εn, ḡ
(n);X(n), πn) = 0,

and Condition F” holds.

Corollary 3.1 is proved in the appendix. For interpretation, we consider the special case

where there is a generic constant c > 0 such that bn ≤ can. As a result, µ
(1)
n /an ≤ c,

µ
(2)
n /a2

n ≤ c2. The conditions reduce to that, for sufficiently large n and all 1 ≤ i ≤ p,

|1
p

p∑
j 6=i

Cij | ≤ O(
1

pεn
),

1

p

p∑
j 6=i

C2
ij = o(1/pεn).

Note that by (16), s = s(n) ∼ Binomial(p, εn), so s ≈ pεn. Recall that the Incoherence
Condition is

max
i 6=j
|Cij | ≤ O(1/s).

In comparison, the Incoherence Condition requires that each coordinate of (C − I) is no
greater than O(1/s), while Condition F” only requires that the average of each row of
(C − I) is no greater than O(1/s). The latter is much less conservative.
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3.1.2 The sparse case

Let N∗n(C) be the maximum number of nonzero off-diagonal coordinates of C:

N∗n(C) = max
1≤i≤p

{Nn(i)}, Nn(i) = Nn(i;C) = #{j : j 6= i, Cij 6= 0}.

Suppose there is a constant c3 > 0 such that

lim
n→∞

(
− log(εnN

∗
n(C))

log(p(n))

)
≥ c3. (23)

Also, suppose there is a constant c4 > 0 such that for sufficiently large n,

the support of πn is contained in [−c4an, an] ∪ [an, c4bn]. (24)

The following corollary is proved in the appendix.

Corollary 3.2 Consider a sequence of noise-free regression models as in (5), where the
noise component z(n) = 0 and β(n) is randomly generated as in (16). Suppose (23)-(24)
hold. If there is a constant δ > 0 such that

max
i 6=j
|Cij | ≤ δ, and δ <

c3

2c4
, (25)

then

lim
n→∞

An(an/2, εn, ḡ
(n);X(n), πn) = 0,

and Condition F” holds.

For interpretation, consider a special case where εn = p−ϑ. In this case, the condition
reduces to N∗n(C) � pϑ−2c4δ. As a result, Condition F” is satisfied if each row of (C − I)
contains no more than pϑ−2c4δ nonzero coordinates each of which ≤ δ. Compared to the
Incoherence Condition maxi 6=j |Cij | ≤ O(1/s) = O(p−ϑ), our condition is much weaker.

In conclusion, if we alter our attention from the worst-case scenario to the average
scenario, and alter our aim from exact variable selection to exact variable selection with
probability ≈ 1, then the condition required for success—Condition F”—is much more
relaxed than the Incoherence Condition.

4. Hamming Distance for the Gaussian Design and the Phase Diagram

So far, we have focused on exact variable selection. In many applications, exact variable
selection is not possible. Therefore, it is of interest to study the Type I and Type II errors
of variable selection (a Type I error is a misclassified 0 coordinate of β, and a Type II error
is a misclassified nonzero coordinate).

In this section, we use the Hamming distance to measure the variable selection errors.
Back to Model (1),

Y = Xβ + z, z ∼ N(0, In), (26)
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where without loss of generality, we assume σn = 1. As in the preceding section (i.e. (16)),
we suppose

βi
iid∼ (1− ε)ν0 + επ. (27)

For any variable selection procedure β̂ = β̂(Y ;X), the Hamming distance between β̂ and
the true β is

d(β̂|X) = d(β̂; ε, π|X) =

p∑
j=1

Eε,π(Ez[1(sgn(β̂j) 6= sgn(βj))|X]).

Note that by Chebyshev’s inequality,

P (non-exact variable selection by β̂(Y ;X)) ≤ d(β̂|X).

So a small Hamming distance guarantees exact variable selection with high probability.
How to characterize precisely the Hamming distance is a challenging problem. We

approach this by modeling X as random. Assume that the coordinates of X are iid samples
from N(0, 1/n):

Xij
iid∼ N(0, 1/n). (28)

The choice of the variance ensures that most diagonal coordinates of the Gram matrix
C = XTX are approximately 1. Let PX(x) denote the joint density of the coordinates of
X. The expected Hamming distance is then

d∗(β̂) = d∗(β̂; ε, π) =

∫
d(β̂; ε, π|X = x)PX(x)dx.

We adopt an asymptotic framework where we calibrate p and ε with

p = n1/θ, pεn = n(1−ϑ)/θ ≡ p1−ϑ, 0 < θ, ϑ < 1. (29)

This models a situation where p� n and the vector β gets increasingly sparse as n grows.
Note that the parameter ϑ calibrates the sparsity level of the signals. We assume πn in (16)
is a point mass

πn = ντn . (30)

In the literature (e.g. [10, 21]), this model was found to be subtle and rich in theory. In
addition, compare two experiments, in one of them πn = ντn , and in the other the support
of πn is contained in [τn,∞). Since the second model is easier for inference than the first
one, the optimal Hamming distance for the first one gives an upper bound for that for the
second one.

With εn calibrated as above, the most interesting range for τn is O(
√

2 log p): when
τn �

√
2 log p, exact variable selection can be easily achieved by either the lasso or marginal

regression. When τn �
√

2 log p, no variable selection procedure can achieve exact variable
selection. See for example [10]. In light of this, we calibrate

τn =
√

2(r/θ) log n ≡
√

2r log p, r > 0. (31)

Note that the parameter r calibrates the signal strength. With these calibrations, we can
rewrite

d∗n(β̂; ε, π) = d∗n(β̂; εn, τn).
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Figure 4: The regions as described in Section 4. In the region of Exact Recovery, both
the lasso and marginal regression yield exact recovery with high probability. In
the region of Almost Full Recovery, it is impossible to have large probability for
exact variable selection, but the Hamming distance of both the lasso and marginal
regression� pεn. In the region of No Recovery, optimal Hamming distance ∼ pεn
and all variable selection procedures fail completely. Displayed is the part of the
plane corresponding to 0 < r < 4 only.

Definition 8 Denote L(n) by a multi-log term which satisfies that limn→∞(L(n) ·nδ) =∞
and that limn→∞(L(n) · n−δ) = 0 for any δ > 0.

We are now ready to spell out the main results. Define

ρ(ϑ) = (1 +
√

1− ϑ)2, 0 < ϑ < 1.

The following theorem is proved in the appendix, which gives the lower bound for the
Hamming distance.

Theorem 9 Fix ϑ ∈ (0, 1), θ > 0, and r > 0 such that θ > 2(1− ϑ). Consider a sequence
of regression models as in (26)-(31). As n→∞, for any variable selection procedure β̂(n),

d∗n(β̂(n); εn, τn) ≥

{
L(n)p1− (ϑ+r)2

4r , r ≥ ϑ,
(1 + o(1)) · p1−ϑ, 0 < r < ϑ.

Let β̂mr be the estimate of using marginal regression with threshold

tn =

{
ϑ+r
2
√
r

√
2 log p, if r > ϑ,

tn =
√

2r̃ log p, if r < ϑ,
(32)

where r̃ is some constant ∈ (ϑ, 1) (note that in the case of r < ϑ, the choice of tn is not
necessarily unique). We have the following theorem.
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Theorem 10 Fix ϑ ∈ (0, 1), r > 0, and θ > (1 − ϑ). Consider a sequence of regression
models as in (26)-(31). As p → ∞, the Hamming distance of marginal regression with the
threshold tn given in (32) satisfies

d∗n(β̂(n)
mr ; εn, τn) ≤

{
L(n)p1− (ϑ+r)2

4r , r ≥ ϑ,
(1 + o(1)) · p1−ϑ, 0 < r < ϑ.

In practice, the parameters (ϑ, r) are usually unknown, and it is desirable to set tn in a
data-driven fashion. Towards this end, we note that our primary interest is in the case of
r > ϑ (as when r < ϑ, successful variable selection is impossible). In this case, the optimal
choice of tn is (ϑ + r)/(2r)τp, which is the Bayes threshold in the literature. The Bayes
threshold can be set by the approach of controlling the local False Discovery Rate (Lfdr),
where we set the FDR-control parameter as 1/2; see Efron et al. [13] for details.

Similarly, choosing the tuning parameter λn = 2(ϑ+r
2
√
r
∧
√
r)
√

2 log p in the lasso, we have

the following theorem.

Theorem 11 Fix ϑ ∈ (0, 1), r > 0, and θ > (1 − ϑ). Consider a sequence of regression
models as in (26)-(31). As p → ∞, the Hamming distance of the lasso with the tuning
parameter λn = 2tn where tn is given in (32), satisfies

d∗n(β̂
(n)
lasso; εn, τn) ≤

{
L(n)p1− (ϑ+r)2

4r , r ≥ ϑ,
(1 + o(1)) · p1−ϑ, 0 < r < ϑ.

The proofs of Theorems 10-11 are routine and we omit them.

Theorems 9-11 say that in the ϑ-r plane, we have three different regions, as displayed
in Figure 4.

• Region I (Exact Reovery): 0 < ϑ < 1 and r > ρ(ϑ).

• Region II (Almost Full Recovery): 0 < ϑ < 1 and ϑ < r < ρ(ϑ).

• Region III (No Recovery): 0 < ϑ < 1 and 0 < r < ϑ.

In the Region of Exact Recovery, the Hamming distance for both marginal regression and
the lasso are algebraically small. Therefore, except for a probability that is algebraically
small, both marginal regression and the lasso give exact recovery.

In the Region of Almost Full Recovery, both the Hamming distance of marginal regres-
sion and the lasso are much smaller than the number of relevant variables (which ≈ pεn).
Therefore, almost all relevant variables have been recovered. Note also that the number of
misclassified irrelevant variables is comparably much smaller than pεn. In this region, the
optimal Hamming distance is algebraically large, so for any variable selection procedure,
the probability of exact recovery is algebraically small.

In the Region of No Recovery, the Hamming distance ∼ pεn. In this region, asymptot-
ically, it is impossible to distinguish relevant variables from irrelevant variables, and any
variable selection procedure fails completely.
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In practice, given a data set, one wishes to know that which of these three regions the true
parameters belong to. Towards this end, we note that in the current model, the coordinates
of XTY are approximately iid samples from the following two-component Gaussian mixture

(1− εp)φ(x) + εnφ(x− τn),

where φ(x) denotes the density of N(0, 1). In principle, the parameters (εn, τn) can be
estimated (see the comments we made in Section 3.1 on estimating (ε, π)). The estimation
can then be used to determine which regions the true parameters belong to.

k = 4 k = 10
(a1, a2) lasso MR lasso MR

(0, 0) 0 0 0.8 3.8
(-0.85, 0.85) 0 4 0.6 10.4
(0.85, -0.85) 0 4 0.6 11.2
(-0.4, 0.8) 4 0 10 3.6
(0.4, -0.8) 4 0 10 4.8

Table 1: Comparison of the lasso and marginal regression for different choices of (a1, a2) and
k. The setting is described in Experiment 1a. Each cell displays the corresponding
Hamming error.

The results improve on those by Wainwright [28]. It was shown in [28] that there
are constants c2 > c1 > 0 such that in the region of {0 < ϑ < 1, r > c2}, the lasso
yields exact variable selection with overwhelming probability, and that in the region of
{0 < ϑ < 1, r < c2}, no procedure could yield exact variable selection. Our results not
only provide the exact rate of the Hamming distance, but also tighten the constants c1 and
c2 so that c1 = c2 = (1 +

√
1− ϑ)2. The lower bound argument in Theorem 9 is based

on computing the L1-distance. This gives better results than in [28] which uses Fano’s
inequality in deriving the lower bounds.

To conclude this section, we briefly comment on the phase diagram in two closely related
settings. In the first setting, we replace the identity matrix Ip in (28) by some general
correlation matrix Ω, but keep all other assumptions unchanged. In the second setting, we
assume that as n → ∞, both ratios pεp/n and n/p tend to a constant in (0, 1), while all
other assumptions remain the same. For the first setting, it was shown in [19] that the
phase diagram remains the same as in the case of Ω = Ip, provided that Ω is sparse; see
[19] for details. For the second setting, the study is more more delicate, so we leave it to
the future work.

5. Simulations and Examples

We conducted a small-scale simulation study to compare the performance of the lasso and
marginal regression. The study includes three different experiments (some have more than
one sub-experiments). In the first experiment, the rows of X are generated from N(0, 1

nC)
where C is a diagonal block-wise matrix. In the second one, we take the Gram matrix
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C = X ′X to be a tridiagonal matrix. In the third one, the Gram matrix has the form
of C = Λ + aξξ′ where Λ is a diagonal matrix, a > 0, and ξ is a p × 1 unit-norm vector.
Intrinsically, the first two are covered in the theoretic discussion in Section 2.3, but the last
one goes beyond that. Below, we describe each of these experiments in detail.

k = 2 k = 7
Method (a2, a3) c = 0.5 c = 0.7 c = 0.85 c = 0.5 c = 0.7 c = 0.85

MR (0,0) 0 0 0 3 3.8 4.6
Lasso (0, 0) 0 0 2 0 0 7

MR (-0.4, -0.1) 1 1 1 5.4 5.8 5.4
Lasso (-0.4, -0.1) 0 0 2 0.4 2 7

MR (0.4, 0.1) 1 1.2 1.2 5.4 5.8 6
Lasso (0.4, 0.1) 0 0 2 1.2 1.4 7.6

MR (-0.5, -0.4) 2 2 2 9.6 7.8 7.6
Lasso (-0.5, -0.4) 1 0 2 3.6 0.2 7

MR (0.5, 0.4) 2 2 2 9.4 7.4 7.8
Lasso (0.5, 0.4) 1 0 2 3.4 0 7

Table 2: Comparison of the lasso and marginal regression for different choices of (c, a2, a3).
The setting is described in Experiment 1b. Each cell displays the corresponding
Hamming error.

Experiment 1. In this experiment, we compare the performance of the lasso and
marginal regression with the noiseless linear model Y = Xβ. We generate the rows of X as
iid samples from N(0, (1/n)C), where C is a diagonal block-wise correlation matrix having
the form

C =


Csub 0 0 . . . 0

0 Csub 0 . . . 0
. . . . . .

0 0 0 . . . Csub

 .

Fixing a small integer m, we take Csub to be the m×m matrix as follows:

Csub =

(
D aT

a 1

)
,

where a is an (m − 1) × 1 vector and D is an (m − 1) × (m − 1) matrix to be introduced
below. Also, fixing another integer k ≥ 1, according to the block-wise structure of C, we
let β be the vector (without loss of generality, we assume p is divisible by m)

β = (δ1u
T , δ2u

T , . . . , δp/mu
T )T ,

where u = (vT , 0) for some (m− 1)× 1 vector v and δi = 0 for all but k different i, where
δi = 1.

The goal of this experiment is to investigate how the theoretic results in Section 2.3 shed
light on models with more practical interests. To see the point, note that when k � n, the
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Figure 5: Critical values of exact recovery for the lasso (red dashed) and marginal regression
(green solid). See Experiment 2 for the setting and the definition of critical value.
For any given set of parameters (ϑ, a, d), the method with a smaller critical value
has the better performance in terms of Hamming errors.

signal vector β is sparse, and we expect to see that

X ′Xβ ≈ Cβ, (33)

where the right hand side corresponds to the idealized model where X ′X = C. In this
idealized model, if we restrict our attention to any block where the corresponding δi is
1, then we have exactly the same model as in Example 1 of Section 2.3, with CSS = D
and βS = v. As a result, the theoretic results discussed in Section 2.3 apply, at least
when the approximation error in equation (33) is negligible. Experiment 1 contains two
sub-experiments, Experiment 1a and 1b.
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In Experiment 1a, we take (p, n,m) = (999, 900, 3). At the same time, for some numbers
a1 and a2, we set a, v, and D by

a = (a1, a2)T , v = (2, 1)T , D =

(
1 −.75
−.75 1

)
.

We investigate the experiment with two different values of k (k = 4 and k = 10) and five
different choices of (a1, a2): (0, 0),±(−0.85, 0.85), and ±(−0.4, 0.8). When k = 4, we let
δi = 1 if and only if i ∈ {40, 208, 224, 302}, and when k = 10, we let δi = 1 if and only
if i ∈ {20, 47, 83, 86, 119, 123, 141, 250, 252, 281} (such indices are generated randomly; also,
note that i are the indices for the blocks, not the indices for the signals).

Consider for a second the idealized case where X ′X = C (i.e., n is very large). If we
restrict our attention to any block of β where the corresponding δi is 1, the setting reduces
to that of Example 1 of Section 2.3. In fact, in Figure 1, our first choice of (a1, a2) falls
inside both the red box and green box, our next two choices fall inside the green box but
outside the red box, and our last two choices fall outside the green box but inside the
red box. Therefore, at least when k is sufficiently small (so that the setting can be well-
approximated by that in the idealized case), we expect to see that the lasso outperforms
marginal regression with the second and the third choices, and expect to see the other way
around with the last two choices of (a1, a2). In the first choice, both methods are expected
to perform well.

We now investigate how well these expectations are met. For each combination of
these parameters, we generate data and compare the Hamming errors of the lasso and
marginal regression, where for each method, the tuning parameters are set ideally. The
‘ideal’ tuning parameter is obtained through rigorous search from a range. The error rates
over 10 repetitions are tabulated in Table 1. More repetitions is unnecessary, partially
because the standard deviations of the simulation results are small, and partially because
the program is slow (for that we need to choose the ‘ideal’ tuning parameter through rigorous
search. Take the lasso for example. For rigorous search of the ‘ideal’ tuning parameter, we
need to run the glmnet R package many times).

The results suggest that the performances of each method are reasonably close to what
are expected for the idealized model, especially in the case of k = 4. Take the cases
(a1, a2) = ±(0.85,−0.85) for example. The lasso yields exact recovery, while marginal
regression, in each of the four blocks where the corresponding δi is 1, recovers correctly the
stronger signal and mistakenly kills the weaker one. The situation is reversed in the cases
where (a1, a2) = ±(0.4,−0.8). The discussion for the case of k = 10 is similar, but the
approximation error in equation (33) starts to kick in.

In Experiment 1b, we take (p, n,m) = (900, 1000, 4). Also, for some numbers c, a2, and
a3, we set a, v, and D as

aT = (0, a2, a3)T , v = (1, 1, 1)T , D =

 1 −1/2 c
−1/2 1 0
c 0 1

 .

The primary goal of this experiment is to investigate how different choices of c affect the
performance of the lasso and marginal regression. To see the point, note that in the idealized
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situation where X ′X = C, the model reduces to the one discussed in Figure 3, if we restrict
our attention to any block of β where δi = 1. The theoretic results in Example 4 of Section
2.3 predict that, the performance of the lasso gets increasingly unsatisfactory as c increases,
while that of marginal regression stay more or less the same. At the same time, which of
this method performs better depends on (a2, a3, c), see Figure 3 for details.

We select two different k for experiment: k = 2 and k = 7. When k = 2, we let
δi = 1 if and only if i ∈ {60, 139}, and when k = 7, we let δi = 1 if and only if i ∈
{34, 44, 58, 91, 100, 183, 229}. Also, we investigate five different choices of (a2, a3): (0, 0),
(0, 0),∓(0.4, 0.1), and ∓(0.5, 0.4), and three different c: c = 0.5, 0.7, and 0.85. For each
combination of these parameters, we apply both the lasso and marginal regression and
obtain the Hamming errors of both methods, where similarly, the tuning parameters for
each method are set ideally. The error rates over 10 repetitions are tabulated in Table 2.
The results suggest that different choices of c have a major role over the lasso, but does not
have a big influence over marginal regression. The results fit well with the theory illustrated
in Section 2.3; see Figure 3 for comparisons.

Experiment 2. In this experiment, we use the linear regression model Y = Xβ + z
where z ∼ N(0, In). We use a different criterion rather than the Hamming errors to compare
two methods: with the same parameter settings, the method that yields exact recovery in a
larger range of parameters is better. Towards this end, we take p = n = 500, and X = Ω1/2,
where Ω is the p× p tridiagonal matrix satisfying

Ω(i, j) = 1{i = j}+ a · 1{|i− j| = 1},

and the parameter a ∈ (−1/2, 1/2) so the matrix is positive definite. At the same time,
we generate β as follows. Let ϑ range between 0.25 and 0.75 with an increment of 0.25.
For each ϑ, let s be the smallest even number ≥ p1−ϑ. We then randomly pick s/2 indices
i1 < i2 < . . . < is/2. For parameters r > 0 and d ∈ (−1, 1) to be determined, we let
τ =
√

2r log p and let βj = τ if j ∈ {i1, i2, . . . , is/2}, βj = dτ if j − 1 ∈ {i1, i2, . . . , is/2}, and
βj = 0 otherwise.

To gain insight on how two procedures perform in this setting, we consider the noiseless
counterpart for just a second. Without loss of generality, we assume that the minimum
inter-distance of indice i1, i2, . . . , ik ≥ 4. Let Ỹ = X ′Y . For any ik, 1 ≤ k ≤ s/2, if we
restrict Ỹ to {ik − 1, ik, ik + 1, ik + 2} and call the resulting vector y, then

y = Aα,

where A is the 4 matrix satisfying A(i, j) = 1{i = j}+ a · 1{|i− j| = 1}, 1 ≤ i, j ≤ 4, and α
is the 4× 1 vector such that α1 = α4 = 0, α2 = τ , and α3 = dτ . In this simple model, the
performance of the lasso and marginal regression can be similarly analyzed as in Section
2.3.

Now, for each of the combination of (d, ϑ), we use the method of exhausting search to
determine the smallest r such that the lasso or marginal regression yields exact recovery
with 50 repetition of simulations, respectively (similarly, the tuning parameters of each
method are set ideally). For each method, we call the resultant value of r the critical value
for exact recovery. For each ϑ and choices of (a, d), we find the critical values for both
methods. The results are summarized in Figure 5. For a given triplet (ϑ, a, d), the method
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that gives a larger critical value is inferior to the one with a smaller critical value (as the
region of parameters where it yields exact recovery is smaller). Figure 5 suggests that the
parameters (a, d) play an important role in determining the performance of the lasso and
marginal regression. For example, the performance of both procedures worsen when a get
larger. This is because that as a increases, the Gram matrix moves away from that the
identity matrix, and the problem of variable selection becomes increasingly harder. Also,
the sign of a · d plays an interesting role. For example, when a · d < 0, it is known that the
marginal regression faces a so-called challenge of signal cancellation ( see for example [30]).
It seems that the lasso handles signal cancellation better than does marginal regression.
However, when (a, d) range, there is no clear winner between two methods.

Experiment 3. So far, we have focused on settings where the regression problem can
be decomposed into many parallel small-size regression problems. While how to decompose
remains unknown, such insight is valuable, as we can always compare the performance of
two methods over each of these small-size regression problems using the theory developed
in Section 2.3; the overall performance of each method is then the sum of that on these
small-size problems.

With that being said, in this experiment, we investigate an example where such a “de-
composition” does not exist or at least is non-obvious. Consider an experiment where
Y = Xβ + z, and z ∼ N(0, In). We take p = n and X = Ω1/2, where Ω is a correlation
matrix having the form

Ω = Λ + aξξ′.

which is a rank one perturbation of the diagonal matrix Λ. Here, ξ is the p×1 vector where
its p/2 even coordinates are 1, and the remaining coordinates are b, where a > 0 and b are
parameters calibrating the norm and direction of the rank one perturbation, respectively.
Experiment 3 contains two sub-experiments, 3a and 3b.

In Experiment 3a, we investigate how the choices of parameters (a, b) and the signal
strength affect the performance of the lasso and marginal regression. Let p = n = 3000,
and let βi = τ when i ∈ {k : k = 8 × (` − 1) + 1, 1 ≤ ` ≤ 150} and βi = 0 oth-
erwise, where τ calibrates the signal strength. For each of the four choices (a, b) =
(0.01, 0.3), (0.01, 0.5), (0, 0.5), (0.5,−0.1), we compare the lasso and marginal regression for
τ = 2, 3, . . . , 8. The Hamming errors are shown in Figure 6. The results suggest that the
parameters (a, b) play a key role in the performance of both the lasso and marginal regres-
sion. For example, when a increases, the performance of both methods worsen, due to that
the Gram matrix moves away from the identity matrix. Also, for relatively small a, it seems
that marginal regression outperforms the lasso (see Panel 1 and 2 of Figure 6).

In Experiment 3b, we take a different angle and investigate how the levels of the signal
sparsity affect the performance of the lasso and marginal regression. Consider a special case
where where b = 1. In this case, ξ reduces to the vector of ones, and the Gram matrix is an
equi-correlation matrix. This setting can be found in many literature on variable selection.
Take n = p = 500. We generate the coordinates of β from the mixing distribution of point
mass at 0 and the point mass at τ :

βi
iid∼ (1− ε)ν0 + εντ ,

where ε calibrates the sparsity level and τ calibrates the signal strength (in this experiment,
we take τ = 5). In Figure 7, we plot the Hamming errors of 10 repetition versus the number
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of variables retained (which can be thought of different choices of tuning parameters).
Interestingly, it seems that the performance of two methods are strikingly similar, with
relatively small differences (one way or the other) when the parameters (a, ε) are moderate
(neither too close to 0 nor to 1). This is interesting as when ρ is moderate, the design
matrix X is significantly non-orthogonal. Additionally, the results suggest that the sparsity
parameter ε has a major influence over the relative performance of two methods. When ε
get larger (so the signals get denser), marginal regression tends to outperform the lasso. The
underlying reason is that when both the correlation and signals are positive, the strength of
individual signals are amplified due to correlation, and so have a positive effect on marginal
regression.

At the same time, it seems that the correlation parameter a also have a major effect
over the performance of two methods, and the error rate of both methods increase as a
increases. However, somewhat surprisingly, the parameter a does not seem to have a major
effect on the relative performance of two methods.

We conclude this section by mentioning that from time to time, one would like to know
for the data at hand, which method is preferable. Generally, this is a hard problem, and
generally, there is no clear winner between the lasso and marginal regression. However,
there are something can be learned from these simulation examples.

First, the study in this section suggest an interesting perspective, which can be explained
as follows. Suppose that the Gram matrix is sparse in the sense that each row has relatively
few large coordinates, and that the signal is also sparse. It turns out two types of sparsity
interact with each other, and the large-scale regression problem reduces to many small-size
regression models, each of which is obtained by restricting the rows of X ′Y to a small set of
indices. In general, each of such of small-size regression models can be discussed in a similar
fashion as those in Section 2.3. The results of these small-size regression problems then
decide which of these two methods outperform the other. Take Experiment 1 for example.
The performance of each method is determined by that of applying the method block-wise to
the regression problem. This echos our previous argument in Section 2.3, where the relative
performance of two methods for small-size problems are discussed in detail. Second, it
seems that the lasso is comparably more vulnerable to extreme correlation, as discussed in
Section 2.3 as well as in Example 1b. Last, it seems that in at least some examples, marginal
regression is more vulnerable to the so-called “signal cancellation”, which is illustrated in
Proposition 3 as well as Example 2 in this section.

6. Proofs

6.1 Proof of Theorem 3

First, let ki denote the number of non-zero diagonal entries in row i of D. Because D is
symmetric but not diagonal, at least two rows must have non-zero ki. Assume without loss
of generality that the rows and columns of D are arranged so that the rows with non-zero ki
form the initial minor. It follows that the initial minor is itself a positive definite symmetric
matrix. And because any such matrix A satisfies |Aij | < maxkDkk for j 6= i, there exists a
row i of D with ki > 0 and |Dij | < Dii for any j 6= i.
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Figure 6: Comparison of Hamming errors by the lasso (red dashed) and marginal regression
(green solid). The setting is described in Experiment 3a.
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Figure 7: Comparison of Hamming errors by the lasso (red dashed) and marginal regression
(green solid). The x-axis shows the number of retained variables. The setting is
described in Experiment 3b.
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Define β as follows:

βj =


ρDii

Dij
if j 6= i and Dij 6= 0

ρ if j 6= i and Dij = 0

−kiρ if j = i..

(34)

Because |Dij | ≤ Dii, this satisfies |βj | ≥ ρ, so β ∈Ms
ρ. Moreover,

(Dβ)i =
∑
j

Dijβj = −kiDiiρ+
∑
j 6=i

Dij 6=0

ρDii

Dij
Dij = 0. (35)

This proves the theorem.

6.2 Proof of Lemma 4

By the definition of Ŝn(s), it is sufficient to show that except for a probability that tends
to 0,

max |XT
NY | < min |XT

S Y |.

Since Y = Xβ + z = XSβS + z, we have XT
NY = XT

N (XSβS + z) = CNSβS + XT
Nz. Note

that xTi z ∼ N(0, σ2
n). By Boolean algebra and elementary statistics,

P (max |XT
Nz| > σn

√
2 log p) ≤

∑
i∈N

P (|(xi, z)| ≥ σn
√

2 log p) ≤ C√
log p

p− s
p

.

It follows that except for a probability of o(1),

max |XT
NY | ≤ max |CNSβS |+ max |XT

Nz| ≤ max |CNSβS |+ σn
√

2 log p.

Similarly, except for a probability of o(1),

min |XT
S Y | ≥ min |CSSβS | −max |XT

S z| ≥ min |CSSβS | − σn
√

2 log p.

Combining these gives the claim. �

6.3 Proof of Theorem 5

Once the first claim is proved, the second claim follows from Lemma 4. So we only show
the first claim. Write for short Ŝn(s) = Ŝn(s(n);X(n), Y (n), p(n)), s = s(n), and S = S(β(n)).
All we need to show is

lim
n→∞

P (ŝn 6= s) = 0.

Introduce the event
Dn = {Ŝn(s) = S}.

It follows from Lemma 4 that
P (Dc

n)→ 0.

Write
P (ŝn 6= s) ≤ P (Dn)P (ŝn 6= s|Dn) + P (Dc

n).
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It is sufficient to show limn→∞ P (ŝn 6= s|Dn) = 0, or equivalently,

lim
n→∞

P (ŝn > s|Dn) = 0 and lim
n→∞

P (ŝn < s|Dn) = 0. (36)

Consider the first claim of (36). Write for short tn = σn
√

2 log n. Note that the event
{ŝn > s|Dn} is contained in the event of ∪p−1

k=s{δ̂n(k) ≥ tn|Dn}. Recalling P (Dc
n) = o(1),

P (ŝn > s) ≤
p−1∑
k=s

(δ̂(k) ≥ tn|Dn) .
p−1∑
k=s

P (δ̂n(k) ≥ tn), (37)

where we say two positive sequences an . bn if limn→∞(an/bn) ≤ 1.
Fix s ≤ k ≤ p − 1. By definitions, Ĥ(k + 1) − Ĥ(k) is the projection matrix from

Rn to V̂n(k + 1) ∩ V̂n(k)⊥. So conditional on the event {V̂n(k + 1) = V̂n(k)}, δn(k) = 0,
and conditional on the event {V̂n(k + 1) ( V̂n(k)}, δ2

n(k) ∼ σ2
nχ

2(1). Note that P (χ2(1) ≥
2 log n) = o(1/n). It follows that

p−1∑
k=s

P (δ̂n(k) ≥ tn) =

p−1∑
k=s

P (δ̂n(k) ≥ tn|V̂n(k) ( V̂n(k + 1))P (V̂n(k) ( V̂n(k + 1))

= o(
1

n
)

p−1∑
k=s

P (V̂n(k) ( V̂n(k + 1)). (38)

Moreover,

p−1∑
k=s

P (V̂n(k) ( V̂n(k + 1)) =

p−1∑
k=s

E[1(dim(V̂n(k + 1)) > dim(V̂n(k)))]

= E[

p−1∑
k=s

1(dim(V̂n(k + 1)) > dim(V̂n(k)))].

Note that for any realization of the sequences V̂n(1), . . . , V̂n(p),
∑p−1

k=s 1(dim(V̂n(k + 1)) >

dim(V̂n(k))) ≤ n. It follows that

p−1∑
k=s

P (V̂n(k) ( V̂n(k + 1)) ≤ n. (39)

Combining (37)-(39) gives the claim.
Consider the second claim of (36). By the definition of ŝn, the event {ŝn < s|Dn)} is

contained in the event {δ̂n(s−1) < tn|Dn}. By definitions, δ̂n(s−1) = ‖(Ĥ(s)−Ĥ(s−1))Y ‖,
where ‖ · ‖ = ‖ · ‖2 denotes the `2 norm. So all we need to show is

lim
n→∞

P (‖(Ĥ(s)− Ĥ(s− 1))Y ‖ < tn|Dn) = 0. (40)

Fix 1 ≤ k ≤ p. Recall that ik denotes the index at which the rank of |(Y, xik)| among all

|(Y, xj)| is k. Denote X̃(k) by the n by k matrix [xi1 , xi2 , . . . , xik ], and denote β̃(k) by the
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k-vector (βi1 , βi2 , . . . , βik)T . Conditional on the event Dn, Ŝn(s) = S, and βi1 , βi2 , . . . , βis
are all the nonzero coordinates of β. So according to our notations,

Xβ = X̃(s)β̃(s) = X̃(s− 1)β̃(s− 1) + βisxis (41)

Now, first, note that Ĥ(s)X̃(s) = X̃(s) and Ĥ(s − 1)X̃(s − 1) = X̃(s − 1). Combine this
with (41). It follows from direct calculations that

(Ĥ(s)− Ĥ(s− 1))Xβ = (I − Ĥ(s− 1))xis . (42)

Second, since xis ∈ V̂n(s), (I − Ĥ(s))xis = 0. So

(I − Ĥs−1)xis = (I − Ĥ(s))xis + (Ĥ(s)− Ĥ(s− 1))xis = (Ĥs − Ĥs−1)xis . (43)

Last, split xis into two terms, xis = x
(1)
is

+ x
(2)
is

such that x
(1)
is
∈ V̂n(s − 1) and x

(2)
is
∈

V̂n(s) ∩ (V̂n(s− 1))⊥. It follows that (Ĥ(s)− Ĥ(s− 1))x
(1)
is

= 0, and so

(Ĥ(s)− Ĥ(s− 1))xis = (Ĥ(s)− Ĥ(s− 1))x
(2)
is
. (44)

Combining (42)-(44) gives

(Ĥ(s)− Ĥ(s− 1))Xβ = (Ĥ(s)− Ĥ(s− 1))x
(2)
is
. (45)

Recall that Y = Xβ + z, it follows that

(Ĥs − Ĥs−1)Y = (Ĥ(s)− Ĥ(s− 1))(βisx
(2)
is

+ z). (46)

Now, take an orthonormal basis ofRn, say q̂1, q̂2, . . . , q̂n, such that q̂1 ∈ V̂n(s)∩V̂n(s−1)⊥,

q̂2, . . . , q̂s ∈ V̂n(s − 1), and q̂s+1, . . . , q̂n ∈ V̂n(s)⊥. Recall that x
(2)
is

is contained in the

one dimensional linear space V̂n(s) ∩ V̂n(s − 1)⊥, so without loss of generality, assume

(x
(2)
is
, q̂1) = ‖x(2)

is
‖. Denote the square matrix [q̂1, . . . , q̂n] by Q̂. Let z̃ = Q̂z and let z̃1 be

the first coordinate of z̃. Note that marginally z̃1 ∼ N(0, σ2
n). Over the event Dn, it follows

from the construction of Q̂ and basic algebra that

‖(Ĥ(s)− Ĥ(s− 1))(βisx
(2)
is

+ z)‖2 = (‖βisx
(2)
is
‖+ z̃1)2. (47)

Combine (46) and (47),

‖(Ĥ(s)− Ĥ(s− 1))Y ‖2 = (‖βisx
(2)
is
‖+ z̃1)2, over the event Dn.

As a result,

P (‖(Ĥ(s)− Ĥ(s− 1))Y ‖ < tn|Dn) = P ((‖βisx
(2)
is
‖+ z̃1)2 < tn|Dn). (48)

Recall that conditional on the event Dn, Ŝn(s) = S. So by the definition of ∆∗n =
∆n(β,X, p),

‖βisx
(2)
is
‖ ≥ ∆∗n,
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and

P ((‖βisx
(2)
is
‖+ z̃1)2 < tn|Dn) ≤ P (‖βisx

(2)
is
‖+ z̃1 < tn|Dn) ≤ P (∆∗n + z̃1 < tn|Dn). (49)

Recalling that z̃1 ∼ N(0, σ2
n) and that P (Dc

n) = o(1),

P (∆∗n + z̃1 < tn|Dn) ≤ P (∆∗n + z̃1 < tn) + o(1). (50)

Note that by the assumption of (∆∗n
σn
− tn) → ∞, P (∆∗n + z̃1 < tn) = o(1). Combining this

with (49)-(50) gives

P ((‖βisx
(2)
is
‖+ z̃1)2 < t2n|Dn) = o(1). (51)

Inserting (51) into (48) gives (40). �

6.4 Proof of Lemma 6

For 1 ≤ i ≤ p, introduce the random variable

Zi =

p∑
j 6=i

βj(xi, xj).

When Bi = 0, βi = 0, and so Zi =
∑p

j=1 βj(xi, xj). By the definition of CNS ,

max |CNSβS | = max
1≤i≤p

{(1−Bi) · |
p∑
j=1

βj(xi, xj)|} = max
1≤i≤p

{(1−Bi)|Zi|}.

Also, recalling that the columns of matrix X are normalized such that (xi, xi) = 1, the
diagonal coordinates of (CSS − I) are 0. Therefore,

max |(CSS − I)βS | = max
1≤i≤p

{Bi · |
∑
j 6=i

βj(xi, xj)|} = max
1≤i≤p

{Bi · |Zi|}.

Note that Zi and Bi are independent and that P (Bi = 0) = (1− ε). It follows that

P (max |CNSβS | ≥ δ) ≤
p∑
i=1

P (Bi = 0)P (|Zi| ≥ δ|Bi = 0) = (1− ε)
p∑
i=1

P (|Zi| ≥ δ),

and

P (max |(CSS − I)βS | ≥ δ) ≤
p∑
i=1

P (Bi = 1)P (|Zi| ≥ δ|Bi = 1) = ε

p∑
i=1

P (|Zi| ≥ δ).

Compare these with the lemma. It is sufficient to show

P (|Zi| ≥ δ) ≤ e−δt[eεḡi(t) + eεḡi(−t)]. (52)

Now, by the definition of gij(t), the moment generating function of Zi satisfies that

E[etZi ] = E[et
∑

j 6=i βj(xi,xj)] = Πj 6=i[1 + εgij(t)]. (53)
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Since 1 + x ≤ ex for all x, 1 + εgij(t) ≤ eεgij(t), so by the definition of ḡi(t),

E[etZi ] ≤ Πj 6=ie
εgij(t) = eεḡi(t). (54)

It follows from Chebyshev’s inequality that

P (Zi ≥ δ) ≤ e−δtE[etZi ] ≤ e−δteεḡi(t). (55)

Similarly,
P (Zi < −δ) ≤ e−δteεḡi(−t) (56)

Inserting (55)-(56) into (52) gives the claim. �

6.5 Proof of Corollary 3.1

Choose a constant q such that q/2− c2q > 1 and let tn = q log(p)/an. By the definition of
An(an/2, εn, ḡ), it is sufficient to show that for all 1 ≤ i ≤ p,

e−antn/2eεnḡi(tn) = o(1/p), e−antn/2eεnḡi(−tn) = o(1/p).

The proofs are similar, so we only show the first one. Let u be a random variable such that
u ∼ πn. Recall that the support of |u| is contained in [an, bn]. By the assumptions and the
choice of tn, for all fixed i and j 6= i, |tnu(xi, xj)| ≤ q log(p)(bn/an)|(xi, xj)| ≤ c1q. Since
ex − 1 ≤ x+ exx2/2, it follows from Taylor expansion that

εnḡi(tn) = εn[etnu(xi,xj) − 1] ≤ εn
∑
j 6=i

Eπn [tnu(xi, xj) +
ec1q

2
t2nu

2(xi, xj)
2].

By definitions ofmn(X) and v2
n(X), εn

∑
j 6=iEπ[tnu(xi, xj)] = tnµ

(1)
n mn(X), and εn

∑
j 6=iEπn [t2nu

2(xi, xj)
2] =

t2nµ
(2)
n v2

n(X). It follows from (22) that

εnḡi(tn) ≤ q log(p) · [µ
(1)
n

an
mn(X) +

ec1q

2

µ
(2)
n

a2
n

v2
n(X)q log(p)] . qc2 log(p).

Therefore,
e−antn/2eεnḡi(tn) ≤ e−[q/2−c2q+o(1)] log(p),

and claim follows by the choice of q. �

6.6 Proof of Corollary 3.2

Choose a constant q such that 2 < q < c3
c4δ

. Let tn = anq log(p), and u be a random variable
such that u ∼ Πn. Similar to the proof of Lemma 3.1, we only show that

e−antn/2eεnḡi(tn) = o(1/p), for all 1 ≤ i ≤ p.

Fix i 6= j. When (xi, xj) = 0, etu(xi,xj) − 1 = 0. When (xi, xj) 6= 0, etnu(xi,xj) − 1 ≤
etn(bn/an)δ ≤ ec4qδ log p. Also, εnN

∗
n ≤ e−[c3+o(1)] log(p). Therefore,

εnḡi(t) ≤ εnN∗nec4qδ log(p) ≤ e−[c3−c4qδ+o(1)] log p.

By the choice of q, c3 − c4qδ > 0, so εnḡi(t) = o(1). It follows that

e−antn/2eεnḡi(tn) ≤ o(e−antn/2) = o(e−q log(p)/2),

which gives the claim by q > 2. �
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6.7 Proof of Theorem 9

Write
X = [x1, X̃], β = (β1, β̃)T .

Fix a constant c0 > 3. Introduce the event

Dn(c0) = {1TS X̃T
S X̃S1S ≤ |S|[1 +

√
|S|
n

(1 +
√

2c0 log p)]2, for all S}. (57)

The following lemma is proved in Section 6.7.1.

Lemma 12 Fix c0 > 3. As p→∞,

P (Dc
n(c0)) = o(1/p2).

Since dn(β̂|X) ≤ p for any variable selection procedure β̂, Lemma 12 implies that the overall
contribution of Dc

n to the Hamming distance d∗n(β̂) is o(1/p). In addition, write

dn(β̂|X) =

p∑
j=1

E[1(β̂j 6= βj)].

By symmetry, it is sufficient to show that for any realization of (X,β) ∈ Dn(c0),

E[1(β̂j 6= βj)] ≥

{
L(n)p−

(ϑ+r)2

4r , r ≥ ϑ,
p−ϑ, 0 < r < ϑ,

(58)

where L(n) is a multi-log term that does not depend on (X,β).
We now show (58). Toward this end, we relate the estimation problem to the problem

of testing the null hypothesis of β1 = 0 versus the alternative hypothesis of β1 6= 0. Denote
φ by the density of N(0, 1). Recall that X = [x1, X̃] and β = (β1, β̃)T . The joint density
associated with the null hypothesis is

f0(y) = f0(y; εn, τn, n|X)φ(y − X̃β̃)dβ̃ = φ(y)

∫
ey

T X̃β̃−|X̃β̃|2/2dβ̃,

and the joint density associated with the alternative hypothesis is

f1(y) = f1(y; εn, τn, n|X) =

∫
φ(y − τnx1 − X̃β̃)dβ̃

= φ(y − τnx1)

∫
ey

T X̃β̃−|X̃β̃|2/2e−τnx
T
1 X̃β̃dβ̃. (59)

Since the prior probability that the null hypothesis is true is (1 − εn), the optimal test is
the Neyman-Pearson test that rejects the null if and only if

f1(y)

f0(y)
≥ (1− εn)

εn
.

The optimal testing error is equal to

1− ‖(1− εn)f0 − εnf1‖1.
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Compared to (2), ‖ · ‖1 stands for the L1-distance between two functions, not the `1 norm
of a vector.

We need to modify f1 into a more tractable form, but with negligible difference in L1-
distance. Toward this end, let Nn(β̃) be the number of nonzeros coordinates of β̃. Introduce
the event

Bn = {|Nn(β̃)− pεn| ≤
1

2
pεn}.

Let

an(y) = an(y; εn, τn|X) =

∫
(ey

T X̃β̃−|X̃β̃|2/2)(e−τnx
T
1 X̃β̃) · 1{B}dβ̃∫

(e−yT X̃β̃−|X̃β̃|2/2) · 1{B}dβ̃
. (60)

Note that the only difference between the numerator and the denominator is the term

e−τnx
T
1 X̃β̃ which ≈ 1 with high probability. Introduce

f̃1(y) = an(y)φ(y − τnx1)

∫
ey

T X̃β̃−|X̃β̃|2/2dβ̃. (61)

The following lemma is proved in Section 6.7.2.

Lemma 13 As p → ∞, there is a generic constant c > 0 that does not depend on y such
that |an(y)− 1| ≤ c log(p)p(1−ϑ)−θ/2 and ‖f1 − f̃1‖1 = o(1/p).

We now ready to show the claim. Define Ωn = {y : an(y)φ(y − τnx1) ≥ φ(y)}. Note
that by the definitions of f0(y) and f̃1(y), y ∈ Ωn if and only if

εnf̃1(y)

(1− εn)f0(y)
≥ 1.

By Lemma 13,

|
∫
f̃1(y)dy − 1| ≤ ‖f̃1 − f1‖1 ≤ o(1/p).

It follows from elementary calculus that

1− ‖(1− εn)f0 − εnf̃1‖1 =

∫
Ωn

(1− εn)f0(y)dy +

∫
Ωc

n

εnf̃1(y)dy + o(1/p).

Using Lemma 13 again, we can replace f̃1 by f1 on the right hand side, so

1− ‖(1− εn)f0 − εnf̃1‖1 =

∫
Ωn

(1− εn)f0(y)dy +

∫
Ωc

n

εnf1(y)dy + o(1/p).

At the same time, let δp = c log(p)p(1−ϑ)−θ/2 be as in Lemma 13, and let

t0 = t0(ϑ, r) =
ϑ+ r

2
√
r

√
2 log p.

be the unique solution of the equation φ(t) = εnφ(t− τn). It follows from Lemma 13 that,

{τnxT y ≥ t0(1 + δp)} ⊂ Ωn ⊂ {τnxT1 y ≥ t0(1− δp)}.
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As a result, ∫
Ωn

f0(y)dy ≥
∫
τnxT1 y≥t0(1+δp)

f0(y) ≡ P0(τnx
T
1 Y ≥ t0(1 + δp)),

and ∫
Ωc

n

f1(y)dy ≥
∫
τnxT1 y≤t0(1−δp)

f1(y) ≡ P1(τnx
T
1 Y ≤ t0(1− δp)).

Note that under the null, xT1 Y = xT1 X̃β̃ + xT1 z. It is seen that given x1, xT1 z ∼ N(0, |x1|2),

and |x1|2 = 1 +O(1/
√
n). Also, it is seen that except for a probability of o(1/p), xT1 X̃β̃ is

algebraically small. It follows that

P0(τnx
T
1 Y ≥ t0(1 + δp)) . Φ̄(t0) = L(n)p−

(ϑ+r)2

4r ,

where Φ̄ = 1− Φ is the survival function of N(0, 1). Similarly, under the alternative,

xT1 y = τn(x1, x1) + xT1 X̃β̃ + xT1 z,

where (x1, x1) = 1 +O(1/
√
n). So

εnP1(τnx
T
1 y ≤ t0(1− δp)) . Φ(t0 − τn) =

{
L(n)p−

(ϑ+r)2

4r , r ≥ ϑ,
L(n)p−ϑ, 0 < r < ϑ,

Combine these gives the theorem. �

6.7.1 Proof of Lemma 12

It is seen that

P (Dc
n(c0)) ≤

p∑
k=1

P

(
1TSX

TX1S ≥ k[1 +

√
k

n
(1 +

√
2c0 log p)]2, for all S with |S| = k

)
.

Fix k ≥ 1. There are
(
p
k

)
different S with |S| = k. It follows from [27, Lecture 9] that except

a probability of 2 exp(−c0 log(p) · k) that the largest eigenvalue of XT
SXS is no greater than

[1 +
√

k
n(1 +

√
2c0 log p)]2. So for any S with |S| = k, it follows from basic algebra that

P (1TSX
TX1S ≥ k[1 +

√
k

n
(1 +

√
2c0 log p)]2) ≤ 2 exp(−c0 log(p) · k).

Combining these with
(
p
k

)
≤ pk gives

P (Dc
n(c0)) ≤ 2

p∑
k=1

(
p

k

)
exp(−c0(log p)k) ≤ 2

p∑
k=1

exp(−(c0 − 1) log(p)k).

The claim follows by c0 > 3. �
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6.7.2 Proof of Lemma 13

First, we claim that for any X in event Dn(c0),

|xT1 X̃β̃| ≤ c log(p)(N(β̃)/
√
n), (62)

where c > 0 is a generic constant. Suppose Nn(β̃) = k and the nonzero coordinates of β̃ are
i1, i2, . . . , ik. Denote the (k+ 1)× (k+ 1) submatrix of XTX containing the 1st, (1 + i1)-th,
. . ., and (1 + ik)-th rows and columns by Uk+1. Let ξ1 be the (k + 1)-vector with 1 on the
first coordinate and 0 elsewhere, let ξ2 be the (k + 1)-vector with 0 on the first coordinate
and 1 elsewhere. Then

xT1 X̃β̃ = τnξ
T
1 Uk+1ξ2 ≡ τnξT1 (Uk+1 − Ik+1)ξ2.

Let (Uk+1 − Ik+1) = Qk+1Λk+1Q
T
k+1 be the orthogonal decomposition. By the definition

of Dn(c0), all eigenvalues of (Uk+1 − Ik+1) are no greater than (1 +
√
c log(p)k/n)2 − 1 ≤√

c log p
√
k/n in absolute value. As a result, all diagonal coordinates of Λk+1 are no greater

than √
c log p

√
k/n

in absolute value, and

‖ξT1 (Uk+1 − Ik+1)ξ2‖ ≤ ‖ξT1 Qk+1Λk+1‖ · ‖Qk+1ξ2‖ ≤
√
c log p

√
k/n‖ξT1 Qk+1‖ · ‖Qk+1ξ2‖.

The claim follows from ‖ξT1 Qk+1‖ = 1 and ‖Qk+1ξ2‖ =
√
k.

We now show the lemma. Consider the first claim. Consider a realization of X in the
event Dn(c0) and a realization of β̃ in the event Bn. By the definitions of Bn, Nn(β̃) ≤ pεn+
1
2pεn. Recall that pεn = p1−ϑ, n = pθ. It follows that log(p)N(β̃)/

√
n ≤ c log(p)pεn/

√
n =

c log(p)p1−ϑ−θ/2. Note that by the assumption of (1 − ϑ) < θ/2, the exponent is negative.
Combine this with (62),

|e−τnxT1 X̃β̃ − 1| ≤ c log(p)(N(β̃)/
√
n), (63)

Now, note that in the definition of an(y) (i.e. (60)), the only difference between the integrand

on the top and that on the bottom is the term e−τnx
T
1 X̃β̃. Combine this with (63) gives the

claim.

Consider the second claim. By the definitions of f̃1(y) and an(y),

f̃1(y) = an(y)φ(y − τnx1) ·
[∫

[ey
T X̃β̃−|X̃β̃|2/21Bn ]dβ̃ +

∫
[ey

T X̃β̃−|X̃β̃|2/21Bc
n
]dβ̃

]
= φ(y − τnx1) ·

[∫
[ey

T X̃β̃−|X̃β̃|2/2e−τnx
T
1 X̃β̃1Bc

n
]dβ̃ + an(y)

∫
[ey

T X̃β̃−|X̃β̃|2/21Bc
n
]dβ̃

]
.

By the definition of f1(y),

f1(y) = φ(y−τnx1)·
[∫

[ey
T X̃β̃−|X̃β̃|2/2e−τnx

T
1 X̃β̃1Bn ]dβ̃+

∫
[ey

T X̃β̃−|X̃β̃|2/2e−τnx
T
1 X̃β̃1Bc

n
]dβ̃

]
.
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Compare two equalities and recall that an(y) ∼ 1 (Lemma 12),

‖f1 − f̃1‖1 .
∫
φ(y − τnx1)[

∫
(ey

T X̃β̃−|X̃β̃|2/2 + ey
T X̃β̃−|X̃β̃|2/2e−τnx

T
1 X̃β̃)1Bc

n
dβ̃]dy

=

∫ ∫
φ(y − τnx1 − X̃β̃)[eτnx

T
1 X̃β̃ + 1]1Bc

n
dβ̃dy. (64)

Integrating over y, the last term is equal to
∫

[1 + eτnx
T
1 X̃β̃] · 1Bc

n
dβ̃.

At the same time, by (62) and the definition of Bc
n,∫

[1 + eτnx
T
1 X̃β̃] · 1Bc

n
dβ̃ ≤

∑
{k:|k−pεn|≥ 1

2
pεn}

[1 + ec log(p)k/
√
n]P (N(β̃) = k). (65)

Recall that pεn = p1−ϑ, n = pθ, and (1−ϑ) < θ/2. Using Bennett’s inequality for P (N(β̃) =
k) (e.g. [31, Page 440]), it follows from elementary calculus that∑

{k:|k−pεn|≥ 1
2
pεn}

[1 + ec log(p)k/
√
n]P (N(β̃) = k) = o(1/p). (66)

Combining (64)–(66) gives the claim. �
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