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Abstract

Given n samples X1, X2, . . . , Xn from N(0,Σ), we are interested in estimating the
p× p precision matrix Ω = Σ−1; we assume Ω is sparse in that each row has relatively
few nonzeros.

We propose Partial Correlation Screening (PCS) as a new row-by-row approach. To
estimate the i-th row of Ω, 1 ≤ i ≤ p, PCS uses a Screen step and a Clean step. In the
Screen step, PCS recruits a (small) subset of indices using a stage-wise algorithm, where
in each stage, the algorithm updates the set of recruited indices by adding the index j
that has the largest empirical partial correlation (in magnitude) with i, given the set
of indices recruited so far. In the Clean step, PCS first re-investigates all recruited
indices in hopes of removing false positives, and then uses the resultant set of indices
to reconstruct the i-th row of Ω.

PCS is computationally efficient and modest in memory use: to estimate a row of Ω,
it only needs a few rows (determined sequentially) of the empirical covariance matrix.
This enables PCS to execute the estimation of a large precision matrix (e.g., p = 10K)
in a few minutes, and open doors to estimating much larger precision matrices.

We use PCS for classification. Higher Criticism Thresholding (HCT) is a recent
classifier that enjoys optimality, but to exploit its full potential in practice, one needs
a good estimate of the precision matrix Ω. Combining HCT with any approach to
estimating Ω gives a new classifier: examples include HCT-PCS and HCT-glasso.

We have applied HCT-PCS to two large microarray data sets (p = 8K and 10K)
for classification, where it not only significantly outperforms HCT-glasso, but also is
competitive to the Support Vector Machine (SVM) and Random Forest (RF) (for one
of the data set, 17.4% improvement over SVM and 57.8% over RF). The results suggest
that PCS gives more useful estimates of Ω than the glasso; we study this carefully and
have gained some interesting insight.

We set up a general theoretical framework and show that in a broad context, PCS
fully recovers the support of Ω and HCT-PCS yields optimal classification behavior.
Our proofs shed interesting light on the behavior of stage-wise procedures.
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partial correlation, Random Forest, Screen and Clean, sparsity, Support Vector Machine.
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1 Introduction

There is always the story of “four blind men and the elephant” [2]. A group of blind men
were asked to touch an elephant to learn what it is like. Each one touched a different part,
but only one part (e.g., the tusk, the ear, or the leg). They then compared notes and learnt
that they were in complete disagreement, until the King pointed out to them: “All of you
are right. The reason that every one of you is telling it differently is because each one of
you touched the different part of the elephant. So actually the elephant has all the features
you mentioned”.

There are several similarities between the elephant tale and the problem on estimating
large precision matrices; some are obvious, but some are not.

• Both deal with something enormous: an elephant or a large matrix.

• Both encourage parallel computing: either with a group of blind men or a cluster of
computers. Individuals only communicate with a ‘center’ (a king, a master computer),
but do not communicate with each other.

• Both are modest in memory use. If we are only interested in a small part of the
elephant (e.g., the tail), we do not need to scan the whole elephant. If we are only
interested in a row of a sparse precision matrix, we don’t need to use the whole
empirical covariance matrix.

Modesty in memory use is especially important when we only have a modest computing
platform (e.g., Matlab on a desktop), where it is easy to hit the RAM limit or memory
ceiling.

Given a data matrix X ∈ Rn,p. We write

X = [x1, x2, . . . , xp] = [X1, X2, . . . , Xn]′,

where X ′i is the i-th row and xj is the j-th column, 1 ≤ i ≤ n, 1 ≤ j ≤ p. We assume the
rows satisfy

Xi
iid∼ N(0,Σ), Σ ∈ Rp,p. (1.1)

Denote by Σ̂ by the empirical covariance matrix

Σ̂(i, j) = (xi, xj)/n. (1.2)

The precision matrix
Ω = Σ−1, (1.3)

is unknown to us but is presumably sparse, in the sense that each row of Ω has relatively
few nonzeros, and the primary interest is to estimate Ω.

Our primary interest is in the ‘large n, really large p’ regime [34], where it is challenging
to estimate Ω precisely with real-time computing.

The glasso [21] is a well-known approach which estimates Ω by optimizing the `1-
penalized objective function of the log-likelihood associated with Σ̂. The glasso is not
exactly modest in memory use, and for large p (e.g., p = 10K), the glasso can be unsat-
isfactorily slow, especially when the tuning parameter is small [21]. Also, by its design,
it is unclear how to implement the glasso with parallel computing. This makes the glasso
disadvantageous when p is large and resources for parallel computing are available.
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Alternatively, we can estimate Ω row by row. Such approaches include but are not
limited to Nearest Neighborhood (NN) [11], scaled-lasso (slasso) [35], and CLIME [9]. These
methods relate the problem of estimating an individual row of Ω to a linear regression
model and apply some variable selection approaches: NN, slasso and CLIME apply the
lasso, scaled-lasso, and Dantzig Selector correspondingly. Unfortunately, for p = 10K or
larger, these methods are unsatisfactorily slow, simply because the lasso, scaled-lasso, and
Dantzig Selector are not fast enough to accomplish 10K different variable selections in real
time. They are not exactly modest in memory use either: to estimate a row of Ω, they
need either the whole matrix of Σ̂ or X.

We propose Partial Correlation Screening (PCS) as a new approach to estimating the
precision matrix. PCS has the following appealing features.

• Allowing for real-time computing. PCS estimates Ω row by row using a fast screening
algorithm, and is able to estimate Ω for p = 10K or larger with real-time computation
on a modest computing platform.

• Modesty in memory use. To estimate each row of Ω, PCS does not need the whole
matrix of Σ̂. It only needs the diagonals of Σ̂ and a few rows of Σ̂ determined
sequentially, provided that Ω is sufficiently sparse. This enables us to bypass the
RAM limit (of Matlab on a desktop, say) and to accommodate Ω with much larger p.

However, we must note that, practically, estimating Ω is rarely the ultimate goal. In
many applications, the goal is usually to use the estimated Ω to improve statistical inference,
such as classification, inference on the genetic networks, large-scale multiple testing, and so
on and so forth.

In this paper, largely motivated by interests in gene microarray, we focus on how to
use the estimated precision matrix to improve classification results with microarray data.
Table 1 displays two microarray data sets we study in this paper. In each data set, we
have samples from two classes (e.g., normal versus diseased), and each sample is measured
over the same set of genes. The main interest is to use the data set to construct a trained
classifier.

Table 1: Two gene expression microarray data sets.

Data Name Source n (# of subjects) p (# of genes)

Rats Yousefi et al. (2010) 181 8491
Liver Yousefi et al. (2010) 157 10237

We propose to combine PCS with the recent classifier of Higher Criticism Thresholding
(HCT) [12, 20], and to build a new classifier HCT-PCS. In [12, 20], they investigated a
two-class classification setting with a Gaussian graphical model. Assuming samples from
two classes share the same sparse precision matrix Ω, they showed that, given a reasonably
good estimate of Ω, HCT enjoys optimal classification behaviors. The challenge, how-
ever, is to find an algorithm that estimates the precision matrix accurately with real-time
computation; this is where PCS comes in.

We apply HCT-PCS to the two data sets above. In these data sets, the precision matrix
is unknown, so it is hard to check whether PCS is more accurate for estimating Ω than
existing procedures. However, the class labels are given, which can be used as the ‘ground
truth’ to evaluate the performance of different classifiers. We find that
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• HCT-PCS significantly outperforms other versions of HCT (say, HCT-glasso, where
Ω is estimated by the glasso), suggesting that PCS yields more accurate estimates of
Ω than other approaches (the glasso, say).

• HCT-PCS is competitive, in both computation time (especially when n is large) and
classification errors, to the more popular classifiers of Support Vector Machine (SVM)
[8] and Random Forest (RF) [6].

1.1 PCS: the idea

We present the key idea of PCS, leaving the formal introduction to Section 1.2. To this end,
we consider an idealized case where we are allowed to access all ‘small-size’ principal sub-
matrices of Σ (but not any ‘large-size’ sub-matrices), and study how to use such sub-matrices
to reconstruct Ω. Since any small-size principal sub-matrix of Σ can be well-approximated
by the corresponding sub-matrix of Σ̂ (despite that Σ̂ as a whole is a bad approximation
to Σ due to p� n), once we understand such an idealized case, we know how to deal with
the real one.

Write Ω = (ω1, ω2, . . . , ωp) so that ω′i is the i-th row of Ω. Fixing 1 ≤ i ≤ p, we wish to
understand what could be a reasonable approach to reconstructing ω′i using only ‘small-size’
sub-matrices of Σ. Define

S(i)(Ω) = {1 ≤ j ≤ p : ωi(j) 6= 0, j 6= i}. (1.4)

Note that {i} ∪ S(i)(Ω), not S(i)(Ω), is the support of ωi. Such a notation is a little bit
unconventional; we choose it for simplicity in presentation.

Definition 1.1 For any matrix A ∈ Rn,p and subsets I = {i1, i2, . . . , iM} ⊂ {1, . . . , n} and
J = {j1, . . . , jK} ⊂ {1, . . . , p}, AI,J denotes the M×K sub-matrix such that AI,J (m, k) =
A(im, jk), 1 ≤ m ≤ M, 1 ≤ k ≤ K (indices in either I or J are not necessarily arranged
in the ascending order).

Here is an interesting observation. For any subset W such that

({i} ∪ S(i)(Ω)) ⊂W ⊂ {1, 2, . . . , p}, (1.5)

we can reconstruct ω′i by only knowing a specific row of (ΣW,W )−1!

Lemma 1.1 Suppose (1.5) holds, and index i is the k-th index in W . The k-th row of
ΩW,W coincides with that of (ΣW,W )−1, despite that two matrices are generally unequal.

The proof of Lemam 1.1 is elementary so we omit it; see also Figure 1. Lemma 1.1 motivates
a two-step Screen and Clean approach (an idea for variable selection that is applicable in
many cases [19, 27, 28, 29, 37]).

• In the Screen stage, we identify a subset S
(i)
∗ = S

(i)
∗ (Σ, p), in hopes of S(i)(Ω) ⊂ S(i)

∗ .

• In the Clean stage, we reconstruct ω′i from the matrix ΣW∗,W∗ following the idea in

Lemma 1.1, where W∗ = {i} ∪ S(i)
∗ .

Seemingly, the key is how to screen. Our proposal is to use the partial correlation,
a concept closely related to the precision matrix [7]. Consider an (ordered) subset W ⊂
{1, 2, . . . , p} where i and j are the first and the last indices, respectively. Let S = W \{i, j}.
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Ω =




∗ 0 ∗ 0 ∗ 0 0
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

...
...

...
. . .

...
· · · · · · · · · · · · · · ·




Σ =




· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

...
...

...
. . .

...
· · · · · · · · · · · · · · · ·




Inverse

(ΣW,W )−1 ΣW,W

1

Figure 1: The first row of Ω only has nonzeros at column 1, 3, 5, marked with “∗”. For any
subset W such that {1, 3, 5} ⊂W , the first rows of ΩW,W and (ΣW,W )−1 are the same.

For any vector Z ∼ N(0,Σ), the partial correlation between Z(i) and Z(j) given {Z(k) :
k ∈ S} is defined as

ρij(S) =
−1 · first row last column of

(
ΣW,W

)−1

[
product of the first and last diagonals of

(
ΣW,W

)−1]1/2 . (1.6)

Note that ρij(S) = 0 if and only if the numerator is 0. By Lemma 1.1 above and Lemma 2.2
to be introduced below, we have the following observation:

S(i)(Ω) ⊂ ({i} ∪ S) ⇐⇒ ρij(S) = 0 for all j /∈ ({i} ∪ S).

This observation motivates a stage-wise screening algorithm for choosing S
(i)
∗ , where we

use the partial correlation to recruit exactly one node in each step before the algorithm

terminates. Initialize with S
(i)
0 = ∅.

Suppose the algorithm has run (k − 1) steps and has not yet stopped. Let S
(i)
k−1 =

{j1, j2, . . . , jk−1} be all the nodes recruited (in that order) by far. In the k-th step, if

ρij(S
(i)
k−1) 6= 0 for some j /∈ ({i} ∪ S(i)

k ), let j = jk be the index with the largest value of

|ρij(S(i)
k−1)|, and update with S

(i)
k = S

(i)
k−1∪{jk}. Otherwise, terminates and let S

(i)
∗ = S

(i)
k−1.

It is shown in Theorem 2.1 that under mild conditions, the algorithm terminates at

≤ C|S(i)(Ω)|2 steps, at which point, S(i)(Ω) ⊂ S(i)
∗ and ρij(S

(i)
∗ ) = 0 for all j /∈ ({i} ∪ S(i)

∗ ).

Letting W∗ = {i}∪S(i)
∗ , we can then use ΣW∗,W∗ to reconstruct ω′i, following the connection

given in Lemma 1.1.
Since all small-size sub-matrices of Σ can be well-approximated by their empirical coun-

terparts in Σ̂, the ideas above are readily extendable to the ‘real case’, provided that
|S(i)(Ω)| is sufficiently small. This idea is fleshed out in Section 1.2, where PCS is formally
introduced.

1.2 PCS: the procedure

From time to time, especially for analyzing microarray data, it is desirable to use the ridge
regularization when we invert a principal sub-matrix of Σ̂ on an as-needed basis, even when
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the size of the matrix is small. Fixing a ridge regularization parameter δ > 0, for any
positive definite matrix W , define the Ridge Regularized Inverse by

Iδ(W ) =

{
W−1, if all eigenvalues of W ≥ δ,
(W + δI|W |)

−1, otherwise,
(1.7)

where Ik denotes the k × k identity matrix (we may drop “k” for simplicity).
For any indices i, j and subset S ⊂ {1, 2, . . . , p}\{i, j}, let W = {i}∪S∪{j} and suppose

i and j are the first and last indices in the subset. Introduce the regularized empirical partial
correlation by

ρ̂
(δ)
ij (S) =

−1 · first row last column of Iδ(Σ̂W,W )
[
product of the first and last diagonals of Iδ(Σ̂W,W )

]1/2 . (1.8)

Note that if we take δ = 0 and replace Σ̂ by Σ everywhere, then ρ̂
(δ)
ij (S) reduces to the

partial correlation ρij(S) defined in (1.6).
PCS is specifically designed for very large precision matrices, and we may need to

deposit Σ̂ in the ‘data center’ instead of the software to bypass the memory ceiling. A
‘data center’ can be many things: a hard disk of a laptop, a master machine of a computer
cluster, or a large data depository. For example, suppose we wish to run PCS using Matlab
on a laptop. For moderately large p, we can always load the whole Σ̂ to Matlab directly.
However, for much larger p, this becomes impossible, and depositing Σ̂ in a ‘data center’
becomes necessary (which then poses great challenges for many procedures, say, glasso).
Fortunately, PCS is able to overcome such a challenge: to estimate a row of Ω, PCS only
needs to load a few rows of the empirical covariance matrix from the ‘data center’. See
details below.

 
 

 

 

 

 

 

 

 

Compute ρij 

jk=argmax |ρij|, t=max |ρij| 

 

Data Center 
Load diagonals and row i 

Initialize k=0, S0 =∅ 

t < tq 
       Terminate 

       Output S*
 

Yes 

No 

k=k+1, Sk = Sk-1∪{jk} 
Request row jk 

Send row jk 

Figure 2: Flow chart of PCS (short-hand notations are used for simplicity)

PCS estimates Ω row by row. Fixing a tuning parameter q > 0, and set a threshold in
the form of

t∗q = t∗q(p, n) = q
√

2 log(p)/n. (1.9)

For a small number δ > 0 and an appropriately large integer L > 0, to estimate the i-th
row of Ω, 1 ≤ i ≤ p, PCS consists of 4 steps; see Figure 2.
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• Initial step. Let Ŝ
(i)
0 = ∅, and load the i-th row and the diagonals of Σ̂ (from the data

center to the software; same below).

• Screen step. Suppose the algorithm has not yet terminated at the end of step (k− 1),

and let Ŝ
(i)
k−1 = {j1, j2, . . . , jk−1} be all the nodes recruited so far (in that order). If

k < L, and max
{j /∈({i}∪Ŝ(i)

k )}
|ρ̂(δ)
ij (Ŝ

(i)
k−1)| ≥ t∗q , (1.10)

let j = jk be the node satisfying jk = argmax{j:j /∈({i}∪Ŝ(i)
k−1)}|ρ̂

(δ)
ij (Ŝ

(i)
k−1)| (when there

are ties, pick the smallest index). We load the jk-th row of Σ̂ to the software and

update Ŝ
(i)
k by Ŝ

(i)
k = Ŝ

(i)
k−1 ∪ {jk} = {j1, j2, . . . , jk}. Otherwise, the algorithm termi-

nates, and we set Ŝ
(i)
∗ = Ŝ

(i)
∗ (t,X; p, n) as Ŝ

(i)
k−1, where the indices are arranged in the

order they are recruited.

• Clean step. Denote by η̂′ the first row of Iδ(Σ̂Ŵ∗,Ŵ∗), where Ŵ∗ = {i} ∪ Ŝ(i)
∗ for

short. Write Ŵ∗ = {i, j1, j2, . . . , jk} (nodes arranged in that order). Denote the set of

selected nodes after cleaning by Ŝ
(i)
∗∗ = Ŝ

(i)
∗∗ (t,X; p, n) = {j` : |η̂(` + 1)| ≥ t∗q , 1 ≤ ` ≤

k}. Letting Ŵ∗∗ = {i}∪ Ŝ(i)
∗∗ (where i is the first node) and writing A = Iδ(Σ̂Ŵ∗∗,Ŵ∗∗)

for short, we estimate the i-th row of Ω by

Ω̂∗(i, j) =

{
first row `-th column of A, j is the `-th node in Ŵ∗∗,

0, j /∈ Ŵ∗∗.

• Symmetrization. Ω̂pcs = [Ω̂∗ + (Ω̂∗)′]/2.

PCS has three tuning parameters (q, δ, L), but its performance is not sensitive to different
choices of (δ, L), as long as they are in a reasonable range. In this paper, we set (δ, L) =
(.1, 30), so essentially PCS only has one tuning parameter q. In practice, how to set q is
generally a difficult problem. Our primary focus on real data analysis is classification, in
which settings we select q by cross validations. See Section 1.4 for details.

The computation cost of PCS is O(p2L3 + np2), where O(np2) is the cost of obtaining
Σ̂ from the data matrix X, and the L3 term comes from the step of sequentially inverting
matrices of sizes 2, 3, . . . , L+ 1. Also, PCS estimates Ω row by row and allows for parallel
computing. Together, these make PCS a fast algorithm that can have real time computing
for large precision matrices. For example, with (q, δ, L) = (.2, .1, 30), it takes the PCS only
about 5 and 7.5 minutes on the rats and the liver data sets, respectively.

PCS is also modest in memory use: to estimate one row of Ω, PCS only needs the
diagonals and no more than L rows of Σ̂. This enables PCS to bypass the memory ceiling
for very large p. Of course, in such cases, some communication costs between the software
and ‘data center’ are expected, but these seem unavoidable when we hit the memory ceiling.
How to design an efficient ‘communication scheme’ is an interesting problem. For reasons
of space, we leave this to the future work.

1.3 Applications to classification

Consider a classification setting where we have samples (X̃i, Yi), 1 ≤ i ≤ n, from two classes,
where X̃i ∈ Rp are the feature vectors and Yi ∈ {−1, 1} are the class labels. Given a fresh
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sample X̃ ∈ Rp where the associated class label Y ∈ {−1, 1} is unknown, the goal is to use
(X̃i, Yi) to construct a trained classifier and to use it to predict Y .

Following [20], we model X̃i with a Gaussian graphical model, where for two distinct
mean vectors µ± ∈ Rp and a covariance matrix Σ ∈ Rp,p,

X̃i ∼ N(µ±,Σ), if Yi = ±1, respectively. (1.11)

Similar to that of (1.3), we assume the precision matrix Ω = Σ−1 is sparse, in the same
sense. Additionally, let µ be the contrast mean vector:

µ = µ+ − µ−. (1.12)

We assume µ is sparse in that only a small fraction of its entries is nonzero.
We are primarily interested in classification for microarray data. For the two data sets

in Table 1, model (1.11) might deviate from the ground truth, but the good thing is that
PCS is not tied to model (1.1) and our proposed classifier works quite well on these data
sets; Section 1.4.

Higher Criticism Thresholding (HCT) is a recent classifier proposed in [12, 20], which
adapts Fisher’s Linear Discriminant Analysis (LDA) to the modern regime of ‘large n, really
large p’. In the idealized case where Ω is known or can be estimated reasonably well, HCT
is shown to have optimal classification behaviors for model (1.11). The question is then
how to estimate Ω accurately with real time computing.

In this paper, we consider three approaches to estimating Ω: PCS, the glasso [21], and
FoBa. FoBa stands for the classical forward-backward method for variable selection [33],
and it has not yet been proposed as an approach to estimating Ω. However, we can still
develop it into such a procedure; we discuss this in details in Section 1.6.

CLIME and scaled-lasso are not included for comparison, as they are unsatisfactorily
slow for large p (e.g., p = 8K). Bickel and Levina [5] proposed to estimate the precision
matrix by the inverse of a thresholded version of the empirical covariance matrix. This
method is not included either, for it focuses on the case where Σ is sparse (but Ω may be
non-sparse).

To apply PCS, the glasso, or FoBa, it is more convenient to start with the empirical
correlation matrix R̂ (see below) than with Σ̂. Let n1 and n2 be the sample sizes of Class 1
and Class 2, let µ̂± ∈ Rp be the sample mean vectors for Class 1 and Class 2, respectively,
and let ŝ± ∈ Rp be the vectors of sample standard deviations for class 1 and class 2,
respectively. The pooled standard deviation associated with feature j is then

ŝ(j) =
√

[(n1 − 1)(s+(j))2 + (n2 − 1)(s−(j))2]/(n1 + n2 − 2). (1.13)

For i = 1, 2, . . . , n, let µ̂∗i ∈ Rp be the vectors satisfying µ̂∗i = µ̂+ if i ∈ Class 1 and µ̂∗i = µ̂−

otherwise. The empirical correlation matrix R̂ ∈ Rp,p is then

R̂(j, k) = (nŝ(j)ŝ(k))−1
n∑

i=1

(X̃i(j)− µ̂∗i (j))(X̃i(k)− µ̂∗i (k)). (1.14)

Once R̂ is obtained, we apply each of the three methods (PCS, glasso, FoBa) and denote
the estimates by Ω̂pcs, Ω̂glasso, and Ω̂foba.

For Ω̂ being either of the three estimates, the corresponding HCT-classifier (denoted by
HCT-PCS, HCT-glasso, and HCT-FoBa) consists of the following steps for classification.
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• Let Z ∈ Rp be the vector of summarizing t-scores: Z(j) = (µ̂+(j)− µ̂−(j))/(n0 · ŝ(j)),
1 ≤ j ≤ p, where n0 = (n−1

1 + n−1
2 )1/2.

• Normalize Z by Z∗(j) = (Z(j) − u(j))/d(j), where u(j) and d(j) are the mean and
standard deviation of different entries of Z.

• Apply the Innovated Transformation [20]: Z̃ = Ω̂Z∗.

• Threshold choice by Higher Criticism. For each 1 ≤ j ≤ p, obtain a P -value by
πj = P (|N(0, 1)| ≥ (Ω̂(j, j))−1/2|Z̃(j)|). Sort the P -values ascendingly by π(1) <

π(2) < . . . < π(p). Let ĵ be the index among the range 1 ≤ j ≤ α0p and that

maximizes the so-called HC functional HCp,j = [j/p − π(j)]/
√

(1− j/p)(j/p) for all
j in the range of 1 ≤ j ≤ α0p (we usually set α0 = .2, as suggested by [12]). The
HC threshold tHCp = tHCp (Z̃, Ω̂, p, n) is the magnitude of the ĵ-th largest entry (in

magnitude) of Z̃.

• Assign weights by thresholding. Let wHC(j) = sgn(Z̃(j)) ·1{|Z̃(j)| ≥ tHCp }, 1 ≤ j ≤ p.
Denote wHC = (wHC(1), wHC(2), . . . , wHC(p))′.

• Classification by post-selection LDA. We normalize the test feature X̃ by X̃∗(j) =
[X̃(j)− (µ̂+(j) + µ̂−(j))/2]/ŝ(j), 1 ≤ j ≤ p. Let LHC(X̃) = (wHC)′Ω̂X̃∗. We classify
Y = ±1 according to LHC(X̃) ≷ 0.

The rationale behind step 2 is the phenomenal work by Efron [16] on empirical null. Efron
found that for microarray data, there is a substantial gap between the (marginal) distri-
bution of the theoretical null and that of the empirical null, and it is desirable to bridge
the gap by renormalization. This step is specifically designed for microarray data, and
may not be necessary for other types of data (say, simulated data). Also, note that when
normalizing the test feature X̃, we use (µ̂±, ŝ) which do not depend on X̃.

1.4 Comparison: classification errors with microarray data

We consider the two gene microarray data sets in Table 1. The original rats data set was
collected in a study on gene expressions of live rats in response to different drugs and
toxicant, and we use the cleaned version by [38]. The data set consists of 181 samples
measured on the same set of 8491 genes, where 61 samples are labeled by [38] as toxicant,
and the other 120 as other drugs. The original liver data set was collected in a study on the
hepatocellular carcinoma (HCC), and we also use the cleaned version by [38]. The data set
consists of 157 samples measured on the same set of 10, 237 genes, 82 of them are tumor
samples, and the other 75 non-tumor.

We consider a total of 6 different classifiers: naive HCT (where we pretend that Ω is
diagonal and apply HCT without estimating off-diagonal of Ω; denoted by nHCT), HCT-
PCS, HCT-glasso, HCT-FoBa, and two popular classifiers: Support Vector Machine (SVM)
and Random Forest (RF).

Among them, nHCT is tuning free, three methods have one tuning parameter: λ for
HCT-glasso, ‘cost’ for SVM, and ‘number of trees’ for RF. The tuning parameter for HCT-
glasso (and also those of HCT-PCS and HCT-FoBa) come from the method of estimating
the precision matrix. HCT-PCS has three tuning parameters (δ, L, q), but it is relatively
insensitive to (δ, L). In this paper, we set (δ, L) = (0.1, 30), so PCS only have one tuning
parameter q. For HCT-FoBa, we use the package by [40], which has three tuning parameters:
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a back fitting parameter (set by the default value of −.5 here), a ridge regression parameter
δ > 0 and a step size parameter L. As parameters (δ, L) have similar roles to (δ, L) in
PCS, we set them as (δ, L) = (0.1, 30). The performance of either PCS or FoBa is relatively
insensitive to different choices of (δ, L), as long as they fall in a certain range.

In our study, we use two layers of 3-fold data splitting. To differentiate one from
the other, we call them the data-splitting and cv-splitting. The former is for comparing
classification errors of different methods across different data splitting and it is particularly
relevant to evaluating the performance on real data, while the latter is for selecting tuning
parameters. The latter is not required for nHCT or HCT-FoBa.

• Data-splitting. For each data set, we apply 3-fold random split to the samples in
either of the two classes (25 times, independently).

• Cv-splitting. For each resultant training set from the data splitting, we apply 3-fold
random split to the samples in either of the two classes (25 times, independently).

Sample indices for the 25 data splitting and sample indices of the 25 cv-splitting associated
with each of the data splitting can be found at www.stat.cmu.edu/~jiashun/Research/

software.
We now discuss how to set the tuning parameters in HCT-PCS, HCT-glasso, SVM, and

RF. For HCT-PCS, we find the interesting range for q is 0.05 ≤ q ≤ 0.5. We discretize this
interval evenly with an increment of 0.05. The increment is sufficiently small, and a finer
grid does not have much difference. For each data splitting, we determine the best q using
25 independent cv-splitting, picking the one that has the smallest “cv testing error”. This
q value is then plugged into HCT-PCS for classification.

For HCT-glasso, the interesting range for the parameter λ is 0.8 ≤ λ ≤ 1. Since
the algorithm starts with empirical correlation matrix, it is unnecessary to go for λ > 1
(the resultant estimate would be a scalar times the p × p identity matrix, a simple result
of the KKT condition [21]). On the other hand, it is very time consuming by taking
λ < 0.8. For example, if we take λ = 0.65, 0.7, and 0.75, then on a 12GB RAM machine,
it takes the glasso more than a month for λ = 0.65, about a month for λ = 0.7, and
about 180 hours for λ = 0.75 to complete all 25 × 25 combinations of data-splitting and
cv-splitting, correspondingly. Similar to that of HCT-PCS, for each data splitting, we take
λ ∈ {0.8, 0.85, 0.9, 0.95, 1} and use the 25 cv-splitting to decide the best λ, which is then
plugged into HCT-glasso for classification.

For SVM, we use the package from http://cran.r-project.org/web/packages/e1071/

index.html. We find the interesting range for the ‘cost’ parameter is between 0.5 and 5,
so we take ‘cost’ to be {0.5, 1, 1.5, . . . , 5} and use cv-splitting to pick the best one. For
RF, we use the package downloaded from http://cran.r-project.org/web/packages/

randomForest/index.html. RF has one tuning parameter ‘number of trees’. We find
that the interesting range for ‘number of trees’ is between 50 to 500, so we take it to be
{50, 100, . . . , 500} and use cv-splitting to decide the best one.

The average classification (testing) error rates of all 6 methods across 25 different data
splitting are tabulated in Table 2. The standard deviations of the error rates are relatively
large, due to the large variability in the data splitting. For more informative comparison,
we present the number of testing errors associated with all 25 data splittings in Figure 3
(rats data) and Figure 4 (liver data), respectively. In these figures, the 25 data splittings
are arranged in a way so that the corresponding errors of HCT-PCS are increasing from
left to right.
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Table 2: Comparison of classification errors (average for 25 data-splitting). The error rates
and their standard deviations (in brackets) are reported in percentage (e.g., 5.7 means
5.7%).

Data HCT-PCS HCT-FoBa HCT-glasso nHCT SVM RF

Rats 5.7(3.05) 8.6(3.36) 20.3 (5.10) 15.1(6.49) 6.9(4.02) 13.5(3.99)

Liver 4.2(3.60) 10.0(4.64) 20.2 (6.38) 10.5(4.30) 3.5(2.72) 4.3(3.00)
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Figure 3: Comparison of number of testing errors for the rats data. Left: errors (y-axis)
of 6 methods for 25 data splittings (x-axis; arranged in a way so that the errors of HCT-
PCS increase from left to right). Right: the same information but only with HCT-PCS,
HCT-FoBa and SVM (for a better view).

From the left panel of Figure 3, we see that for the rats data, HCT-glasso, nHCT and
RF are all above HCT-PCS. To better show the difference among HCT-PCS, HCT-FoBa
and SVM, we further plot the number of testing errors in the right panel. Figure 4 provides
the similar information for liver data, with HCT-PCS, SVM and RF being highlighted in
the right panel. The results suggest: for rats data, HCT-PCS outperforms all methods with
the average errors, including SVM and RF; for liver data, HCT-PCS is slightly inferior to
SVM, but still outperforms all other methods; for both data sets, HCT-PCS significantly
outperforms all other HCT-based methods (nHCT, HCT-glasso, HCT-FoBa), which further
suggests PCS gives a better estimate for the precision matrix than the glasso and FoBa.

The computation time is hard to compare, as it depends on many factors such as the
data-splitting in use, how professional the code is written, and how capable the user handles
the computation. Therefore, the complexity comparison summarized in Table 3 can only be
viewed as a qualitative one (for the complexity of the glasso, see [31]). We run all methods
using Matlab, with an exception of FoBa, SVM and RF by R, on a workstation with 8
CPU cores and 12GB RAM, and the real time elapsed in computation is recorded upon
one splitting. Note that for HCT-FoBa, the reported computation time accounts for no
cross validation.

It is noteworthy for much larger n (e.g., n = 2000), SVM becomes much slower, showing
a disadvantage of SVM, compared to PCS, FoBa, and the glasso. See Section 3 (simulation
section) for settings with much larger n.

Remark. Both PCS and FoBa use ridge regression, but PCS uses ridge regression on an
as-needed basis (see (1.7)) and FoBa uses conventional ridge regression at each iteration.
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Figure 4: Comparison of number of testing errors for the liver data. Left: errors (y-axis) of
6 methods at 25 data splittings (x-axis; arranged in a way so that the errors of HCT-PCS
increase from left to right). Right: the same information but only with HCT-PCS, SVM
and RF (for a better view).

Table 3: Comparison of computational complexity of all classifiers and running time for rats
and liver data at a single data splitting. Here, n is the number of samples, p is the number
of variables and T is the number of trees used in RF (assuming p ≥ n and L3 ≤ O(n);
computation times are based on 25 cross validations for all but HCT-FoBa and nHT).

HCT-PCS HCT-FoBa HCT-glasso nHCT SVM RF

Complexity O(np2) O(np2) O(p3)–O(p4) O(np log(p)) O(n2p) O(Tnp log(n))

Time (rats) 166.8 min 8.7 min 380 min 0.11 min 7.7 min 21.5 min

Time (liver) 241.0 min 12.9 min 890 min 0.12 min 7.7 min 26.3 min

In Table 4, we compare the classification error rates of PCS and FoBa for the cases of
with (δ = .1) and without ridge regularization (δ = 0). The results suggest a substantial
improvement by using ridge regularization, for both methods. On the other hand, we find
that the classification errors for both methods are relatively insensitive to the choice of δ,
as long as they fall in an appropriate range. In this paper, we choose δ = .1 for all real
data experiments.

Table 4: Comparison of classification errors for HCT-PCS and HCT-FoBa for δ = .1 and
δ = 0. The classification errors and their standard deviations (in the brackets) are reported
in percentage (e.g., 5.7 means 5.7%).

Data HCT-PCS (δ = .1) HCT-PCS (δ = 0) HCT-FoBa (δ = .1) HCT-FoBa (δ = 0)

Rats 5.7(3.05) 13.2(3.57) 8.6(3.36) 13.7(5.10)

Liver 4.2(3.60) 12.5(6.08) 10.0(4.64) 15.1(7.48)

1.5 Comparison with glasso over the estimated Ω

That HCT-PCS significantly outperforms HCT-glasso and HCT-FoBa in classification er-
rors suggests that PCS gives ‘better’ estimations of Ω than the other two methods. We take
a look at the estimated precision matrices by the glasso, PCS, and FoBa on the two mi-
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croarray data. Figure 5 presents the histograms of the number of nonzeros of different rows
in Ω̂ for the three different methods. For all histograms, we use the whole data set (either
the rats or the liver data), without data splitting. For PCS, we use (q, δ, L) = (0.2, 0.1, 30).
For the glasso, we use λ = 0.8. For FoBa, we use (δ, L) = (0.1, 30) so that it is consis-
tent with PCS. The histograms look similar when we change the tuning parameters in the
appropriate range. Figure 5 reveals very different patterns of the estimated Ω.

• For the majority of the rows, the glasso estimate is 0 in all off-diagnal entries, but for
some of the rows, the glasso estimate can have several hundreds of nonzeros.

• For either of the PCS and the FoBa estimates, the number of nonzeros in each row
can be as large as a few ten’s, but no smaller than 10.

While the ground truth is unknown, it seems that the estimates by PCS or FoBa make
more sense: it is hard to believe that the off-diagonals of Ω are all 0 for most of the rows;
it is more likely that in most of the rows, we have at least a few nonzeros. Partially, this
explains why the classification errors of the glasso is the largest among the three methods.
It also explains why the naive HCT has unsatisfactory behaviors (recall that in nHCT, we
pretend that Ω is diagonal).
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Figure 5: Panels 1-3: histograms of the number of nonzeros in different rows of Ω̂ for the
rats data by PCS, FoBa, and the glasso (y-axis in Panel 3 is log(#of nonzeros)). For PCS
and FoBa, the number of nonzeros range from 33 to 108 and from 11 to 176, respectively.
For the glasso, in 7550 out of 8491 rows, all off-diagonals are estimated as 0 (maximal
number of nonzeros in a row is 83). Panels 4-6: similar but are for the liver data.

1.6 Comparison with FoBa over the estimated Ω

Forward and Backward regression (FoBa) is a classical approach to variable selection, which
is proposed by Draper and Smith as early as 1960’s [33]. FoBa can be viewed as an extension
of the classical Forward Selection (FS) procedure [33], where the difference is that FoBa
allows for backward elimination, but FS does not. FS and FoBa have been studied carefully
recently (e.g., [14, 39, 40]).

To the best of our knowledge, FS and FoBa have not yet been proposed as an approach
to estimating the precision matrix, but we can always develop them into such an approach
as follows. Fix 1 ≤ i ≤ p. Recall that X ′ = [x1, x2, . . . , xp] and that Ω = [ω1, ω2, . . . , ωp].
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It is known that we can always associate each row of Ω with a linear regression model as
follows [7]:

xi = (ωi(i))
−1
∑

j 6=i
ωi(j)xj + zi, zi ∼ N(0, σ2 · In), (1.15)

where σ2 = 1/ωi(i) and zi = xi− (ωi(i))
−1
∑

j 6=i ωi(j)xj is independent of {xj : j 6= i}. We
can then apply either FS or FoBa to (1.15) for each 1 ≤ i ≤ p, and symmetrize the whole
matrix in the same way as the last step of PCS; the resultant procedure is an approach
to estimating Ω. A small gap here is that, for each 1 ≤ i ≤ p, FS and FoBa attempt to
estimate the vector (ωi(i))

−1ωi, not ωi itself (as we desire).
This is closely related to PCS, but differs in several important ways. Since FoBa is

viewed as an improvement over FS, we only compare PCS with FoBa.
The most obvious difference between PCS and FoBa is that, in their ‘forward selection’

steps, the objective function for recruiting new nodes are different. PCS uses the partial
correlation (1.8), and FoBa uses the correlation between xj and the residuals. The following
lemma elaborates two objective functions and is proved in Section 5.

Lemma 1.2 For i, j, and S ⊂ {1, 2, . . . , p} such that i 6= j, i, j /∈ S, and |S| ≤ n− 2, the
objective functions in the ‘forward selection’ steps of PCS and FoBa associated with δ = 0
are well-defined with probability 1, equalling

ρ̂ij(S) = x′i(I −HS)xj/
√
x′i(I −HS)xi · x′j(I −HS)xj , (1.16)

and
ρ̂∗ij(S) = x′i(I −HS)xj/‖xj‖, (1.17)

respectively, where HS is the projection from Rn to the subspace {xk : k ∈ S}.
PCS and FoBa are also different in philosophy. It is well-known that FS tends to select

“false variables”. For remedy, FoBa proposes “immediate backward elimination”: in each
step, FoBa is allowed to add or remove one or more variables, in hopes that whenever
we falsely select one or more variables, we can remove them immediately. PCS takes a
very different strategy. We recognize that, from a practical perspective, the signals are
frequently “rare and weak” [13, 28], meaning that Ω is sparse and that nonzero entries are
relatively small individually. In such cases, “immediate backward elimination” is impossible
and we must tolerate many “false discoveries”. Motivated by this, PCS employs a Screen
and Clean methodology, which attempts to include all the true nodes while keeping the
“false discoveries” as few as possible. Our results on the two microarray data sets support
the “rare and weak” viewpoint: for example, in Figure 5, the symmetrization step has a
significant impact on the histograms of PCS and FoBa for both data sets, which implies
that “false discoveries” are unavoidable.

Though it can be viewed as a method for variable selection, Screen and Clean method has
a strong root in the literature of large-scale multiple testing and in genetics and genomics,
where the “rare and weak” viewpoint is especially appropriate. In rare and weak settings,
Screen and Clean is more appropriate than other variable selection approaches whose focus
is frequently on rare and strong signals. See [13, 28] for more discussions.

In practice, the above differences may lead to noticeable differences between the esti-
mates of Ω by PCS and FoBa. To illustrate, we consider the estimation of row #3823 of Ω
associated with data splitting #25 of the rats data, and compare how the forward selection
steps of PCS (δ = 0.1) and FoBa (δ = 0.1) are different from each other. The cleaning step
of PCS and the backward selection of FoBa are omitted for comparison.
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• PCS (δ = 0.1). In the Screen step, PCS stops at step 26, and the 26 recruited nodes
are: 3823, 8199, 1466, 4164, 6674, 1087, 931, 2419, 5016, 679, 6726, 1059, 5410, 8116,
6183, 1242, 4348, 6492, 147, 5174, 4561, 4096, 2763, 5894, 8140, and 6532.

• FoBa (δ = 0.1). We run FoBa for 31 steps. It turns out that 4 of the steps are
backward steps (one node deleted in each). The 27 nodes FoBa recruits in each of the
forward steps are: 3823, 8199, 4144, 1628, 5707, 931, 1532, 5410, 3620, 2700, 5188,
7933, 2729, 8048, 1212, 2197, 1087, 2337, 5665, 6556, 1962, 8417, 7567, 4164, 1312,
6726, and 4436.

Figure 6 displays the two sets of selected nodes (left panel) by PCS and FoBa and their
corresponding coefficients (right panel) given in (1.16) and (1.17), respectively. We see
that the first two recruited nodes by PCS and FoBa are the same, corresponding to large
coefficients, either in (1.16) and (1.17). All other nodes recruited by PCS and FoBa are
different, corresponding to comparably smaller coefficients (either in (1.16) or (1.17)). This
suggests a “rare and weak” setting where PCS and FoBa differ significantly from each other.
Also, this provides an interesting angle of explaining why PCS outperforms FoBa in terms
of classification error.
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Figure 6: Left: the set of nodes recruited by PCS (solid) and FoBa (dashed) in the forward
steps (PCS: 26 nodes; FoBa: 27 nodes). Right: objective functions (PCS: (1.16); FoBa:
(1.17)) corresponding to the nodes on the left. PCS and FoBa only share the first 2 nodes
that have the largest (in magnitude) objective functions for PCS and FoBa, respectively.

1.7 Summary and contributions

While it is widely accepted that estimating the precision matrices is an interesting problem
for high dimensional data analysis, little attention has been paid to either the problem of
how to develop methods that are practically feasible for very large precision matrices or
the problem of how to integrate the estimated precision matrices for statistical inference.
Motivated by the immediate need for the analysis of microarray data, the main goal of this
paper is to find an approach that is executable in real time and also useful in improving
statistical inference.

The contribution of this paper is three-fold. First, we propose PCS as a new approach
to estimating large sparse precision matrices. PCS estimates the precision matrix row by
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row. To estimate each row, we develop a stage-wise algorithm which greedily recruits one
node at a time using the empirical partial correlations. PCS is computational efficient and
modest in memory use. These two features enable PCS to execute accurate estimation of
the precession matrices with real-time computing, and also open doors to accommodating
much larger precision matrices (e.g., p ≥ 50K).

Second, we combine PCS with HCT [20] for a new classifier HCT-PCS and apply it
successfully to two microarray data sets. HCT-PCS is competitive in classification errors,
compared to the more popular classifiers of SVM and RF. HCT-PCS is tuning free (given
an estimate of Ω), enjoys theoretical optimality [20], and fully exploits the sparsity in both
the feature vectors and the precision matrix. SVM and RF, however, can be unstable with
regard to tuning. For example, the tuning parameter in SVM largely relies on training
data and structure of the kernel function employed to transform the feature space; this
instability of regularization could end up with non-sparse support vectors [4, 10]. SVM
and RF are found faster than HCT-PCS in Section 1, but such an advantage is much less
prominent for larger n.

HCT-PCS gives more satisfactory classification results than HCT-glasso, suggesting that
PCS gives ‘better’ or ‘more useful’ estimates for the precision matrix. The glasso is relatively
slow in computation when p is as large as 10K, especially when the tuning parameter is
small. For either of two microarray data sets, the glasso estimates are undesirable: in
a majority of rows of Ω̂, all off-diagonals are 0. HCT-PCS also gives more satisfactory
classification results than HCT-FoBa, and two main differences between PCS and FoBa are
(a) PCS and FoBa use very different objective functions in screening, (b) FoBa proposes to
remove ‘falsely selected nodes’ by immediate backward deletion, while PCS adopts a “rare
and weak signal” view point, and proposes to keep all ‘falsely selected nodes’ until the end
the Screen step and then remove them in the Clean step.

Last, we justify carefully in Section 2 why and when PCS and HCT-PCS work using
a general theoretical framework. Also, in Section 2.5, we further compare PCS with other
methods theoretically. Our theoretical studies shed interesting new light on the behaviors
of stage-wise algorithms.

1.8 Content and notations

The remaining sections are arranged as follows. Section 2 presents the main theoretical
results. Section 3 presents the simulations. Section 4 contains discussions and extensions.
Section 5 contains the proofs of lemmas and theorems.

In this paper, for any vector a, ‖a‖ denotes the vector `2-norm. For any matrix A, ‖A‖
denotes the matrix spectral norm, ‖A‖1 denotes the matrix `1-norm and ‖A‖max denotes the
entry-wise max norm. λmax(A) and λmin(A) denote the maximum and minimum eigenvalues
of A, respectively. For any matrix B ∈ Rn,p and two subsets I,J , BI,J is the same as in
Definition 1.1.

2 Main results

For simplicity, we only study the version of PCS without ridge regularization, and drop the
superscript “(0)” by writing

ρ̂ij(S) = ρ̂
(0)
ij (S), for any subset S, random or non-random.
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We simply set L = p, so PCS has only one tuning parameter q. In this section, C > 0 is a
generic constant which may vary from occasion to occasion.

Theoretically, to characterize the behavior of PCS, there are two major components:
how PCS behaves in the idealized case where we have access to ‘small-size’ principal sub-
matrices of Σ (but not any of the ‘large-size’ sub-matrices), and how to control the stochastic
errors. Below, after some necessary notations, we discuss two components in Sections 2.1-
2.2. The main results are presented in the end of Section 2.2.

For any positive definite matrix A, recall that λmin(A) and λmax(A) denote the smallest
and largest eigenvalues, respectively. For any 1 ≤ k ≤ p, define

µ
(1)
k (A) = min

{|S|=k}
{λmin(AS,S)}, µ

(2)
k (A) = max

{|S|=k}
{λmax(AS,S)}, (2.18)

where S is a subset of {1, 2, . . . , p}. Also, for an integer 1 ≤ K ≤ p, we say that a matrix
A ∈ Rp,p is K-sparse if each row of A has no more than K nonzero off-diagonals. Let Mp

be the set of all p× p positive definite matrices, let 0 < c0 ≤ 1 be a fixed constant, and let

N = N(p, n) = the smallest integer that exceeds n/ log(p). (2.19)

We consider the following set of Σ (as before, Ω and Σ are tied to each other by Ω = Σ−1)
denoted by M∗p(s, c0) =M∗p(s, c0;n):

M∗p(s, c0) = {Σ ∈Mp: Ω is s-sparse, µ
(1)
N (Σ) ≥ c0, µ

(2)
N (Σ) ≤ c−1

0 }. (2.20)

We use p as the driving asymptotic parameter, so n→∞ as p→∞. We allow s (and
other parameters below) to depend on p. However, c0 is a constant not depending on p.
Recall that

S(i)(Ω) = {1 ≤ j ≤ p : j 6= i,Ω(i, j) 6= 0}.
Introduce the minimum signal strength by

τ∗p = τ∗p (Σ) = min
1≤i≤p

τp(i), where τp(i) = τp(i; Σ) = min
j∈S(i)(Ω)

{|Ω(i, j)|}.

We need the following terminology (whenever there is no confusion, we may drop the
part “in row i”).

Definition 2.1 Fix 1 ≤ i ≤ p. We call j a signal node (in row i) if j 6= i and Ω(i, j) 6= 0,
and a noise node (in row i) if j 6= i and Ω(i, j) = 0.

The so-called Lagging Time and Energy At Large (EAL) play a key role in characterizing
PCS. Suppose we apply PCS to estimate the i-th row of Ω.

Denote the k-th Selecting Time for row i by m̂(i)(k) = m̂(i)(k;X,Σ), 1 ≤ k ≤ |S(i)(Ω)|;
this is the index of the stage at which we select a signal node for the k-th time. By default,
m̂(0) = m̂(0;X,Σ) = 0. The k-th Lagging Time for row i is then

ˆ̀(i)(k) = ˆ̀(i)(k;X,Σ) = m̂(i)(k)− m̂(i)(k − 1)− 1, 1 ≤ k ≤ |S(i)(Ω)|.

This is the number of noise nodes PCS recruits between the steps we recruit the (k− 1)-th
and the k-th signal nodes. Additionally, suppose we are now at the beginning of stage m

in the Screen step of PCS, and let Ŝ
(i)
m−1 be the set of all recruited nodes as before. We say
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a signal node is “At Large” if we have not yet recruited it. The Energy At Large at stage
m (for row i) is

Ê(i)(m) = Ê(i)(m;X,Σ) =
∑

j∈(S(i)(Ω)\Ŝ(i)
m−1)

Ω(i, j)2, 1 ≤ m ≤ p− 1.

In the idealized case when we apply PCS to Σ, Selecting Time, Lagging Time and EAL
reduce to their non-stochastic counterparts, denoted correspondingly by

m(i)(k) = m(i)(k; Σ), `(i)(k) = `(i)(k; Σ), and E(i)(m) = E(i)(m; Σ).

Whenever there is no confusion, we may drop the superscript “(i)” for short.

2.1 Behavior of PCS in the idealized case

Consider the idealized case where we have access to all ‘small-size’ principal sub-matrices
of Σ. We wish to investigate how the Screen step of PCS behaves.

Let ρij(S) be the partial correlation in (1.6). In this idealized case, recall that PCS runs

as follows. Initialize with S
(i)
0 = ∅. Suppose the algorithm has run (m − 1) steps and has

not yet stopped. Let S
(i)
m−1 = {j1, j2, . . . , jm−1} be all the nodes recruited (in that order)

by far. At stage m, if ρij(S
(i)
m−1) 6= 0 for some j /∈ ({i} ∪ S(i)

m−1), let j = jm be the index

with the largest value of |ρij(S(i)
m−1)|, and update with S

(i)
m = S

(i)
m−1 ∪ {jm}. Otherwise,

terminate and let S
(i)
∗ = S

(i)
m−1.

The key of the analysis lies in the interesting connection between partial correlations
and EAL. The following two lemmas are proved in Section 5.

Lemma 2.1 Fix p, 0 < c0 ≤ 1, 1 ≤ i, s ≤ p and Σ ∈M∗p(s, c0). For each 1 ≤ k ≤ |S(i)(Ω)|,
∑

m(i)(k−1)<m<m(i)(k)

ρ2
ijm(S

(i)
m−1) ≤

[
µ

(2)

m(i)(k)+s−k(Σ)
]2 ∑

j∈
(
S(i)(Ω)\S(i)

m(i)(k)−1

)Ω(i, j)2.

Lemma 2.2 Fix p, 0 < c0 < 1, 1 ≤ i, s ≤ p and Σ ∈M∗p(s, c0). For each m ≥ 1,

∑

j∈(S(i)(Ω)\S(i)
m−1)

ρ2
ij(S

(i)
m−1) ≥ [µ

(1)
m+s(Σ)]3

µ
(2)
m+s(Σ)

∑

j∈(S(i)(Ω)\S(i)
m−1)

Ω(i, j)2.

Recall that Σ ∈ M∗p(s, c0), so µ
(1)
m+s(Σ) ≥ C and µ

(2)
m+s(Σ) ≤ C. Fix 1 ≤ k ≤ |S(i)(Ω)|.

Suppose we have recruited (k − 1) signals and (|S(i)(Ω)| − k + 1) ones are at large. The
implications of these lemmas are:

• The sum of squares of all such partial correlations associated with noise nodes we
recruit between the (k−1)-th and the k-th Selecting Times is smaller than a constant
C times the EAL associated with the signal nodes that are currently At Large.

• PCS is a greedy algorithm. For each noise node we recruit between the (k − 1)-th
and the k-th Selecting Times, the square of the associated partial correlation is no
smaller than that of one of the signal nodes At Large, which in turn is greater than
C(|S(i)(Ω)|−k+1)−1 times the EAL associated with all signal nodes that are currently
At Large.
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• As a result, the k-th Lagging Time satisfies `(i)(k; Σ) ≤ C(|S(i)(Ω)| − k+ 1) ≤ C(s−
k+1), and PCS must have recruited all true signal nodes in no more than C

∑s
k=1(s−

k + 1) ≤ Cs2 steps, at which point, all partial correlations are 0 and the algorithm
stops immediately.

The above arguments are made precise in the following theorem, the proof of which can
be found in Section 5.

Theorem 2.1 Suppose Σ ∈ M∗p(s, c0), and s2 log(p) = o(n). In the idealized case that we
can access all principal sub-matrices of Σ with size no more than N(p, n) defined in (2.19),
for each row 1 ≤ i ≤ p, the following holds:

• At each stage m before all signal nodes are recruited, there exists j ∈ (S(i)(Ω)\S(i)
m−1)

such that |ρij(S(i)
m−1)| ≥ Cτ∗p , and PCS keeps running.

• PCS takes no more than Cs2 steps to terminate.

• When PCS terminates, ρij(S
(i)
∗ ) = 0 for all j /∈ ({i} ∪ S(i)

∗ ).

2.2 Stochastic fluctuations, consistency of PCS

In this section, we aim to extend Theorem 2.1 to the real case where we have access to
small principal sub-matrices of Σ̂ instead of Σ. Recall that in the Screen step of PCS, we
use the threshold

t∗q = t∗q(p, n) = q ·
√

2 log(p)/n. (2.21)

We hope that there is a q > 0 such that except for a negligible probability,

• The algorithm stops at no more than Cs2 steps.

• Suppose we are at stage m of the Screen step of PCS. If the algorithm has not yet

recruited all the signal nodes by stage (m− 1), then there is a j /∈ ({i} ∪ Ŝ(i)
m−1) such

that |ρ̂ij(Ŝ(i)
m−1)| ≥ t∗q(p, n). If the algorithm has recruited all signal nodes by stage

(m− 1), then for all j /∈ ({i} ∪ Ŝ(i)
m−1), |ρ̂ij(Ŝ(i)

m−1)| < t∗q(p, n).

Such a ‘phase transition’ effect ensures PCS to run till all signal nodes are recruited.
The key is to characterize the stochastic fluctuations. Under mild conditions, we can

show that except for a probability of o(p−3), there is a constant c1 that only depends on c0

in (2.20) such that for each m ≥ 1,

max
j /∈({i}∪Ŝ(i)

m−1)

|ρ̂ij(Ŝ(i)
m−1)− ρij(Ŝ(i)

m−1)| ≤ c1s
√

2 log(p)/n. (2.22)

We need the minimum signal strength to be large enough to counter the effect of stochastic
fluctuations. In light of this, we assume

τ∗p /[s
√

log(p)/n]→∞, (2.23)

and assume that
2c1s

√
2 log(p)/n ≤ t∗q(p, n) ≤ (1/2)c2

0τ
∗
p , (2.24)

where c0 is as in (2.20). The constants 2 and 1/2 are chose for convenience and can be
replaced by any constants a > 1 and b ∈ (0, 1), respectively. When (2.23)-(2.24) hold, we
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we are able to derive results similar to those in Lemmas 2.1-2.2, which can then be used
to derive the ‘phase transitional’ phenomenon aforementioned. Roughly saying, with high
probability: if all signal nodes have not yet been recruited by stage (m−1), then the partial
correlation associated with the next node to be recruited is at least Cτ∗p − c1s

√
2 log(p)/n

which is much larger than the threshold t∗q and so PCS continues to run. On the other hand,
once all signal nodes are recruited, the partial correlation associated with all remaining
nodes fall below c1s

√
2 log(p)/n which is no larger than t∗q/2, and PCS stops immediately.

The above arguments are made precise in the following theorem, which is the main
result of this paper and proved in Section 5.

Theorem 2.2 Fix 1 ≤ i ≤ p and apply the Screen step of PCS to row i. Suppose
Σ ∈ M∗p(s, c0), s2 log(p) = o(n), the minimum signal strength τ∗p satisfies (2.23), and
the threshold t∗q(p, n) satisfies (2.24) with the constant c1 properly large. With probability
at least 1− o(p−3):

• At each stage m before all signal nodes are recruited, there exists j ∈ (S(i)(Ω)\ Ŝ(i)
m−1)

such that |ρ̂ij(Ŝ(i)
m−1)| & c2

0τ
∗
p , and PCS keeps running.

• PCS takes no more than Cs2 steps to terminate.

• Once PCS recruits the last signal node, it stops immediately, at which point, |ρ̂ij(Ŝ(i)
∗ )| ≤

c1s
√

2 log(p)/n for all j /∈ ({i} ∪ Ŝ(i)
∗ ).

An explicit formula for c1 can be worked out but is rather tedious; see the proofs of The-
orems 2.2-2.3 for details. The first two claims of the theorem are still valid if t∗q(p, n) �
s
√

2 log(p)/n but t∗q(p, n) ≤ c1s
√

2 log(p)/n. In such a case, the difference is that, PCS may
continue to run for finitely many steps (without immediate termination) after all signals
are recruited.

Remark. We can slightly relax the condition (2.23) by allowing τ∗p ∼ r · s
√

log(p)/n
for some constant r > 0. In this case, there exists a constant r∗ that only depends on c0

such that whenever r > r∗, we can find constants c = c(c0, r) and c = c(c0, r), so that
Theorem 2.2 continues to hold when c ≤ q ≤ c. Furthermore, if we only want the first two
claims of Theorem 2.2 to hold, we do not need the lower bound c for q.

Theorem 2.2 discusses the Screen step of the PCS for individual rows. The following
theorem characterizes properties of the estimator Ω̂pcs = Ω̂pcs(t∗q , X; p, n), and is proved in
Section 5.

Theorem 2.3 Under conditions of Theorem 2.2, with probability at least 1− o(p−2), each
row of Ω̂pcs has the same support as the corresponding row of Ω, and ‖Ω̂pcs − Ω‖max ≤
C
√

log (p)/n.

While Theorem 2.3 is for ‖Ω̂pcs−Ω‖max, the results can be extended to accommodate other
types of matrix norms (e.g., ‖Ω̂pcs − Ω‖1).

Remark. In Theorems 2.1-2.2, we use the lower bound (s − k)(τ∗p )2 for the EAL
associated with signals that are At Large between the (k − 1)-th and k-th Selecting Time.
Such a bound is not tight, especially when a few smallest nonzero entries are much smaller
than other nonzero entries (in magnitude). Here is a better bound. Suppose row i has
s off-diagonal nonzeros, denoted as η1, · · · , ηs. We sort η2

j in the ascending order: η2
(1) ≤

η2
(2) ≤ . . . ≤ η2

(s). Then, the EAL is lower bounded by
∑s−k

`=1 η
2
(`). Such a bound can help

relax the condition (2.23) for Theorem 2.2, especially when our goal is not to show exact
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support recovery, but to control the number of signal nodes not recruited in the Screen
step.

Remark. We control the stochastic fluctuations (2.22) by showing that for each 1 ≤
i ≤ p and m� N , with probability at least 1− o(p−3),

‖Σ̂W,W − ΣW,W ‖ ≤ C
√
m log(p)/n, where W = {i} ∪ Ŝ(i)

m−1. (2.25)

If we replace Ŝ
(i)
m−1 by a fixed subset S with |S| = m − 1, then by basics in multivariate

analysis, the factor
√
m on the right hand side can be removed. In general, if we can find

an upper bound for the number of possible realizations of Ŝ
(i)
m−1, say, K(p,m), then we can

replace
√
m by

√
log(K(p,m)). In (2.25), K(p,m) =

(
p
m

)
which is the most conservative

bound. How to find a tighter bound for K(p,m) is a difficult problem [1]. We conjecture
that in a broad situation, a better bound is possible so (2.25) can be much improved.

At the same time, if we are willing to impose further conditions on Σ, then such a
tighter bound is possible; we investigate this in Section 2.3.

2.3 Consistency of PCS for much weaker signals

In the above results, in order for PCS to be successful, we need τ∗p � s
√

log(p)/n. We wish
to relax this condition by considering

τ∗p ≥ r ·
√

2 log(p)/n, where r > 0 is a fixed constant. (2.26)

We show PCS works in such cases if we put additional conditions on Σ. Let

κ∗ = κ∗(Σ) = max
1≤i≤p

κ(i,Σ)

γ∗ = γ∗(Σ) = min
1≤i≤p

γ(i,Σ),

where
κ(i; Σ) = max

j /∈{i}∪S(i)(Ω)
‖(ΣS(i)(Ω),S(i)(Ω))−1ΣS(i)(Ω),{j}‖1

and
γ(i; Σ) = min

j /∈({i}∪S(i)(Ω))

{
[first diagonal of (Σ{j}∪S

(i)(Ω),{j}∪S(i)(Ω))−1]1/2
}

;

here, we always assume j as the first index listed in {j} ∪ S(i)(Ω). The quantity κ∗ is
motivated by a similar quantity in [39] for linear regressions, and γ∗ is a normalizing factor
which comes from the definition of partial correlations. Fix a constant δ ∈ (0, 1). In this
sub-section, we assume

κ∗(Σ)/γ∗(Σ) ≤ 1− δ, Σ(i, i) = 1, 1 ≤ i ≤ p; (2.27)

the second assumption is only for simplicity in presentation. Introduce

θ∗ = θ∗(Σ) = min
1≤i≤p

θ(i,Σ),

where
θ(i,Σ) = λmin(ΣS(i)(Ω),S(i)(Ω)).

The following theorem is proved in Section 5.
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Theorem 2.4 Fix 1 ≤ i ≤ p and apply the Screen step of PCS to row i. Suppose Σ ∈
M∗p(s, c0), (2.27) holds for some δ ∈ (0, 1), s2 log(p) = o(n), the minimum signal strength

τ∗p satisfies (2.26) with r ≥
√

5Ω(i, i)[θ∗(Σ)]−1 max
{√

θ∗(Σ) + 2δ−1, 2
√

Ω(i, i)
}

, and the

threshold t∗q(p, n) satisfies
√

5 < q ≤ θ∗(Σ)r/Ω(i, i). With probability at least 1− o(p−3),

• Before all signal nodes are recruited, PCS keeps running and recruits a signal node
at each step.

• PCS takes exactly |S(i)(Ω)| steps to terminate.

• When PCS stops, |ρ̂ij(Ŝ(i)
∗ )| ≤

√
10 log(p)/n for all j /∈ ({i} ∪ Ŝ(i)

∗ ).

By Theorem 2.4, the claim of Theorem 2.3 continues to hold, the proof of which is straight-
forward so we omit it. In Theorem, 2.4, we require r ≥

√
5Ω(i, i)[θ∗(Σ)]−1(

√
θ∗(Σ) + 2δ−1)

and r ≥ 2
√

5Ω(i, i)[θ∗(Σ)]−1
√

Ω(i, i)
}

. The first condition ensures that PCS always re-
cruits signal nodes before termination. The second one ensures the existence of a threshold
by which PCS terminates immediately once all signals are recruited.

2.4 Optimal classification phase diagram by HCT-PCS

Combe back to model (1.11) where X̃i ∼ N(µ±,Σ), Ω = Σ−1, if Yi = ±1, respectively.
In this model, the optimality of HCT was justified carefully in [12, 20] in theory. At the
heart of the theoretical framework is the notion of classification phase diagram. Call the
two-dimensional space calibrating the signal sparsity (fraction of nonzeros in the contrast
mean vector (µ+−µ−)) and signal strength (minimum magnitudes of the nonzero contrast
mean entries) the phase space. The phase diagram is a partition of the phase space into
three sub-regions, where successful classification is relatively easy, possible but relatively
hard, and impossible simply because the signals are too rare and weak.

We say a trained classifier achieves the optimal phase diagram if it partitions the phase
space in exactly the same way as the optimal classifier does. It was shown in [20, Theorm
1.1-1.3] that HCT achieves the optimal phase diagram (with some additional regularity
conditions) provided that

• Ω is sp-sparse, where sp ≤ Lp.

• Ω is known, or can be estimated by Ω̂ such that ‖Ω̂− Ω‖max ≤ Lp/
√
n.

Here, Lp > 0 is a generic multi-log(p) term such that for any constant c > 0, Lpp
−c → 0

and Lpp
c →∞.

We now consider HCT-PCS. By results in Sections 2.2-2.3, we have shown

‖Ω̂pcs − Ω‖max ≤ C
√

log(p)/n. (2.28)

Therefore, HCT-PCS achieves the optimal phase diagrams in classification, provided that
sp ≤ Lp. See [20] for details.

Note that the condition on sp is relatively strict here. For much larger sp (e.g., sp = pϑ

for some constant 0 < ϑ < 1), it remains unknown which procedures achieve the optimal
phase diagram, even when Ω is known.
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2.5 Comparisons with other methods

There are some existing theoretical results on exact support recovery of the precision matrix,
including but are not limited to those on the glasso [32], CLIME [9], and scaled-lasso [35].

For exact support recovery, the glasso requires the so-called “Incoherent Conditions”
(IC) [32]. The IC condition is relatively restrictive, which can be illustrated by the following
simple example. Suppose p is divisible by 3, and Ω is block-wise diagonal where each
diagonal block is a symmetric matrix D ∈ R3,3 satisfying D(1, 1) = D(2, 2) = 1, D(1, 2) =
0, D(1, 3) = a,D(2, 3) = b, and D(3, 3) = c, where c2 > a2 + b2 so D is positive definite. In
this example, the IC condition imposes a restriction |a|+ |b|+ 2|ab| < 1.

The conditions required for CLIME to achieve the exact support recovery is given in
[9], which in our notations can be roughly translated into that the minimum off-diagonals
of Ω are no smaller than C‖Ω‖1/

√
n. Such a condition overlaps with ours in many cases.

It also covers some cases we do not cover, but the other way around is also true. As for
scaled-lasso, note that the primary interest in [35] is on the convergence in terms of the
matrix spectral norm, where conditions for exact support recovery are not given.

Note that the largest advantage of PCS is that, it allows for real-time computing for
very large matrices, and has nice results in real data analysis.

The method in [5] and FoBa [39, 40] are also related. However, the main results of [5]
is on the case where Σ is sparse. Since the primary interest here is on the case where Ω is
sparse, their results do not directly apply. The results in [39, 40] are on variable selection,
and have not yet been adapted to precision matrix estimation. Recall that in Section 1.6,
we have already carefully compared PCS with FoBa, from the perspective of real data
applications: PCS is different from FoBa in philosophy, method and implementation, and
yields much better classification results.

The results (numerical and theoretical) presented in this paper suggest that PCS is an
interesting procedure and is worthy of future exploration. In particular, we believe that,
with some technical advancements in proofs, the conditions required for the success of PCS
can be largely weakened.

3 Simulations

We conducted simulation studies under various data set configurations, to assess the behav-
ior of PCS in estimating the precision matrix and its performance in classification. The first
experiment consists of three sub-experiments, where we compare PCS with other methods
including the glasso and FoBa in estimating the precision matrix. In the second exper-
iment, we focus on classification and compare HCT-PCS with other classifiers including
HCT-Foba, HCT-glasso, nHT, SVM and RF.

3.1 Experiment 1 (precision matrix estimation)

Experiment 1 consists of three sub-experiments, 1a–1c. In each sub-experiment, we generate

samples Xi
iid∼ (0,Ω−1), i = 1, 2, . . . , n, where Ω ∈ Rp,p, for 10 repetitions. For any Ω̂,

an estimate of Ω, we measure the performance by the average errors across 10 different
repetitions. We use four different error measures: spectrum norm, Frobenius norm, and
the matrix `1-norm of (Ω̂− Ω), and the matrix Hamming distance between Ω̂ and Ω. The
spectral norm, Frobenius norm, and the matrix `1-norm are as in textbooks. The matrix
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Hamming distance between Ω̂ and Ω is

Hammp(Ω̂,Ω) =
1

p

∑

1≤i,j≤p
1{sgn(|Ω̂(i, j)|) 6= sgn(|Ω(i, j)|)}, (3.29)

where sgn(x) = 1 if x > 0 and sgn(x) = 0 if x = 0. Alternatively, we can replace the factor
p−1 by 1 or p−2, but the resultant values would be either too large or too small; the current
one is the best for presentations.

In these experiments, matrix singularity is not as extreme as in the microarray data, so
we use PCS and FoBa without the ridge regularization.

For PCS, we take the tuning parameter L to be 15 in experiments 1a–1b for the algo-
rithm generally stops after 10 steps due to the simple structure of Ω. In experiment 1c,
we use L = 30 because Ω is more complex. For tuning parameter q, we test q from 0.5
to 3 with increment of 0.5 in experiment 1a and 1b. We find that for q ≤ 0.5 or q ≥ 2.5,
the errors are higher, while the errors remain similar for 1 ≤ q ≤ 2, so we use q = 1.5. In
experiment 1c, we test q from 0.25 to 2 with increment of 0.25. We find that for q ≤ 0.25
or q ≥ 1.5, the errors are higher than 0.5 ≤ q ≤ 1.25, so we use q = 0.75. For FoBa, we set
L the same as in PCS.

For the glasso, we set the tuning parameter λ as 0.5. To finish all 10 repetitions, it
takes about 10 hours for experiments 1a-1b and more than 24 hours for experiment 1c, and
so we do not consider λ smaller than 0.5.

We now describe Ω in three sub-experiments. For experiments 1a and 1c, we set (p, n) =
(5000, 1000), (2000, 1000), (1000, 500). For experiment 1b, we set (p, n) = (4500, 1000),
(3000, 1000), (1500, 500) so that p is divisible by 3.

Experiment 1a: Ω(i, j) = 1{i = j}+ρ ·1{|i− j| = 1}, ρ = 0.4, 1 ≤ i, j ≤ p. Here, the IC
condition (see Section 2.5) for the glasso holds, but no longer holds if we increase ρ slightly.

Experiment 1b: Ω is a block-wise diagonal matrix, and each diagonal block is a 3 × 3
symmetric matrix A satisfying A(1, 1) = A(2, 2) = A(3, 3) = 1, A(1, 2) = 0, A(1, 3) = 0.5,
and A(2, 3) = 0.7. This matrix Ω is positive definite but does not satisfy the IC condition.

Experiment 1c: We generate Ω as follows. First, we generate a p× p Wigner matrix W
[36] (the symmetric matrix with 0 on all the diagonals and iid Bernoulli(ε) random variables
for entries on the upper triangle; here we take ε = .01). Next, we let Ω∗ = .5W + ϑIp,
where Ip is the p× p identity matrix and ϑ = ϑ(W ) is such that the conditional number of
Ω∗ (the ratio of the maximal and the minimal singular values) is p. Last, we scale Ω∗ to
have unit diagonals and let Ω be the resultant matrix.

Table 5: Estimation errors (with standard deviations in brackets) for Experiment 1a.

Spectrum norm Matrix `1-norm
p n PCS glasso FoBa PCS glasso FoBa

5000 1000 0.27(0.021) 1.19(0.003) 0.78(0.014) 0.34(0.033) 1.23(0.003) 2.45(0.070)
2000 1000 0.26(0.027) 1.18(0.003) 0.70(0.018) 0.34(0.035) 1.23(0.005) 2.18(0.107)
1000 500 0.34(0.033) 1.19(0.003) 1.14(0.025) 0.45(0.051) 1.24(0.004) 3.24(0.174)

Frobenius norm Matrix Hamming distance
p n PCS glasso FoBa PCS glasso FoBa

5000 1000 4.39(0.057) 49.00(0.013) 23.08(0.067) 0.00(0.000) 0.00(0.001) 24.93(0.021)
2000 1000 2.79(0.036) 30.99(0.012) 13.03(0.037) 0.00(0.000) 0.00(0.002) 24.43(0.030)
1000 500 2.83(0.099) 21.91(0.019) 14.89(0.094) 0.00(0.000) 0.04(0.011) 24.12(0.038)

24



Table 6: Estimation errors (with standard deviations in brackets) for Experiment 1b.

Spectrum norm Matrix `1-norm
p n PCS glasso FoBa PCS glasso FoBa

4500 1000 0.30(0.022) 1.23(0.004) 0.73(0.017) 0.36(0.035) 1.49(0.005) 2.13(0.043)
3000 1000 0.29(0.027) 1.22(0.004) 0.70(0.018) 0.35(0.039) 1.49(0.006) 2.01(0.047)
1500 500 0.36(0.018) 1.23(0.003) 1.15(0.022) 0.43(0.028) 1.51(0.006) 3.22(0.239)

Frobenius norm Matrix Hamming distance
p n PCS glasso FoBa PCS glasso FoBa

4500 1000 3.99(0.059) 49.83(0.009) 19.47(0.069) 0.00(0.000) 0.69(0.002) 26.90(0.019)
3000 1000 3.25(0.029) 40.69(0.008) 14.96(0.059) 0.00(0.000) 0.68(0.003) 26.78(0.019)
1500 500 3.30(0.092) 28.76(0.013) 17.95(0.118) 0.00(0.000) 1.47(0.044) 26.58(0.035)

The results for three experiments are summarized in Tables 5, 6, and 7, correspondingly,
in terms of four error measures aforementioned. For experiments 1a–1b, it suggests that
(a) PCS outperforms the glasso and FoBa in all four different error measures, especially in
terms of the Hamming distance, where PCS has 0 Hamming distance in all cases (and thus
exact support recovery of Ω); (b) the glasso and FoBa have similar performance in terms
of the `1-norm and Hamming distance, but the glasso is significantly inferior to FoBa in
terms of the spectral norm and Frobenius norm. For experiment 1c, Table 7 shows that
the glasso is not that competitive to FoBa as in the previous two experiments, while PCS
still has a dominant advantage over the glasso and FoBa when both p and n get larger,
especially in terms of the Hamming distance.

Table 7: Estimation errors (with standard deviations in brackets) for Experiment 1c.

Spectrum norm Matrix `1-norm
p n PCS glasso FoBa PCS glasso FoBa

5000 1000 2.56(0.009) 4.13(0.002) 4.47(0.000) 5.05(0.149) 13.50(0.675) 6.29(0.056)
2000 1000 0.53(0.009) 2.79(0.001) 3.11(0.000) 1.84(0.097) 7.25(0.221) 5.42(0.013)
1000 500 1.00(0.068) 2.13(0.001) 2.41(0.001) 3.25(0.305) 13.27(0.249) 4.11(0.009)

Frobenius norm Matrix Hamming distance
p n PCS glasso FoBa PCS glasso FoBa

5000 1000 35.46(0.068) 55.41(0.025) 72.18(0.004) 35.22(0.103) 69.68(0.668) 55.80(0.037)
2000 1000 10.61(0.054) 33.88(0.020) 43.63(0.003) 5.89(0.067) 34.60(0.295) 25.94(0.077)
1000 500 10.65(0.074) 22.34(0.013) 29.23(0.003) 8.29(0.085) 14.70(0.093) 15.27(0.132)

3.2 Experiment 2 (classification)

In this experiment, we take Ω to be the tri-diagonal matrix as in experiment 1a, calibrated
by the parameter ρ. Also, following [20], we consider the most challenging “rare and weak”
setting where the contrast mean vector µ only has a small fraction of nonzeros and the
nonzeros are individually small. In detail, let νa be the point mass at a. For two numbers
(εp, τp) that may depend on p, we generate the scaled vector

√
nµ from the mixture of two

point masses:
√
nµ(j)

iid∼ (1− εp)ν0 + εpντp .
In this experiment, we take (p, n, ρ, εp, τp) = (5000, 1000, 0.4, 0.1, 3.5). For (µ,Ω) gener-

ated as above, the simulation contains the following main steps:

1. Generate n samples (X̃i, Yi), 1 ≤ i ≤ n, by letting Yi = 1 for i ≤ n/2 and Yi = −1 for
i > n/2, and X̃i ∼ N(Yi · µ,Ω−1).
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2. Split the n samples into training and test sets by following exactly the same procedure
in Section 1.4. The only difference is that we use 10 data splitting and 10 cv-splitting
here.

3. Use the training set to build all classifiers (HCT-PCS, HCT-FoBa, HCT-glasso,
nHCT, SVM and RF), apply them to the test set, and then record the test errors.

Table 8: Comparison of classification errors for Experiment 2 (based on 10 independent
data-splitting). Numbers in each cell are the percentages (e.g., 11.08 means 11.08%)

HCT-PCS HCT-Foba HCT-glasso nHCT SVM RF

average error 11.08 12.11 43.67 32.02 20.03 35.51
‘best’ error 8.73 10.54 37.95 21.99 18.98 31.93

The results are summarized in Table 8 in terms of both the average error across 10
data splitting and the minimum error in 10 data splitting. It suggests that HCT-PCS
outperforms other HC-based classifiers; in particular, HCT-PCS significantly outperforms
nHCT and HCT-glasso. In addition, both SVM and RF are less competitive compared to
HCT-PCS. This is consistent with the theoretical results in [20], where it was shown that
given a sufficiently accurate estimate of Ω, the HCT classifier has the optimal classification
behavior in the “rare and weak” settings associated with the sparse Gaussian graphical
model (1.11).

4 Discussions and extensions

This paper is closely related to areas such as precision matrix estimation, classification, vari-
able selection, and inference on “rare and weak” signals, and has many possible directions
for extensions. Below, we mention some of such possibilities.

The precision matrix is a quantity that is useful in many settings. It can be either the
direct quantity of interest (e.g., genetic regulatory networks), or a quantity that can be
used to improve the results of inferences. Examples include classical methods of Hotelling’s
χ2-test, discriminant analysis, post-selection inference for linear regressions and the recent
work on Innovated Higher Criticism [22]. In these examples, a good estimate of the preci-
sion matrix could largely improve the results of the inferences. The proposed approach is
especially useful for it allows real-time computation for very large precision matrices.

The theoretical results in the paper can be extended in various directions. For example,
in this paper, we assume Ω is strictly sparse in the sense that in each row, most of the
entries are exactly 0. Such an assumption can be largely relaxed. Also, the theoretical
results presented in this paper focus on when it is possible to obtain exact support recovery.
The results are extendable to the cases where we wish to measure the loss by matrix
spectral norm or matrix `2-norm. In particular, we mention that if the ultimate goal is
for classification, it is not necessary to fully recover the support of the precision matrix. A
more interesting problem (but more difficult) is to study how the estimation errors in the
precision matrix affect the classification results.

PCS needs a threshold tuning parameter q (it also uses the ridge parameter δ and a
maximal step size parameter L, which we usually set by (δ, L) = (.1, 30); PCS is relatively
insensitive to the choices of (δ, L)). When we use PCS for classification, we determine q by
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cross validation, which increases the computation costs by many times. The same drawback
applies to other classifiers, such as HCT-FoBa, HCT-glasso, SVM, and RF.

From both a theoretical and practical perspective, we wish to have a trained classifier
that is tuning free. In Donoho and Jin [12], we propose HCT as a tuning free classifier that
enjoys optimality, but unfortunately the method is only applicable to the case where Ω is
known. How to develop a tuning free optimal classifier for the case where Ω is unknown is
a very interesting problem. For reasons of space, we leave to future work.

Intellectually, the idea of HCT classification is closely related to [17, 18, 24], but is
in different ways, especially on the data-driven threshold choice and studies on the phase
diagrams. The work is also closely related to other development on Higher Criticism. See
for example [3, 13, 26, 25, 41].

While the primary interest in this paper is on microarray data, the idea here can be
extended to other types of data (e.g., the SNP data). Modern SNP data sets may have
many more features (e.g., p = 250K) than a typical microarray data set. While the sheer
large size poses great challenges for computation, we must note that in many of such studies
on SNP, the (population) covariance matrix among different SNPs is banded. Such a nice
feature can help to substantially reduce the computational burden. How to extend PCS to
analysis of such data sets is therefore of great interest.

5 Proofs

In this section, we first present some elementary lemmas on basic Random Matrix Theory
in Section 5.1, and then give the proofs for Lemmas 1.2, 2.1-2.2 and Theorem 2.1-2.4. The
proof of Lemma 1.1 is elementary so we omit it. Throughout this section, C > 0 denotes a
generic positive constant the value of which may vary from occasion to occasion.

5.1 Upper bound for stochastic errors

We present some results about controlling the stochastic terms in (Σ̂− Σ). The key is the
following lemma, which is the direct results of [36, Remark 5.40].

Lemma 5.1 Fix p ≥ 1 and Σ ∈ Rp,p which is positive definite. Let A be an n × k ran-
dom matrix, where each row of A is an independent copy of N(0,Σ). There are universal
constants c̃, c > 0, not depending on Σ, such that for every x ≥ 0, with probability at least
1− 2 exp(−cx2),

‖(1/p)A′A− Σ‖ ≤ max(δ, δ2) · ‖Σ‖, δ = c̃
√
k/n+ x/

√
n.

The following lemma is frequently used in the proofs. We recall that µ
(1)
k (A) and µ

(2)
k (Σ)

are defined in (2.18).

Lemma 5.2 Fix p ≥ 1 and Σ ∈ Rp,p which is positive definite. There exist universal
constants c > 0, not depending on Σ, such that for each fixed 1 ≤ i ≤ p and 1 ≤ k < n,
with probability at least 1− 2p−4,

(a) |Σ̂(i, i)− Σ(i, i)| ≤ c
√

log(p)/n.

(b) max|U |≤k ‖Σ̂U,U − ΣU,U‖ ≤ µ(2)
k (Σ) · c

√
k log(p)/n.

(c) max|U |≤k ‖(Σ̂U,U )−1 − (ΣU,U )−1‖ ≤ [µ
(1)
k (Σ)]−2µ

(2)
k (Σ) · c

√
k log(p)/n.
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Proof. (a) is elementary, (b) follows from Lemma 5.1 with x =
√
c−1 log(pk+4) and the

probability union bound. To show (c), we note that all size-k submatrices are invertible
with probability 1 [15]. Therefore, (c) comes from combining (b) and the equality that
(Σ̂U,U )−1 − (ΣU,U )−1 = (ΣU,U )−1(ΣU,U − Σ̂U,U )(Σ̂U,U )−1. �

By Lemma 5.2, for Σ ∈M∗p, there is a constant C > 0 that depends on c0 such that for
each 1 ≤ k ≤ N(p, n), with probability at least 1−O(p−4),

max
|U |≤k

‖Σ̂U,U − ΣU,U‖ ≤ C
√
k log(p)/n,

and
max
|U |≤k

‖(̂ΣU,U
)−1 − (ΣU,U )−1‖ ≤ C

√
k log(p)/n.

5.2 Proof of Lemma 1.2

The proofs are similar, so we only show the first one (associated with PCS). Fix 1 ≤ i, j ≤ p
and a subset S ⊂ {1, 2, . . . , p} such that i 6= j and i, j /∈ S. Let S̃ = {i, j}∪S be the ordered
set such that i and j are the first and second indices, respectively. Since |S̃| ≤ n, by [15],
the matrix Σ̂S,S is non-singular with probability 1, so ρ̂ij(S) is well-defined.

Now, for short, let

A =

(
â11 â12

â21 â22

)
= 2× 2 submatrix of (Σ̂S̃,S̃)−1 on the top left.

By the way it is defined,
ρ̂ij(S) = −â12/

√
â11â22. (5.30)

At the same time, by basic algebra [33], it is known that

A =

(
γ̂ii(S) γ̂ij(S)
γ̂ji(S) γ̂jj(S)

)−1

, (5.31)

where γ̂ii(S), γ̂jj(S), γ̂ij(S), and γ̂ji(S) are random variables defined by

(
γ̂ii(S) γ̂ij(S)
γ̂ji(S) γ̂jj(S)

)
= Σ̂{i,j},{i,j} − Σ̂{i,j},S(Σ̂S,S)−1(Σ̂{i,j},S)′. (5.32)

In our notation, Σ̂ = (1/n)X ′X, whereX is the n×p data matrix. Write S = {j1, j2, . . . , jk},
where k = |S|. For short, let XS be the n× k matrix where the m-th column is the jm-th
column of X, 1 ≤ m ≤ k. It is seen that

HS = XS(X ′SXS)−1X ′S ,

Rewrite the right hand side of (5.32) by

(1/n)

[(
(xi, xi), (xi, xj)
(xj , xi), (xj , xj)

)
−
(
x′i
x′j

)
XS(XSX

′
S)−1X ′S · (xi, xj)

]

=(1/n)

(
x′i(I −HS)xi, x′i(I −HS)xj
x′j(I −HS)xi, x′j(I −HS)xj

)
.

It follows that
(
γ̂ii(S) γ̂ij(S)
γ̂ji(S) γ̂jj(S)

)
= (1/n)

(
x′i(I −HS)xi, x′i(I −HS)xj
x′j(I −HS)xi, x′j(I −HS)xj

)
. (5.33)
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Now, for any positive definite 2× 2 matrix D, write

D =

(
d11 d12

d21 d22

)
, D−1 =

(
h11 h12

h21 h22

)
.

It is known that
d12/

√
d11d22 = −h12/

√
h11h22. (5.34)

Combining (5.30)-(5.31) and applying (5.34),

ρ̂ij(S) = γ̂ij(S)/
√
γ̂ii(S)γ̂jj(S),

and the claim follows from (5.33). �

5.3 Proof of Lemma 2.1

Fix i and write for short S0 = S(i)(Ω) and ω′ as the i-th row of Ω. For each m, we define
Um = {i, j1, · · · , jm}. Then

ρijm(S
(i)
m−1) =

−1 · [first row last column of (ΣUm,Um)−1]

[product of the first and last diagonals of (ΣUm,Um)−1]1/2
. (5.35)

We need some notations to simplify the matrix (ΣUm,Um)−1. Fix k ≥ 1. Introduce the

set V = {i, j1, · · · , jm(k)} ∪ (S0 \ S(i)
m(k)), where i is the first index and jm is the (m+ 1)-th

index in the set, 1 ≤ m ≤ m(k). Let A = ΣV,V . For each m ≥ 1, we partition A into blocks
corresponding to the first (m+ 1)-th indices and the remaining ones

A =

(
A

(m)
11 A

(m)
12

A
(m)
21 A

(m)
22

)
,

so that ΣUm,Um = A
(m)
11 . For notation simplicity, we shall omit all the superscripts and

write A
(m)
11 as A11. Using the matrix inverse formula,

A−1 =

(
A−1

11 +B12B
−1
22 B21 −B12B

−1
22

−B−1
22 B21 B−1

22

)
, (5.36)

where B22 = A22 −A21A
−1
11 A12, B12 = A−1

11 A12 and B21 = A21A
−1
11 .

Now, we show the claim. Since V ⊃ S0, Lemma 1.1 implies that the first row of A−1 is
equal to ω′ restricted to V . Combining this with (5.36), for each m(k − 1) < m < m(k),

first row last column of [A−1
11 +B12B

−1
22 B21] = ω(jm) = 0,

and
−1 · first row of B12B

−1
22 = (ωV \Um)′.

Also, by definition, B21 = A21A
−1
11 . Combining the above,

first row last column of A−1
11 = (ωV \Um)′A21 · last column of A−1

11 . (5.37)

To simplify (5.37), we introduce a vector ηk ∈ R|V | such that ηk(j + 1) = 0 for 0 ≤ j <
m(k) and ηk(j + 1) = (ωV )(j + 1) for m(k) ≤ j ≤ |V | − 1. For each m(k− 1) < m < m(k),
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let Jm = {1, · · · ,m + 1} and Jcm = {m + 2, · · · , |V |}. Then ωV \Um = (ωV )J
c
m = (ηk)

Jc
m ,

A21 = AJ
c
m,Jm and (ηk)

Jm = 0. It follows that

(ωV \Um)′A21 = (η′kA)Jm . (5.38)

Moreover, let A = LL′ be the Cholesky decomposition of A, where L is a lower triangular
matrix with positive diagonals. By basics of Cholesky decomposition, for Lm = LJm,Jm ,
A11 = AJm,Jm = LmL

′
m is the Cholesky decomposition of A11, and Lm satisfies L−1

m =
(L−1)Jm,Jm . Therefore,

A−1
11 = [(L−1)′]Jm,Jm(L−1)Jm,Jm . (5.39)

The nice thing about (5.38)-(5.39) is that on the right hand sides, (ηk, A, L) only depend
on k but not m (while on the left hand sides, A21 and A11 depend on m). This allows us
to stack the expressions for different m.

We plug (5.38)-(5.39) into (5.37) and use the fact that L−1 is also lower triangular. It
yields

first row last column of A−1
11 = [η′kA(L−1)′]Jm · last column of (L−1)Jm,Jm

=L−1(m+ 1,m+ 1) · q(m+ 1), q ≡ L−1A′ηk.

This gives the numerator of (5.35). For the denominator, by (5.36) and (5.39), (a) the first
diagonal of A−1

11 ≥ A−1(1, 1) ≥ λ−1
max(A), and (b) the last diagonal of A−1

11 = [L−1(m +
1,m+ 1)]2. Combining the above with (5.35), we have

ρ2
ijm(S

(i)
m−1) ≤ λmax(A) · q2(m+ 1). (5.40)

Since (5.40) holds for each m(k − 1) < m < m(k), we stack the results for all m and

obtain
∑

m(k−1)<m<m(k) ρ
2
ijm

(S
(i)
m−1) ≤ λmax(A) · ‖q‖2 ≤ λ2

max(A) · ‖ηk‖2. Here, the last

inequality is due to A = L′L and q = L−1A′η = L′η. The claim then follows by noting
that ‖ηk‖2 =

∑
j∈(S0\S(i)

m(k)−1
)
ω2(jm) and that A is a principal submatrix of Σ with size

≤ m(k) + s− k. �

5.4 Proof of Lemma 2.2

Fixing 1 ≤ i ≤ p and m ≥ 1, we adopt the notations S0, ω′ and Um as in the proof of

Lemma 2.1. Let W = S0 \S(i)
m−1. For each j ∈W , let Vj = {i, j1, · · · , jm−1, j} and suppose

i and j are the first and last indices in the set, respectively. By definition,

ρij(S
(i)
m−1) =

−1 · [first row last column of (ΣVj ,Vj )−1]

[product of first and last diagonals of (ΣVj ,Vj )−1]1/2
. (5.41)

Write Σm = ΣUm−1,Um−1 and ηj = ΣUm−1,{j} for short. By basic algebra,

(ΣVj ,Vj )−1 =

(
Σ−1
m +A −[Σ(j, j)− η′jΣ−1

m ηj ]
−1η′jΣ

−1
m

−[Σ(j, j)− η′jΣ−1
m ηj ]

−1Σ−1
m ηj [Σ(j, j)− η′jΣ−1

m ηj ]
−1

)
,

where A is a positive-definite matrix. It follows that

first row last column of (ΣVj ,Vj )−1 = −1 · [Σ(j, j)− η′jΣ−1
m ηj ]

−1e′jΣ
−1
m ηj ,

last diagonal of (ΣVj ,Vj )−1 = [Σ(j, j)− η′jΣ−1
m ηj ]

−1,
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where e1 = (1, 0, · · · , 0)′. As a result,

∑

j∈W
ρ2
ij(S

(i)
m−1) =

∑

j∈W

[Σ(j, j)− η′jΣ−1
m ηj ]

−1

(ΣVj ,Vj )−1(1, 1)
(e′1Σ−1

m ηj)
2, (5.42)

Let D = ΣW,W − ΣW,UmΣ−1
m ΣUm,W and H = Σ−1

m ΣUm,W . Then

∑

j∈W
ρ2
ij(S

(i)
m−1) ≥ 1

maxj∈W (ΣVj ,Vj )−1(1, 1)
‖e′1H[diag(D)]−1/2‖2. (5.43)

Below, we make a connection between ω and the right hand side of (5.43). Introduce
set V = {i, j1, · · · , jm−1} ∪W such that i is the first index and jk is the (k + 1)-th index,
1 ≤ k ≤ m− 1. Using the matrix inverse formula,

(ΣV,V )−1 =

(
Σm ΣUm−1,W

ΣW,Um−1 ΣW,W

)−1

=

(
Σ−1
m +HD−1H −HD−1

−D−1H ′ D−1

)
.

Since V ⊃ S0, by Lemma 1, the first row of (ΣV,V )−1 coincides with (ωV )′. In particular,

e′1HD
−1 = −(ωW )′. (5.44)

Furthermore, since Vj ⊂ V ,

(ΣVj ,Vj )−1(1, 1) ≤ (ΣV,V )−1(1, 1) ≤ λ−1
min(ΣV,V ). (5.45)

Plugging (5.44)-(5.45) into (5.43) gives that
∑

j∈W ρ2
ij(S

(i)
m−1) ≥ λmin(ΣV,V )· ‖[diag(D)]−1/2DωW ‖2.

Note that ‖[diag(D)]−1/2DωW ‖2 ≥ λ−1
max(D)λ2

min(D) · ‖ωW ‖2. Moreover, the eigenvalues

of D are between λmin(ΣV,V ) and λmax(ΣV,V ). Therefore,
∑

j∈W ρ2
ij(S

(i)
m−1) ≥ λ3min(ΣV,V )

λmax(ΣV,V )
·

‖ωW ‖2. The claim follows by noting that W = S0 \ S(i)
m−1 and that the size of ΣV,V is

|W |+m ≤ m+ s. �

5.5 Proof of Theorem 2.1

Write for short S0 = S(i)(Ω), s0 = |S0| and m(i)(k) = m(k), 1 ≤ k ≤ s0. The key is to show
that for all 1 ≤ k ≤ s0, the k-th Lagging Time `(i)(k; Σ) satisfies

`(i)(k; Σ) ≤ 2c−6
0 (s0 − k + 1), (5.46)

where c0 is as inM∗p(s, c0). Once (5.46) is proved, the second claim follows by basic algebra,
the third claim follows directly from Lemma 1.1. As for the first claim, suppose that at the
end of stage (m− 1), we have recruited k signal nodes, k < s0. By Lemma 2.2,

∑

j∈(S0\S(i)
m−1)

ρ2
ij(S

(i)
m−1) ≥ c4

0(s0 − k)(τ∗p )2,

where for the constant c4
0, we have used the definition of M∗p(s, c0) and that the algorithm

terminates in no more than Cs2 � N(p, n) steps. It follows that there is a j ∈ (S0 \ S(i)
m−1)

such that |ρij(S(i)
m−1)| ≥ c2

0τ
∗
p . Since PCS is a greedy algorithm, recruiting the node with

the largest partial correlation in each step, the claim follows.
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We now show (5.46). Our strategy is to use ‘Reductio ad absurdum’. Suppose (5.46)
does not hold. Let k0 be the smallest integer such that

`(i)(k0; Σ) > 2c−6
0 (s0 − k0 + 1). (5.47)

Let m0 be the integer such that m0 ≤ 2c−6
0 (s0 − k0 + 1) < m0 + 1. Note that by (5.47), we

do not recruit any signal nodes in steps m(k0 − 1) + 1,m(k0 − 1) + 2, . . . ,m(k0 − 1) +m0,
and also that

m(k0 − 1) +m0 ≤ (k0 − 1) + 2c−6
0

k0∑

j=1

(s0 − j + 1) ≤ Cs2, (5.48)

where the right hand side ≤ N(p, n) by the assumption of s2 log(p) = o(n). One one hand,
by Lemma 2.1 and (5.48),

m(k0−1)+m0∑

m=m(k0−1)+1

ρ2
ijm(S

(i)
m−1) ≤ c−2

0 E(i)(m(k0)), (5.49)

where E(i)(m) =
∑

j∈(S0\S(i)
m−1)

Ω(i, j)2 denotes the EAL at stage m. On the other hand,

by Lemma 2.2, for any m ∈ {m(k0 − 1) + 1, · · · ,m(k0 − 1) +m0},
∑

j∈(S0\S(i)
m−1)

ρ2
ij(S

(i)
m−1) ≥ c4

0E
(i)(m) = c4

0E
(i)(m(k0)),

where the last equality is because PCS does not recruit any signal nodes in steps m(k0 −
1) + 1,m(k0 − 1) + 2, . . . ,m(k0 − 1) + m0. It follows that there is a j ∈ (S0 \ S(i)

m−1) such
that

ρ2
ij(S

(i)
m−1) ≥ (s0 − k0 + 1)−1c4

0E
(i)(m(k0)).

Since PCS is a greedy algorithm, recruiting the node with the largest partial correlation in
each step,

ρ2
ijm(S

(i)
m−1) ≥ (s0 − k0 + 1)−1c4

0E
(i)(m(k0)), (5.50)

for any m = m(k0 − 1) + 1, · · · ,m(k0 − 1) + m0. Inserting (5.50) into (5.49) gives m0 ≤
c−6

0 (s0 − k0 + 1). However, m0 ≥ 2c−6
0 (s0 − k0 + 1) − 1 by definition, and a contradiction

follows. This concludes the proof. �

5.6 Proof of Theorem 2.2

Write for short S0 = S(i)(Ω), s0 = |S0| and m̂(i)(k) = m̂(k), 1 ≤ k ≤ s0. Recall that
ˆ̀(i)(k;X,Σ) is the k-th Lagging Time, 1 ≤ k ≤ s0. Define k̂ to be the smallest integer in
{1, 2, . . . , s0} such that

ˆ̀(i)(k;X,Σ) > 4c−6
0 (s0 − k − 1);

If no such integer exists, then we let k̂ =∞.
To show Theorem 2.2, the key is to show that

P (k̂ =∞) ≥ 1− o(p−3), (5.51)

so with overwhelming probabilities,

ˆ̀(i)(k;X,Σ) ≤ 4c−6
0 (s0 − k + 1), k = 1, 2, . . . , s0.
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Write

P (k̂ <∞) =

s0∑

k=1

P (k̂ = k).

To show (5.51), it is sufficient to show for any k0 ∈ {1, 2, . . . , s0},

P (k̂ = k0) = O(p−4), (5.52)

Now, we show (5.52). For any k0 such that 1 ≤ k0 ≤ s0, similar to that in the proof of
Theorem 2.1, let m0 be the integer such that

m0 ≤ 4c−4
0 (s0 − k0 + 1) < m0 + 1.

On one hand, the following lemma extends Lemma 2.1 and is proved in Section 5.6.1.

Lemma 5.3 Suppose conditions of Theorem 2.1 hold. Fix k0 such that 1 ≤ k0 ≤ s0. There
is an event B1 such that P (Bc

1) = O(p−4) and that over the event B1 ∩ {k̂ = k0},

m̂(k0−1)+m0∑

m=m̂(k0−1)+1

ρ̂2
ijm(Ŝ

(i)
m−1) . 2c−2

0

∑

j∈
(
S0\Ŝ(i)

m̂(k0−1)

)Ω(i, j)2 + Cs2 log(p)/n,

where C > 0 is a constant that only depends on c0.

Recall that in our notations,
∑

j∈(S0\Ŝ(i)
m−1)

Ω(i, j)2 ≡ Ê(i)(m), which is the EAL at stage

m. Also, by our conditions, the minimum signal strength

τ∗p /[s
√

log(p)/n]→∞. (5.53)

Therefore, it follows that over the event B1 ∩ {k̂ = k0},

m̂(k0−1)+m0∑

m=m̂(k0−1)+1

ρ̂2
ijm(Ŝ

(i)
m−1) . 2c−2

0 Ê(i)(m̂(k0 − 1) + 1). (5.54)

On the other hand, we also have the following lemma, which extends Lemma 2.1 and is
proved in Section 5.6.2.

Lemma 5.4 Suppose conditions of Theorem 2.1 hold. Fix k0 such that 1 ≤ k0 ≤ s0. There
is an event B2 such that P (Bc

2) = O(p−4) and that over the event B2 ∩ {k̂ = k0}, for any
m satisfying m̂(k0 − 1) < m ≤ m̂(k0 − 1) +m0,

∑

j∈(S0\Ŝ(i)
m−1)

ρ̂2
ij(Ŝ

(i)
m−1) & c4

0

∑

j∈(S0\Ŝ(i)
m−1)

Ω(i, j)2 − Cs2 log(p)/n,

where C > 0 is a constant that only depends on c0.

Combining Lemma 5.4 and (5.53), over the event B2∩{k̂ = k0}, for each m ∈ {m̂(k0−1)+
1, · · · , m̂(k0 − 1) +m0},

∑

j∈(S0\Ŝ(i)
m−1)

ρ̂2
ij(Ŝ

(i)
m−1) & c4

0Ê
(i)(m) = c4

0Ê
(i)(m̂(k0 − 1) + 1),
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where the last inequality is because PCS does not recruit any signal nodes in steps m̂(k0−
1) + 1, · · · , m̂(k0 − 1) + m0 on the event {k̂ = k0}. Therefore, there is a j ∈ (S0 \ Ŝ(i)

m−1)
such that

ρ̂2
ij(Ŝ

(i)
m−1) & (s0 − k0 + 1)−1c4

0Ê
(i)(m̂(k0 − 1) + 1).

PCS is a greedy algorithm, recruiting the node with the largest partial correlation in each
step. It follows that over the event B2∩{k̂ = k0}, for each m ∈ {m̂(k0−1) + 1, · · · , m̂(k0−
1) +m0},

ρ̂2
ijm(Ŝ

(i)
m−1) & (s0 − k0 + 1)−1c4

0Ê
(i)(m̂(k0 − 1) + 1). (5.55)

Combining (5.54)-(5.55),
m0 . 2c−6

0 (s0 − k + 1),

which yields a contradiction. In other words, we have shown that

P (B1 ∩B2 ∩ {k̂ = k0}) = 0, (5.56)

and (5.52) follows.
We now proceed to show Theorem 2.2. Consider the second claim first. By (5.52),

P ({k̂ =∞}) ≥ 1− o(p−3), and over the event {k̂ =∞}, PCS stops in no more than

s0 + 4c−6
0

s0∑

k=1

(s0 − k − 1) ≤ Cs2
0 (5.57)

steps, and the second claim follows directly.
Consider the other two claims. The following lemma is proved in Section 5.6.3.

Lemma 5.5 Suppose conditions of Theorem 2.2 hold. There is a constant c1 > 0 that only
depends on c0, and an event B3 with P (Bc

3) = o(p−3), such that for each 1 ≤ m ≤ 4c−6
0 s2,

over the event B3 ∩ {k̂ =∞} ∩ {S0 ⊂ Ŝ(i)
m },

|ρ̂ij(Ŝ(i)
m )| ≤ c1s

√
2 log(p)/n, for all j /∈ ({i} ∪ Ŝ(i)

m ).

Combining Lemmas 5.4-5.5,

• over the event B3 ∩ {k̂ =∞} ∩ {S0 ⊂ Ŝ(i)
m }, for all j /∈ ({i} ∪ Ŝ(i)

m ),

|ρ̂ij(Ŝm)| ≤ c1s
√

2 log(p)/n;

• over the event B3 ∩ {k̂ =∞} ∩ {S0 6⊂ Ŝ(i)
m }, there is a j ∈ (S0 \ Ŝ(i)

m ) such that

|ρ̂ij(Ŝ(i)
m )| & c2

0

(
Ê(i)(m+ 1)

|S0 \ Ŝ(i)
m |

)1/2

≥ Cτ∗p .

Since c1s
√

2 log(p)/n ≤ t∗q/2� τ∗p , combining these gives the first and the last claim.
�
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5.6.1 Proof of Lemma 5.3

Write for short m∗ = m(k0 − 1) and

V = {i, j1, j2, . . . , jm∗}, W = {jm∗+1, jm∗+2, . . . , jm∗+m0},

where j1, j2, . . . , jm∗ are the recruited nodes in the firstm∗ steps, and jm∗+1, jm∗+2, . . . , jm∗+m0

are the nodes recruited in the next m0 steps, both are ordered sets where the indices are
arranged in that order. At the same time, let

Q = S0 \ Ŝ(i)
m∗

be all the signal nodes (arranged in the ascending order for convenience) that have not yet
been recruited in the first m∗ steps. Note that over the event we consider, W does not
contain any signal node, so

Q = S0 \ Ŝ(i)
m , for any m such that m∗ + 1 ≤ m ≤ m∗ +m0.

Throughout this section, V ∪W is the ordered set where all nodes in V are arranged
before those of W , and nodes in V and W are arranged according to their original order
aforementioned. Similar rules apply to W ∪ V , V ∪W ∪ Q, etc.. Note that V ∪W is not
the same as W ∪ V for indices are arranged in different orders. Introduce the following
short-hand notations:

x(V ) = the first diagonal of (Σ̂V,V )−1,

x(V,W ) = the first diagonal of (Σ̂V ∪W,V ∪W )−1,

x(V,W,Q) = the first diagonal of (Σ̂V ∪W∪Q,V ∪W∪Q)−1,

x(V,Q,W ) = the first diagonal of (Σ̂V ∪Q∪W,V ∪Q∪W )−1.

The proof for the lemma contains two parts. In the first part, we show that

m∗+m0∑

m=m∗+1

ρ̂2
ijm(Ŝ

(i)
m−1) ≤ Σ̂(i, i) · [x(V,W )− x(V )]. (5.58)

In the second part, we analyze [x(V,W )− x(V )] and completes the proof.
Consider the first part, where the key is to use Cholesky factorization [23]. To this end,

we introduce a short hand notation. For any matrix D ∈ Rm,m and 1 ≤ k ≤ m, let

D(1 : k, 1 : k)

denote the sub-matrix of D consisting of the first k rows and k columns of D. Note that
D = D(1 : m, 1 : m). Denote for short D̂ by the (m∗ + m0 + 1) × (m∗ + m0 + 1) matrix
(the one extra comes from the first index, i)

D̂ = Σ̂V ∪W,V ∪W ,

and let
D̂ = LL′

be the Cholesky factorization (unique provided the diagonals of L are positive); note that
L is lower triangular. Denote U by the inverse of L:

L = U−1.
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By basic algebra, U is a lower triangular (m∗ + m0 + 1) × (m∗ + m0 + 1) matrix. The
following facts are noteworthy. For any k such that 1 ≤ k ≤ m∗ +m0 + 1, we have

[L(1 : k, 1 : k)]−1 = U(1 : k, 1 : k),

and
[D̂(1 : k, 1 : k)]−1 = U ′(1 : k, 1 : k) · U(1 : k, 1 : k);

especially, D̂ = U ′U .
In our notations, if we write for short Dm+1 = D̂(1 : m+ 1, 1 : m+ 1), then

ρ̂ijm(Ŝ
(i)
m−1) =

first row last column of D−1
m+1√

product of first and last diagonals of D−1
m+1

,

We collect some basic facts.

• The first row last column of D−1
m+1 is U(m+ 1,m+ 1) · U(m+ 1, 1).

• The first diagonal of D−1
m+1 is no smaller than Σ̂(i, i)−1.

• The last diagonal of D−1
m+1 is U(m+ 1,m+ 1)2.

• ∑m∗

m=0 U(m+ 1, 1)2 = x(V ).

• ∑m∗+m0
m=0 U(m+ 1, 1)2 = x(V,W ).

Combining these

m∗+m0∑

m=m∗+1

ρ̂2
ijm(Ŝ

(i)
m−1) ≤ Σ̂(i, i)

m∗+m0∑

m=m∗+1

U(1,m+ 1)2 = Σ̂(1, 1)[x(V,W )− x(V )],

and the claim follows.
Consider the second part. Note that x(V,Q,W ) = x(V,W,Q). We write

x(V,W )− x(V ) (5.59)

= [x(V,Q)− x(V )]− [x(V,W,Q)− x(V,W )] + [x(V,W,Q)− x(V,Q)]

= [x(V,Q)− x(V )]− [x(V,W,Q)− x(V,W )] + [x(V,Q,W )− x(V,Q)].

We now analyze the three terms on the right hand side. The analysis is similar, so we only
discuss the first one in detail. According to the partition of indices in V ∪Q to those in V
and those in Q, we write

A = ΣV ∪Q,V ∪Q =

(
A11 A12

A21 A22

)
, Â = Σ̂V ∪Q,V ∪Q =

(
Â11 Â12

Â21 Â22

)
.

By basic algebra, we have

A−1 =

(
A−1

11 +B12B
−1
22 B21 −B12B

−1
22

−B−1
22 B21 B−1

22

)
, (5.60)

and

Â−1 =

(
Â−1

11 + B̂12B̂
−1
22 B̂21 −B̂12B

−1
22

−B̂−1
22 B̂21 B̂−1

22

)
, (5.61)
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where B22 = A22 −A21A
−1
11 A12, B12 = A−1

11 A12 and B21 = A21A
−1
11 , and B̂12, B̂21, and B̂22

are defined similarly. Moreover, denote the first row of

−B̂12B
−1
22 and −B12B

−1
22

by η̂′ and η, respectively. The following facts follow from definitions, basic algebra, and
Lemma 1.1.

• x(V,Q)− x(V ) = η̂′B̂22η̂.

• η(k) = Ω(i, jm∗+m0+k) 6= 0, 1 ≤ k ≤ |Q|; so ‖η‖2 =
∑

j∈(S0\Ŝ(i)
m∗ )

Ω(i, j)2, which is the

EAL on the right hand side of the claim.

It follows that

x(V,Q)− x(V ) ≤ ‖B̂22‖‖η̂‖2 ≤ 2‖B̂22‖(‖η‖2 + ‖η̂ − η‖2), (5.62)

where ‖B̂22‖ ≤ ‖B22‖+ ‖Â−1−A−1‖ ≤ c−1
0 + ‖Â−1−A−1‖, by m∗+ |Q|+ 1 ≤ N(p, n) and

the regularity condition imposed on M∗p(s, c0). At the same time,

‖η̂ − η‖2 ≤ ‖(Â−1 −A−1)2‖ ≤ (‖Â−1‖ · ‖A−1‖ · ‖Â−A‖)2. (5.63)

Since over the event we consider, m∗ + |Q| + 1 ≤ Cs2, by Lemma 5.2, with probability at
least 1− o(p−4),

‖Â−A‖2 ≤ C(m∗ + |Q|+ 1) log(p)/n. (5.64)

Combining (5.62)-(5.64) gives that with probability at least 1−O(p−4),

0 ≤ x(V,Q)− x(V ) . 2c−1
0 ‖η‖2 + Cs2 log(p)/n, (5.65)

Similarly, we have

0 ≤ x(V,W,Q)− x(V,W ) . 2c−1
0 ‖η‖2 + Cs2 log(p)/n, (5.66)

and
0 ≤ x(V,Q,W )− x(V,Q) ≤ Cs2 log(p)/n. (5.67)

The right hand side does not have the ‖η‖2 for that the associated “η” vector is the vector
of 0, by a direct use of Lemma 1.1. We inserting (5.65)-(5.67) into (5.59), and further
combine it with (5.58). The claim follows directly by noting that with probability at least
1−O(p−4), Σ̂(i, i) ≤ Σ(i, i) + C

√
log(p)/n . c−1

0 . �

5.6.2 Proof of Lemma 5.4

Write for short ω′ as the i-th row of Ω. Recall that {j1, j2, · · · } is the sequence of nodes
recruited in the Screen step of PCS. Fix m such that m(k0 − 1) < m ≤ m(k0) +m0. Let

V = {i, j1, · · · , jm−1} ∪ (S0 \ Ŝ(i)
m−1), W = S0 \ Ŝ(i)

m−1,

where we assumed the indices in V are listed in the above order. Define the vector ω̃ ∈ Rp
such that

ω̃(j) =

{
0, j /∈ V ,
(Σ̂V,V )−1(1, `), j is the `-th node in V .
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Due to similar calculations to those in the proof of Lemma 2.2, we obtain

∑

j∈(S0\Ŝ(i)
m−1)

ρ̂2
ij(Ŝ

(i)) ≥ λ3
min(Σ̂V,V )

λmax(Σ̂V,V )
· ‖ω̃W ‖2. (5.68)

Recall that ω′ the i-th row of Ω. Since (ωW )′ and (ω̃W )′ are the first rows of ΣV,V (see
Lemma 1.1) and Σ̂V,V , respectively, it follows from the triangular inequality that

‖ω̃W ‖ ≥
( ∑

j∈(S0\Ŝ(i)
m−1)

ω2(j)

)1/2

− ‖ω̃W − ωW ‖, (5.69)

where
‖ω̃W − ωW ‖ ≤ ‖(Σ̂W,W )−1 − ΣW,W ‖. (5.70)

Let B2 be the event that for any U ⊂ {1, · · · , p} and |U | ≤ 4c−6
0 s2,

‖Σ̂U,U − ΣU,U‖ ≤ Cs
√

log(p)/n, ‖(Σ̂U,U )−1 − (ΣU,U )−1‖ ≤ Cs
√

log(p)/n.

By Lemma 5.2, there exists a constant C > 0 that only depends on c0 such that P (Bc
2) =

O(p−4). On the event B2 ∩ {k̂ = k0},

|V | ≤ m(k0 − 1) +m0 ≤ (k0 − 1) + 4c−6
0

k0∑

k=1

(s0 − k0 + 1) . 2c−6
0 s2.

By the definition of B2 and that Σ ∈M∗p(s, c0),

‖(Σ̂V,V )−1 − (ΣVm,Vm)−1‖ ≤ Cs
√

log(p)/n,

λmin(Σ̂V,V ) ≥ µ(1)
N (Σ)− Cs

√
log(p)/n & c0,

λmax(Σ̂V,V ) ≤ µ(2)
N (Σ) + Cs

√
log(p)/n . c−1

0 . (5.71)

The claim follows from (5.69)-(5.71) and that
(∑

j∈(S0\Ŝ(i)
m−1)

ω2(j)
)1/2 ≥ τ∗p � s

√
log(p)/n.

�

5.6.3 Proof of Lemma 5.5

Over the event {k̂ =∞} ∩ {S0 ⊂ Ŝ(i)
m }, by Lemma 1.1,

ρij(Ŝ
(i)
m ) = 0, for all j /∈ ({i} ∪ Ŝ(i)

m ).

Therefore, it suffices to show that with probability at least 1 − o(p−3), for any S ⊂
({1, · · · , p} \ {i}) and |S| ≤ 4c−6

0 s2 − 2,

max
j /∈({i}∪S)

|ρ̂ij(S)− ρij(S)| ≤ c1s
√

2 log(p)/n. (5.72)

Now, we show (5.72). By Lemma 5.2 and that Σ ∈M∗p(s, c0), there is a constant C > 0
which only depends on c1 such that P (Bc

3) = o(p−3) for the following event B3: for any
U ⊂ {1, · · · , p} and |U | ≤ 5c−6

0 s2,

‖Σ̂U,U − ΣU,U‖ ≤ Cs
√

log(p)/n, ‖(Σ̂U,U )−1 − (ΣU,U )−1‖ ≤ Cs
√

log(p)/n.
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For any fixed S and j, let V = {i, j}∪S such that i and j are the first two indices listed in
S; note that |V | ≤ 4c−6

0 + 2 ≤ 5c−6
0 . Write Â = (Σ̂V,V )−1 and A = (ΣV,V )−1. By definition,

ρij(S) =
A(1, 2)√

A(1, 1)A(2, 2)
, ρ̂ij(S) =

Â(1, 2)√
Â(1, 1)Â(2, 2)

Over the event B3,

‖Â−A‖max ≤ ‖(Σ̂V,V )−1 − (ΣV,V )−1‖ ≤ Cs
√

log(p)/n.

Moreover, |A(1, 2)| ≤ λmax(A) ≤ c−1
0 , since |V | � N(p, n) and Σ ∈ M∗p(s, c0); similarly,

A(1, 1) ≥ c0 and A(2, 2) ≥ c0. It follows that over the event B3,

|ρ̂ij(S)− ρij(S)| . c−2
0 · Cs

√
log(p)/n,

for all (S, j) such that |S| ≤ 4c−6
0 s2 and j /∈ ({i} ∪ S). By taking c1 ≥ 2c−2

0 C, we prove
(5.72).

5.7 Proof of Theorem 2.3

Recall that Ω̂∗ is the estimator given by PCS without symmetrization. Denote by ω̂′i and
ω′i the i-th row of Ω̂∗ and Ω, respectively. It suffices to show that for each 1 ≤ i ≤ p, with
probability at least 1− o(p−3),

ω̂i and ωi have the same support; (5.73)

and
‖ω̂i − ωi‖∞ ≤ C

√
log(p)/n, (5.74)

where ‖ · ‖∞ denotes the entry-wise max norm for vectors.

Consider (5.73). Write for short S0 = S(i)(Ω), Ŝ
(i)
∗ = Ŝ∗ which is the set of recruited

nodes in the Screen step of PCS, and Ŝ
(i)
∗∗ = Ŝ∗∗ which is the support of ωi. Let j1, · · · , jM

be the nodes in Ŝ∗ and define W = {i, j1, · · · , jM} where i is the first index. Denote by η̂′

the first row of (Σ̂W,W )−1. By definition,

Ŝ∗∗ = {jk : |η̂(k + 1)| > t∗q}. (5.75)

By Theorem 2.2, with probability at least 1− o(p−3),

|Ŝ∗| ≤ Cs2, and S0 ⊂ Ŝ∗.

Since ({i}∪S0) ⊂W , Lemma 1.1 implies that the first row of (ΣW,W )−1 is equal to (ωW )′.
As a result,

‖η̂ − ωW ‖∞ ≤ ‖(Σ̂W,W )−1 − (ΣW,W )−1‖max ≤ ‖(Σ̂W,W )−1 − (ΣW,W )−1‖. (5.76)

Note that |W | ≤ Cs2 + 1 ≤ N(p, q) and Σ ∈ M∗p(s, c0). It follows from Lemma 5.2 that
with probability at least 1− o(p−3),

‖(Σ̂W,W )−1 − (ΣW,W )−1‖ ≤ c1s
√

2 log(p)/n, (5.77)
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for a properly large constant c1 that only depends on c0. Without loss of generality, the
constant c1 here is assumed to be the same as that in Lemma 5.5; if not, we take the
maximum of them. Combining (5.76)-(5.77), we find that

|η̂(k + 1)|
{ ≥ τ∗p − c1s

√
2 log(p)/n, jk ∈ {i} ∪ S0,

≤ c1s
√

2 log(p)/n, jk ∈ Ŝ∗ \ S0.

Then, by the choice of q and that τ∗p � s
√

log(p)/n, we have |η̂(k + 1)| � t∗q for jk ∈
({i} ∪ S0) and |η̂(k + 1)| ≤ t∗q/2 for jk ∈ (S0 \ Ŝ∗). Plugging these into (5.75) gives that
with probability at least 1− o(p−3),

Ŝ∗∗ = S0. (5.78)

Then, (5.73) follows directly.
Second, consider (5.74). For each j ∈ S0, introduce the 2× 2 matrices

Â = the ({1, k}, {1, k})-block of (Σ̂{i}∪S0,{i}∪S0)−1,

A = the ({1, k}, {1, k})-block of (Σ{i}∪S0,{i}∪S0)−1,

where we assume i is the first index listed in {i}∪S0 and j is the k-th index listed in {i}∪S0.
By Lemma 1.1, A(1, 1) = ωi(i), A(1, 2) = A(2, 1) = ωi(j), and max{A(2, 2), 1/A(2, 2)} ≤ C.
By definition and (5.78), with probability at least 1− o(p−3),

|ω̂i(j)− ωi(j)| = |Â(1, 2)−A(1, 2)|. (5.79)

We apply [30, Theorem 3.4.6] to the matrix Σ̂{i}∪S0,{i}∪S0 and obtain

Â−1 ∼Wishart distribution W2(A−1, n− s0 + 1).

By elementary Random Matrix Theory, with probability at least 1− o(p−3),

|Â(1, 2)−A(1, 2)| ≤ C‖Â−A‖max ≤ C
√

log(p)/n. (5.80)

Combining (5.79)-(5.80) gives (5.74). �

5.8 Proof of Theorem 2.4

Fix 1 ≤ i ≤ p and write S0 = S(i)(Ω), s0 = |S0|, and ω = ωi for short. Note that s0 ≤ s
for s in M∗p(s, c0). The key to our proofs is to relate the Screen step of PCS to a linear
regression model. As before, write X = [x1, x2, . . . , xp] so that xj is the j-th column of X.
As in (1.15), we can formulate a linear regression model as follows:

xi = −
∑

j∈S0

ω(j)

ω(i)
xj + z, z ∼ N(0,

1

ω(i)
In), (5.81)

where z is independent of {xj : j ∈ S0}. For any S ⊂ {1, · · · , p}, let XS be the n × |S|
sub-matrix of X such that the k-th column of XS is the jk-th column of X, 1 ≤ k ≤ |S|.
Suppose i /∈ S. It is known that the least-squares solution of regressing xi to {xj : j ∈ S}
is the s-dimensional vector

(X ′SXS)−1X ′Sxi.
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We expand this vector to a p-dimensional vector η̂(S) by filling 0 in all coordinates not in
S:

η̂(S)(m) =

{
k-th entry of (X ′SXS)−1X ′Sxi, if m = jk for some 1 ≤ k ≤ s,
0, if m /∈ S. (5.82)

Let HS be the projection matrix from Rn to {xj : j ∈ S}. By basic algebra,

x′j(xi −Xη̂(S)) = x′j(I −HS)xi.

Combining this with Lemma 1.2 gives

ρ̂ij(S) =
x′j(xi −Xη̂(S))

√
x′i(I −HS)xi

√
x′j(I −HS)xj

. (5.83)

For preparations, we need two lemmas. The following lemma is the direct result of [39].

Lemma 5.6 Suppose y = Xβ̄+N(0, σ2In) and S0 = supp(β̄), where X ∈ Rn,p and y ∈ Rn.
Let β̂∗ = β̂∗(S0) be the least-squares solution associated with S0 (defined as a p-dimensional
vector in a similar fashion to that in (5.82)), and define θS0(X) = λmin(X ′S0

XS0)/[maxj /∈S0
‖xj‖2]

and κS0(X) = maxj /∈S0
‖(X ′S0

XS0)−1X ′S0
xj‖1, where xj is the j-th column of X.

(a) For any β whose support S is a strict subset of S0,

max
j∈(S0\S)

{ |x′j(y −Xβ)|
‖xj‖

}
≥ √nθS0(X)

‖β − β̂∗‖√
|S0 \ S|

,

where with probability at least 1−O(p−4), the right hand side is lower bounded by

θS0(X) · |S0 \ S|−1/2√n‖β̄S0\S‖ −
√
θS0(X) max

j /∈S0

‖xj‖ · σ
√

10 log(p).

(b) For any β whose support is a subset of S0 and any j /∈ S0,

|x′j(y −Xβ)| ≤ |x′j(y −Xβ̂∗)|+ κS0(X) max
j∈S0

|x′j(y −Xβ)|.

(c) With probability at least 1−O(p−4),

max
j /∈S0

{
|x′j(y −Xβ̂∗)|√
xj(I −HS0)xj

}
≤ σ

√
10 log(p).

Here, (β, S) can be either non-random or not; see [39] for details. In this lemma, (b) is a
slight modification of [39, Lemma 11], and (c) follows from elementary statistics. As for
(a), the first part follows from adapting the proof of [39, Lemma 7] and applying [39, Page
566, third equation]. For the second part, since β has all 0’s for entries in S0 \ S,

‖β − β̂∗‖ ≥ ‖(β̂∗)S0\S‖ ≥ ‖β̄S0\S‖ − ‖(β̂∗ − β̄)S0\S‖. (5.84)

At the same time, note that

β̂∗ − β̄ ∼ N(0, σ2(X ′S0
XS0)−1).
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and so with probability at least 1−O(p−4),

‖(β̂∗ − β̄)S0\S‖ ≤ |S0 \ S|1/2 · ‖(β̂∗ − β̄)S0\S‖∞ ≤
[
|S0 \ S| · 10σ2h2 log(p)/n

]1/2
.

where h is the square-root of the maximum diagonal of (X ′S0
XS0)−1 and h2 ≤ nλ−1

min(X ′S0
XS0).

Inserting it into (5.84) gives the claim.
When we apply Lemma 5.6 to model (5.81) for each i, the quantities θS0(X) and κS0(X)

translate into:
θ̂(i;X,Σ) = [max

j /∈S0

Σ̂(j, j)]−1 · λmin(Σ̂S0,S0)

and
κ̂(i;X,Σ) = max

j /∈({i}∪S0)
‖(Σ̂S0,S0)−1Σ̂S0,{j}‖1.

Recalling the definition of γ∗(Σ), θ∗(Σ) and κ∗(Σ), we have the following lemma.

Lemma 5.7 Under conditions of Theorem 2.4, for each 1 ≤ i ≤ p and S0 ≡ S(i)(Ω), with
probability at least 1−O(p−4),

(i) maxk∈S0,j /∈({i}∪S0)

{
[x′j(I −HS0)xj ]

−1/2‖xk‖
}
≤ [γ∗(Σ)]−1 + C

√
log(p)/n,

(ii) κ̂(i;X,Σ) ≤ κ∗(Σ) + Cs
√

log(p)/n,

(iii) θ̂(i;X,Σ) ≥ θ∗(Σ)− C
√
s log(p)/n.

For this lemma, the proof of (i) is similar to that of (5.80); (iii) is due to Lemma 5.2, where
we have that with probability at least 1−O(p−4),

‖Σ̂S0,S0 − ΣS0,S0‖ ≤ C
√
s log(p)/n.

As for (ii), we note that for any vector ξ ∈ Rs, ‖ξ‖1 ≤
√
s‖ξ‖. By elementary Random

Matrix Theory, with probability at least 1− o(p−4),

‖κ̂(i;X,Σ)− κ(i; Σ)‖ ≤ C√s · ‖Σ̂{j}∪S0,{j}∪S0 − Σ{j}∪S0,{j}∪S0‖ ≤ Cs
√

log(p)/n,

and the claim follows.
We now proceed to show Theorem 2.4. Consider the Screen step of PCS applied to row

i. Recall that S0 = S(i)(Ω) and s0 = |S0|. The proof contains two parts.

(A) In the first part, we show that provided that the algorithm is not stopped, no noise
nodes have been recruited and not all signals have been recruited, then the node we
select in the next step must be a signal node (note that this does not rule out the
case that the algorithm stops before it recruits all signal nodes).

(B) In the second part, we further check that at each stage m:

(B1) When m ≤ s0−1, there is a node j the partial correlation associated with which
falls above the threshold t∗q(p, n), so PCS would not stop in less than s0 steps.

(B2) When m = s0, we can not find a node the partial correlation associated with
which falls above the threshold t∗q(p, n), and PCS terminates immediately.
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Consider (A). Fix m ≥ 1. Suppose the Screen step of PCS has not yet stopped by stage

(m−1), Ŝ
(i)
m−1 ⊂ S0 and S0\ Ŝ(i)

m−1 6= ∅. For short, write Ŝ = Ŝ
(i)
m−1 and X̃ as the sub-matrix

of X formed by removing the i-th column. Applying item (b) of Lemma 5.6 to the linear
regression model (5.81), with y = xi, X = X̃ and σ2 = 1/ω(i) and β = η̂(Ŝ), it follows that
for each j /∈ ({i} ∪ S0),

|x′j(xi −Xη̂(Ŝ))| ≤ |x′j(xi −Xη̂(S0))|+ κ̂(i;X,Σ) max
k∈(S0\Ŝ)

|x′k(xi −Xη̂(Ŝ))|,

where we have replaced X̃ by X according to (5.82). Combining this with (5.83), it follows
from basic algebra and Lemma 5.7 that

|ρ̂ij(Ŝ)| ≤[x′i(I −HŜ)xi]
−1/2
|x′j(xi −Xη̂(S0))|
√
x′j(I −HŜ)xj

+ [κ∗(Σ) +Cs
√

log(p)/n
]

max
k∈(S0\Ŝ)

{
|ρ̂ik(Ŝ)|

√
(x′k(I −HŜ)xk)

(x′j(I −HŜ)xj)

}
. (5.85)

Now, on one hand, note that for any j /∈ ({i} ∪ S0) and k ∈ (S0 \ Ŝ), using Lemma 5.7 and
the assumption that Ŝ ⊂ S0 gives that with probability at least 1−O(p−4),

x′k(I −HŜ)xk

x′j(I −HŜ)xj
≤ ‖xk‖2
x′j(I −HS0)xj

≤ [γ∗(Σ)]−2 + C
√

log(p)/n. (5.86)

On the other hand, applying item (c) of Lemma 5.6 and noting that Ŝ ⊂ S0, with probability
at least 1−O(p−4),

|x′j(xi −Xη̂(S0))|
√
x′j(I −HŜ)xj

≤
|x′j(xi −Xη̂(S0))|
√
x′j(I −HS0)xj

≤
√

10ω(i)−1 log(p). (5.87)

Inserting (5.86)-(5.87) into (5.85) gives

max
j /∈({i}∪S0)

|ρ̂ij(Ŝ)| ≤ [x′i(I −HŜ)xi]
−1/2

√
10ω(i)−1 log(p)

+ [κ∗(Σ)/γ∗(Σ) + o(1)] max
j∈(S0\Ŝ)

|ρ̂ij(Ŝ)|. (5.88)

At the same time, applying item (a) of Lemma 5.6 to the linear regression model (5.81),
there exists j ∈ (S0 \ Ŝ) such that

‖xj‖−1|x′j(xi − X̃η̂(Ŝ))| ≥ θ̂(i;X,Σ) · |S0 \ Ŝ|−1/2√n‖ηS0\Ŝ‖

−
√
θ̂(i;X,Σ) ·max

k/∈S0

‖xk‖
√

10ω(i)−1 log(p)/n,

where η ≡ ω(i)−1ω, recalling that ω′ is the i-th row of Ω. Combining it with with (5.83),
using x′j(I −HŜ)xj ≤ ‖xj‖2 and that

‖ηS0\Ŝ‖ ≥ |S0 \ Ŝ|1/2ω(i)−1τ∗p ,
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and applying Lemma 5.7, it follows that with probability at least 1−O(p−4),

max
j∈(S0\Ŝ)

|ρ̂ij(Ŝ)| ≥ [x′i(I −HŜ)xi]
−1/2

{
[θ∗(Σ) + o(1)]ω(i)−1n1/2τ∗p

−[
√
θ∗(Σ) + o(1)]

√
10ω(i)−1 log(p)

}
. (5.89)

Recall that τ∗p ≥ r
√

2 log(p)/n and by the choice of r,

θ∗(Σ)ω(i)−1r −
√
θ∗(Σ)

√
5ω(i)−1 ≥ 2δ−1

√
5ω(i)−1.

Therefore,

max
j∈(S0\Ŝ)

|ρ̂ij(Ŝ)| ≥ [2δ−1 + o(1)] · [x′i(I −HŜ)xi]
−1/2

√
10ω(i)−1 log(p). (5.90)

Write for short x = maxj /∈({i}∪S0) |ρ̂ij(Ŝ)|, y = maxj∈(S0\Ŝ) |ρ̂ij(Ŝ)| and x0 = [x′i(I −
HŜ)xi]

−1/2
√

10ω(i)−1 log(p). We now combine (5.88) and (5.90). Noting that κ∗(Σ)/γ∗(Σ) ≤
1− δ, it follows that for sufficiently large p,

x ≤ x0 + (1− δ)y, and y > δ−1x0.

Then we must have x > y; otherwise, y ≤ x < x0 + (1 − δ)y, and a contradiction follows.
Now, we have shown that with with probability at least 1−O(p−4),

max
j /∈({i}∪S0)

|ρ̂ij(Ŝ)| < max
j∈(S0\Ŝ)

|ρ̂ij(Ŝ)|.

This implies that if the algorithm has not stopped and we have not recruited all signal nodes,
then we can always find a signal node whose associated partial correlation is larger than
the partial correlations associated with all noise nodes. Since PCS is a greedy algorithm,
it must select a signal node in the next step. This proves the first part.

Next, consider (B1). When m ≤ s0 − 1, by (5.89), there is at least a signal node
j ∈ (S0 \ Ŝ) such that

|ρ̂ij(Ŝ)| & θ∗(Σ)ω(i)−1r
√

2 log(p)/n,

where we have used (1/n)x′i(I − HŜ)xi ≤ Σ̂(i, i) ≤ 1 + C
√

log(p)/n with probability at
least 1−O(p−4). By the choice of q, the right hand side > t∗q(p, n) by definition. Together
with (A), this implies that the algorithm will not stop but recruit a signal node in the next
step.

Last, consider (B2). By the above arguments, we must have Ŝ = S0 when m = s0.
Using item (c) of Lemma 5.6, Lemma 5.7 and (5.83), with probability at least 1−O(p−4),

max
j /∈({i}∪S0)

|ρ̂ij(S0)| ≤ [x′i(I −HS0)xi]
−1/2

√
10ω(i)−1 log(p) .

√
10 log(p)/n,

where the last inequality follows from the observation that n[x′i(I −HS0)xi]
−1 is the first

diagonal of (Σ̂{i}∪S0,{i}∪S0)−1, which is no large than ω(i) + o(1) with an overwhelming
probability, by Lemma 1.1 and basics in Random Matrix Theory. By the way t∗q(p, n) is
chosen, all these coefficients fall below t∗q(p, n) and the algorithm stops immediately. �
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