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In this supplement we propose some variants of SCORE and
present the technical proofs for the main theorems in [3] (in Ap-
pendix B) and for all the secondary lemmas in [3] (Appendix C).
Equation and theorem references made to the main document do not
contain letters.

APPENDIX A: VARIANTS OF SCORE

The key idea underlying the SCORE is that, in a broad context, the
leading eigenvectors of the adjacency matrix A approximate those of the
non-stochastic matrix ⌦, where the latter are

⇥

✓
kX

`=1

[a
k

(`)/k✓(`)k]1
`

◆
, k = 1, 2, . . . ,K.

It is seen that

• The information of the community labels is contained in the term
within the bracket, which depends on {✓(i)}n

i=1 only through the over-
all degree intensities k✓(k)k/k✓k.

• The diagonal matrix ⇥ does not contain any information of the com-
munity labels.

• Therefore, {✓(i)}n
i=1 are almost nuisance parameters, the e↵ect of which

can be removed by many scaling invariant mappings, to be introduced
below.

Definition A.1. Let W ⇢ RK

be a subset such that when x 2 W ,

then ax 2 W for any a > 0. We call a mapping M from W to RK

scaling

invariant if M(ax) = M(x) for any a > 0 and x 2 W .

The following are some examples of scaling invariant mappings.

• (a). W = {x 2 RK , x(1) 6= 0}, and Mx = x/x(1); x(1) is the first
coordinate of x.

• (b). W = RK \ {0}, Mx = x/kxk
q

, where q > 0 is a constant.
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2 J. JIN

SCORE SCOREq
q = 1 q = 2

web blogs (n = 1222) 58 61 64
karate (n = 34) 1 1 1

Table 1

Comparison of number of errors for the SCORE and the SCOREq.

Given a scaling invariant M, we have the following extension of SCORE.

• Obtain the K leading (unit-norm) eigenvectors of A. Arrange them in
an n⇥K matrix R̂ as follows so that ⇠0

i

is the i-th row of R̂, 1  i  n:

R̂ = [⌘̂1, ⌘̂2, . . . , ⌘̂K ] = (⇠1, ⇠2, . . . , ⇠n)
0.

• Obtain an n⇥K matrix R̂⇤ where the i-th row of R̂⇤ is (M⇠
i

)0.
• Apply k-means method to R̂⇤ for clustering with  K classes.

For example, if we view each row of R̂ as a point in Rk and apply M in
(a), then we have the R̂ matrix in (2.4) associated with the original SCORE
(except for that in (2.4), the first column is removed for it is the vector of
1 and is thus non-informative for clustering). For another example, we take
M as the mapping in (b), and call the resultant procedure SCOREq, where
q is the parameter in the mapping x ! x/kxk

q

.
We have investigated the performances of SCORE and SCOREq with the

karate club data and the web blogs data, where we pick q = 1 and q = 2.
The performances are largely similar, but SCORE is slightly better for the
web blogs data. See Table 1 for details.

APPENDIX B: PROOF OF THE MAIN THEOREMS

In this section, we prove Theorems 2.1-2.2. The key for the proof is Lem-
mas 2.7-2.8, which contain bounds on k⌘̂

k

�⌘
k

k and k⇥�1(⌘̂
k

�⌘
k

)k, respec-
tively. To show Lemmas 2.7-2.8, we need tight moderate deviation bounds
on matrices and vectors involving the noise matrix W . Such bounds are en-
sured by the assumption (2.17). In fact, by (2.17) and basic algebra, for any
constant C � 1,
(B.1)
nX

i=1

max
�
✓(i),

log(n)✓2
max

k✓k33

 
 Ck✓k1,

nX

i=1

max
� 1

✓(i)
,
log(n)✓2

max

✓2(i)k✓k33

 


nX

i=1

C

✓(i)
,

and

(B.2)
log(n)

✓2
min

 max{ 1

✓
min

k✓k1, ✓max

nX

i=1

1

✓(i)
}.
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We call (B.1)-(B.2) the Moderate Deviation conditions on Vectors (MDV)
and the Moderate Deviation conditions on Matrices (MDM), respectively.
These inequalities are used to control the moderate deviations of norms of
vectors, say, W✓, and norms of matrices, say, ⇥�1W , respectively. The main
results of the paper continue to hold if we replace (2.17) by (B.1)-(B.2).

Below, we first describe such moderate deviation bounds, and then give
the proofs for Theorems 2.1-2.2. The proofs of Lemmas 2.7-2.8 are given in
Section C.

B.1. Moderate deviation inequalities on vectors and matrices.
The following theorem is proved in [5], which is the extension of the well-
known Bernstein’s inequality from the case of random variables to the case
of random matrices. Recall that k · k denotes the spectral norm.

Theorem B.1. Consider a finite sequence {Z
k

} of independent (real-

valued) n ⇥ p random matrices. Assume that each random matrix satisfies

E[Z
k

] = 0 and kZ
k

k  h0 almost surely. Then for all t � 0,

P (k
X

k

Z
i

k � t)  (n+ p)exp

✓
� t2/2

�2 + h0t/3

◆
,

where �2 = max{k
P

k

E[Z
k

Z 0
k

]k, k
P

k

E[Z 0
k

Z
k

]k}.

The following lemma provides moderate deviation bounds on k⇥�1Wk.

Lemma B.1. If the Moderate Deviation condition on Matrices (B.2)

holds, then k⇥�1Wk2  C log(n)max{✓�1
min

k✓k1, ✓max

P
n

i=1
1

✓(i)}, with prob-

ability at least 1 + o(n�3).

The following lemma provides moderate deviation bounds on the norms
of various vectors. The lemma is proved in Section C, where the classical
Bennett’s inequality is the key [4] (recall that ✓(k) is defined in (2.10)).

Lemma B.2. If the Moderate Deviation condition on Vectors (B.1) holds,

then with probability at least 1 + o(n�3), for all 1  k, `  K,

• kW✓(k)k2  C log(n)k✓k33k✓k1.
• k⇥�1W✓k2  C log(n)k✓k33

P
n

i=1
1

✓(i) .

• |(✓(k))0W✓(`)|2  C log(n)[k✓k63 + log(n)✓4
max

].

We are now ready to show the two main theorems.
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B.2. Proof of Theorem 2.1. Let {⌘
i

}K
i=1 and {⌘̂

i

}K
i=1 be as in Lemma

2.1 and Lemma 2.4, respectively. Let Ŝ be the set of “well-behaved” nodes
as in (2.20), where c0 = 1/2 for simplicity. By Lemmas 2.7-2.9, there is an
event E

n

such that P (Ec

n

) = o(n�3) and that over E
n

, for all 1  k  K,
(B.3)
k⌘̂

k

� ⌘
k

k2  C log(n)k✓k1k✓k33/k✓k6, k⇥�1(⌘̂
k

� ⌘
k

)k2  C log(n)err
n

,

and

(B.4) |V \ Ŝ|  C log(n)err
n

.

Especially, combining (B.3) and (2.12), k⌘̂
k

k ⇠ k⌘
k

k = 1. To show the claim,
it is su�cient to show that over the event E

n

, kR̂⇤ �Rk2
F

 C log3(n)err
n

.
To this end, we write

kR̂⇤ �Rk2
F

= U1 + U2,

where U1 is the sum of squares of the `2-norms of all “ill-behaved” rows of
R̂⇤ �R, and U2 is that of all “well-behaved” rows.

Consider U1. For any i /2 Ŝ and 1  k  K�1, it is seen that |R̂⇤(i, k)| 
T
n

and |R(i, k)|  |⌘
k+1(i)/⌘1(i)|  C, where T

n

= log(n) and we have used
Lemma 2.1 and (2.15). Combining these with Lemma 2.9 and (2.14),

(B.5) U1  C log2(n)|V \ Ŝ|  C log3(n)err
n

.

Consider U2. Recall that for any i 2 Ŝ,

(B.6) |⌘̂1(i)/⌘1(i)� 1|  1/2.

Since |R(i, k)|  C, |R̂⇤(i, k)�R(i, k)|  |R̂(i, k)�R(i, k)|. Write

(B.7) R̂(i, k)�R(i, k) =
k⌘̂1k

k⌘̂
k+1k

⌘̂
k+1(i)

⌘̂1(i)
� ⌘

k+1(i)

⌘1(i)
=

k⌘̂1k
k⌘̂

k+1k
(I+II+III),

where

I = (⌘̂
k+1(i)� ⌘

k+1(i))/⌘1(i), II = ⌘̂
k+1(i)(⌘1(i)� ⌘̂1(i))/(⌘̂1(i)⌘1(i)),

and
III = (1� k⌘̂

k+1k/k⌘̂1k)⌘k+1(i)/⌘1(i).

Recall that k⌘̂
k

k ⇠ 1 for all 1  k  K.
Now, first, by Lemma 2.6,

(B.8) |I|  C|⌘̂
k+1(i)� ⌘

k+1(i)|/✓(i).
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Second, write II = IIa+ IIb, where

IIa =
⌘
k+1(i)(⌘1(i)� ⌘̂1(i))

⌘̂1(i)⌘1(i)
, IIb =

[⌘̂
k+1(i)� ⌘

k+1(i)][⌘1(i)� ⌘̂1(i)]

⌘̂1(i)⌘1(i)
.

By Lemma 2.1, Lemma 2.6, and (B.6), |⌘
k+1(i)/[⌘̂1(i)⌘1(i)]|  C/✓(i) and

|[⌘1(i)� ⌘̂1(i)]/[⌘̂1(i)⌘1(i)]|  C/✓(i). Therefore, |IIa|  C|⌘̂1(i)�⌘1(i)|/✓(i)
and |IIb|  C|⌘̂

k+1(i)� ⌘
k+1(i)|/✓(i). Combining these gives

(B.9) |II|  C
⇥
|⌘̂1(i)� ⌘1(i)|+ |⌘̂

k+1(i)� ⌘
k+1(i)|

⇤
/✓(i).

Third, recalling k⌘
k

k = 1 and k⌘̂
k

k ⇠ 1 for all 1  k  K and using triangle
inequality,
��1� k⌘̂

k+1k/k⌘̂1k
�� .

��k⌘̂1k � k⌘̂
k+1k

�� 
��k⌘̂1k � k⌘1k

��+
��k⌘̂

k+1k � k⌘
k+1k

��,

where the right hand side does not exceed k⌘̂1�⌘1k+k⌘̂
k

�⌘
k

k. At the same
time, recall that ⌘

k+1(i)/⌘1(i)  C. Combining these gives

(B.10) |III|  C[k⌘̂1 � ⌘̂
k+1k]  C[k⌘̂1 � ⌘1k+ k⌘̂

k+1 � ⌘
k+1k].

Inserting (B.8)-(B.10) into (B.7), |R̂(i, k)�R(i, k)| does not exceed

C
� 1

✓(i)

⇥
|⌘̂1(i)� ⌘1(i)|+ |⌘̂

k+1(i)� ⌘
k+1(i)|

⇤
+ k⌘̂1 � ⌘1k+ k⌘̂

k+1 � ⌘
k+1k

�
.

Therefore, over the event E
n

,

U2  C
KX

k=1

�
k⇥�1(⌘̂

k

� ⌘
k

)k2 + nk⌘̂
k

� ⌘
k

k2
�
.

Combining this with (B.3) gives

(B.11) U2  C log(n)[err
n

+ nk✓k33k✓k1/k✓k6].

Note that nk✓k1/k✓k2 
P

n

i=1(1/✓(i)). Therefore, nk✓k33k✓k1/k✓k6  err
n

by definitions. Combining this with (B.5) and (B.11) gives the claim.

B.3. Proof of Theorem 2.2. Without loss of generality, assume K >
2. The proof for the case K = 2 is the same, except for that R̂⇤, R, and M⇤

are vectors rather than matrices, so that we have to change the terminology
slightly. The following lemma is proved in Section C.

Lemma B.3. The n⇥(K�1) matrix R has exactly K distinct rows, and

the `2-distance between any two distinct rows is no smaller than

p
2.
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We now show Theorem 2.2. For 1  i  n, let r̂
i

, r
i

, and c
i

denote the
i-th row of R̂⇤, R, and M⇤ correspondingly. Fixing � =

p
2/3, we introduce

a subset of V by W = {1  i  n : kr̂
i

�m
i

k  �, kr
i

�m
i

k  �}. Recalling
that V partitions to K communities V (1), V (2), . . . , V (K), we note that W
has a similar partition W = W (1)[W (2)[ . . .W (K), where W (k) = V (k)\W ,
1  k  K.

By Theorem 2.1, there is an event B such that P (Bc) = o(n�2), and over
the event B,

(B.12) kR̂⇤ �Rk2
F

 C log3(n)err
n

.

Note that the n ⇥ (K � 1) matrix R has exactly K unique rows so R 2
M

n,K�1,K . By how the k-means procedure is constructed, kR̂⇤ � M⇤k
F


kR̂⇤�Rk

F

, and so kR�M⇤k
F

 kR̂⇤�Rk
F

+ kR̂⇤�M⇤k
F

 2kR̂⇤�Rk
F

.
Combining this with (B.12),

(B.13) kM⇤ �Rk2
F

 4kR̂⇤ �Rk2
F

 C log3(n)err
n

.

Combining this with (B.12), it follows from the definition of W that |V \
W |  C log3(n)err

n

. Comparing this with the desired claim, it is su�cient
to show that all nodes in W are correctly labeled; equivalently, this is to
show that for any i, j 2 W such that i 2 W (k) and j 2 W (`),

(B.14) m
i

= m
j

if and only if k = `.

We now show (B.14). First, by definitions and (B.12)-(B.13), the cardinal-
ity of (V (k) \W (k)) does not exceed ��2P

i2V (k)(kr̂
i

� r
i

k2 + km
i

� r
i

k2) 
C log3(n)err

n

. Recall that we assume log3(n)err
n

⌧ min{n1, n2, . . . , n
k

}.
Combining these, W (k) is non-empty. Second, by Lemma B.3 and defini-
tions, for any i, j 2 W such that i 2 W (k), j 2 W (`), where 1  k, `  K
and k 6= `,

(B.15) km
i

�m
j

k � kr
i

� r
j

k � (km
i

� r
i

k+ km
j

� r
j

k) � �.

Therefore, if m
i

= m
j

for some i, j 2 W , then there is a 1  k  K such that
i, j 2 W (k). Suppose we pick one node j

k

from each W (k), 1  k  K. By
(B.15), the K row vectors {m

j1 , ...,mjK} are distinct. Note that the matrix
M⇤ has at most K distinct rows, so if i, j 2 W (k) for some 1  k  K, then
m

i

= m
j

. Combining these gives (B.14).

APPENDIX C: PROOF OF SECONDARY LEMMAS

In this section, we prove all the lemmas in the preceding sections.
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C.1. Proof of Lemmas 2.1. Fix 1  k  K. Let �
k

be the nonzero
eigenvalue of ⌦ with the k-th largest magnitude, let ⌘

k

be one of the (unit-
norm) eigenvector associated with �

k

, and let a
k

be the K ⇥ 1 vector such
that a

k

(i) = (✓(i)/k✓(i)k, ⌘
k

). In our model, we can rewrite ⌦ as

(C.16) ⌦ = k✓k2
KX

i,j=1

(DPD)(i, j)
� ✓(i)

k✓(i)k
�� ✓(j)

|✓(j)k
�0
,

and so by basic algebra and notations,
(C.17)

⌦⌘
k

= k✓k2
KX

i,j=1

(DPD)(i, j)(
✓(j)

k✓(j)k
, ⌘

k

)
✓(i)

k✓(i)k
= k✓k2

KX

i,j=1

(DPD)(i, j)a
k

(j)
✓(i)

k✓(i)k
.

At the same time, since ⌦⌘
k

= �
k

⌘
k

,

(C.18) a
k

(i) = (✓(i)/k✓(i)k, ⌘
k

) =
1

�
k

(✓(i)/k✓(i)k,⌦⌘
k

).

Note that {✓(i)/k✓(i)k}K
i=1 is an orthonormal base. Inserting (C.17) to the

right hand side of (C.18) gives a
k

(i) = (k✓k2/�
k

)
P

K

j=1(DPD)(i, j)a
k

(j), or
in matrix form,

(C.19) DPDa
k

= (�
k

/k✓k2)a
k

.

This says that �
k

/k✓k2 is an eigenvalue of DPD and a
k

is one of the asso-
ciated eigenvector. Moreover, inserting (C.19) into to the right hand side of
(C.17) and recalling ⌦⌘

k

= �
k

⌘
k

,

⌘
k

=
1

�
k

⌦⌘
k

=
KX

i=1

a
k

(i)✓(i)/k✓(i)k,

and so ka
k

k2 = k⌘
k

k2 = 1. By our assumptions, all eigenvalues of DPD are
simple. It follows that a

k

is unique determined up to a factor of ±1.

C.2. Proof of Lemma 2.2. By the definition of DCBM and (2.8), we
have that kdiag(⌦)k  ✓2

max

, where ✓
max

 g0 < 1. Note that by (2.11)-
(2.12), ✓

max

k✓k1 ! 1. It follows that

kdiag(⌦)k = o(
p
log(n)✓

max

k✓k1).

Therefore, to show the claim, it is su�cient to show that with probability
at least 1 + o(n�3),

kWk  3
p
log(n)✓

max

k✓k1.
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Let e
i

be the n ⇥ 1 vector such that e
i

(j) = 1 if i = j and 0 otherwise.
Write W =

P
1i<jn

Z(i,j), where Z(i,j) = W (i, j)[e
i

e0
j

+ e
j

e0
i

]. Let �2 =

k
P

1i<jn

E[(Z(i,j))2]k. By elementary statistics and (2.8), E[W 2(i, j)] 
✓(i)✓(j). At the same time,

E[(Z(i,j))2] = E[W (i, j)2] · [e
i

e0
j

+ e
j

e0
i

]2 = E[W (i, j)2] · [e
i

e0
i

+ e
j

e0
j

].

Combining these gives that �2  ✓
max

k✓k1. Fix q > 0. Applying Theorem
B.1 with Z(i,j) = W (i, j)[e

i

e0
j

+ e
j

e0
i

], h0 = 1, �2 = k
P

i<j

E[(Z(i,j))2]k, and
t =

p
2q log(n)✓

max

k✓k1,

P (kWk �
p
2q log(n)✓

max

k✓k1)  2nexp


� q log(n)

1 + (1/3)
p
2q log(n)/(✓

max

k✓k1)

�
.

Note that ✓
max

k✓k1 � k✓k2, and that k✓k2/ log(n) ! 1 as in the assumption
(2.11). It follows that q log(n)/(✓

max

k✓k1) ! 0, and the claim follows by
taking q = 9/2.

C.3. Lemma 2.4. Let �1 > �2 > . . . > �
K

be the K nonzero eigen-
values of ⌦. By Lemma 2.3 and (2.14)-(2.15), for all 1  k  K � 1,
|�

k+1 � �
k

| � Ck✓k2, At the same time, by Lemma 2.2 and (2.11), it fol-
lows from basic algebra (e.g., [1, Page 473]) that with probability at least
1 + o(n�3),

(C.20) |�̂
k

� �
k

|/k✓k2 = o(1),

and so all the K eigenvalues are simple.
Now, fixing 1  k  K, let ⌘̂

k

be an eigenvector (the norms of which are
not necessarily 1) associated with �̂

k

. Writing for short ✓̂(i,k) = [I
n

� (W �
diag(⌦))/�̂

k

]�1✓(i), we let b̂
k

be the K ⇥ 1 vector such that

b̂
k

(i) = (✓(i)/k✓(i)k, ⌘̂
k

), 1  i  K,

and let
â
k

= (B(k))�1b̂
k

.

Since A⌘̂
k

= �̂
k

⌘
k

and A = ⌦+ (W � diag(⌦)), it follows that

⌘̂
k

= [�̂
k

I
n

� (W � diag(⌦))]�1⌦⌘̂
k

.

Recall that (e.g., (C.16)) ⌦ = k✓k2
P

K

i,j=1(DPD)(i, j)(✓(i)/k✓(i)k)(✓(j)/k✓(j)k)0.
Combining these and rearranging,

(C.21) ⌘̂
k

= (
k✓k2

�̂
k

)
KX

i=1

✓
KX

j=1

(DPD)(i, j)b̂
k

(j)

◆
· ✓̂

(i,k)

k✓(i)k

�
.
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Recall that B(k)(`, i) = (✓(`))0[I
n

�(W �diag(⌦))/�̂
k

]�1✓(i)/[k✓(`)k ·k✓(i)k] ⌘
(✓(`))0✓̂(i,k)/[k✓(`)k · k✓(i)k]. Taking the inner product of two sides in (C.21)
with ✓(`)/k✓(`)k, it follows from the definitions of b̂

k

that for any 1  `  K,

b̂
k

(`) = (
k✓k2

�̂
k

)
KX

i,j=1

B(k)(`, i)(DPD)(i, j)b̂
k

(j) = (
k✓k2

�̂
k

)
nX

j=1

(B(k)DPD)(`, j)b̂
k

(j),

or in matrix form,

b̂
k

= (
k✓k2

�̂
k

)B(k)DPDb̂
k

.

This means that �̂
k

/k✓k2 is an eigenvalue of B(k)DPD and b̂
k

is one of
the associated eigenvector. Recall that â

k

= (B(k))�1b̂
k

. By basic algebra,
�̂
k

/k✓k2 is an eigenvalue of DPDB(k), and â
k

is one of the associated eigen-
vectors. Especially,

(C.22) DPDb̂
k

= DPDB(k)â
k

= [�̂
k

/k✓k2]â
k

.

Inserting (C.22) into (C.21) and rearranging,

⌘̂
k

=
KX

i=1

â
k

(i) · ✓̂(i,k)/k✓(i)k.

We now check the uniqueness of �̂
k

. By Lemma C.1 to be introduced be-
low and (2.12), kB(k) � I

K

k
F

 C log(n)k✓k1k✓k33/k✓k6 = o(1). By similar
argument as in (C.20), eigsp(DPD) � C. Combining these with basic alge-
bra (e.g., [1, Page 473]), all eigenvalues of DPDB(k) are simple, and b̂

k

(and
so �̂

k

, â
k

, and ⌘̂
k

) are uniquely determined up to some scaling factors. If we
further require kâ

k

k = 1, then â
k

, b̂
k

, and ⌘̂
k

are all uniquely determined, up
to a common factor that takes values from {�1, 1}. This gives the claim.

C.4. Proof of Lemma 2.6. Recall that D is a diagonal matrix where
the k-th diagonal is the k-th coordinate of the K ⇥ 1 vector d(n), equalling
k✓(k)k/k✓k, 1  k  K; the superscript “(n)” emphasizes the dependence

on n (same below). By Lemma 2.1, ⇥�1⌘1 =
P

K

k=1[a
(n)
1 (k)/k✓(k)k]1

k

, where

a(n)1 is the eigenvector associated with the largest eigenvalue of DPD. By
(2.14), to show the lemma, it su�ces to show that for su�ciently large n,

(C.23) OSC(a(n)1 )  C.

Note that in the special case where d(n) does not depend on n, the
claim follows directly by Perron’s theorem [2, Page 508], since DPD is
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non-negative and irreducible. Consider the general case where d(n) may
depend on n. If (C.23) does not hold, then we can find a subsequence of
n 2 {1, 2, . . . , } such that along this sequence, there are two K ⇥ 1 vectors

d0 and a such that (a) OSC(a(n)1 ) ! 1, (b) d(n) ! d0, and (c) a(n)1 ! a.
By the condition (2.15), OSC(d0)  C, and a direct use of of Perron’s theo-
rem [2, Page 508] implies that OSC(a)  C. This contradicts with (a). The
contradiction proves (C.23) and the claim follows.

C.5. Proof of Lemmas 2.7-2.8. Write ✓̂(i,k) = [I
n

�(W�diag(⌦))/�̂
k

]�1✓(i)

for short. In our notations,

(C.24) ⌘
k

=
KX

i=1

[a
k

(i)/k✓(i)k]✓(i), ⌘̂
k

=
KX

i=1

[â
k

(i)/k✓(i)k]✓̂(i,k),

where a
k

are the eigenvectors ofDPD and â
k

are the eigenvectors ofDPD(B(k)).
To show the claim, we first characterize kâ

k

� a
k

k, and then characterize
k✓̂(i,k) � ✓(i)k.

Consider kâ
k

� a
k

k first. Let I
K

be the K ⇥ K identity matrix. The
following lemma is proved below (implicitly, we assume that in Lemma C.1,
the conditions of Lemmas 2.7-2.8 hold; same for Lemmas C.3-C.4).

Lemma C.1. With probability at least 1 + o(n�3),

kB(k) � I
K

k
F

 C log(n)(k✓k1 · k✓k33)/k✓k6.

Note that by (2.11), the right hand side tends to 0 as n ! 1.
We also need a lemma on eigenvector sensitivity. Suppose U and Err are

both symmetric K⇥K matrix where kErrk < (1/2)eigsp(U), so that all the

eigenvalues of U and U + Err are simple. Let �(1)1 > �(1)2 > . . . > �(1)
K

and

�(2)1 > �(2)2 > . . . > �(2)
K

be the eigenvalues of U and U + Err, respectively,

and let ⇠(1)2 , ⇠(1)2 , . . . , ⇠(1)
K

and ⇠(1)1 , ⇠(2)2 , . . . , ⇠(2)
K

be the corresponding (unit-
norm) eigenvectors, of U and U +Err, respectively. The following lemma is
proved below.

Lemma C.2. If kErrk < eigsp(U)/2, then for any 1  k  K, k⇠(1)
k

�
⇠(2)
k

k  2
p
2 kErrk
eigsp(U) .

Note that kDPDk  C. Using Lemma C.1 and basic algebra, with prob-
ability at least 1 + o(n�3),

kDPD(B(k))�DPDk  Ck(B(k))� I
K

k  C log(n)(k✓k1 · k✓k33)/k✓k6.
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Applying Lemma C.2 with U = DPD and Err = DPD[(B(k)) � I
K

], it
follows from the eigen-space condition (2.14) that with probability at least
1 + o(n�3), for 1  k  K,

kâ
k

� a
k

k  CkErrk  C log(n)(k✓k1 · k✓k33)/k✓k6.

By (2.11), the right hand side tends to 0, so

(C.25) kâ
k

� a
k

k2  kâ
k

� a
k

k  C log(n)(k✓k1 · k✓k33)/k✓k6.

Next, we consider k✓̂(i,k)� ✓(k)k. The following lemmas are proved below.

Lemma C.3. With probability at least 1 + o(n�3), for all 1  k, i  K,

k✓̂(i,k) � ✓(i)k2  C log(n)k✓k1k✓k33/k✓k4.

Lemma C.4. With probability at least 1 + o(n�3), for any 1  k, i  K,

k⇥�1(✓̂(i,k) � ✓(i))k2  C log(n)
k✓k33
k✓k4

⇥ nX

i=1

1

✓(i)
+

1

✓
min

log(n)k✓k21
k✓k4

⇤
.

We now show Lemmas 2.7-2.8. Consider Lemma 2.7 first. By (C.24) and
basic algebra,

k⌘̂
k

� ⌘
k

k2  C(I + II),

where I =
P

K

i=1 â
2
k

(i)(k✓̂(i,k)�✓(i)k2/k✓(i)k2), and II =
P

K

i=1(âk(i)�a
k

(i))2 =
kâ

k

� a
k

k2. Since â
k

has unit norm and k✓(i)k2 � Ck✓k2, combining these
with (C.25) and Lemma gives

k⌘̂
k

� ⌘
k

k2  C log(n)[k✓k1 · k✓k33]/k✓k6,

and the claim follows.
Next, consider Lemma 2.8. Similarly, k⇥�1[⌘̂

k

�⌘
k

]k2  C(I+ II), where
I =

P
K

i=1 â
2
k

(i)(k⇥�1[✓̂(i,k)�✓(i)]k2/k✓(i)k2), and II =
P

K

i=1 |âk(i)�a
k

(i)|2k1
i

k2/k✓(i)k2.
By Lemma C.4 and similar argument,

k⇥�1[⌘̂
k

� ⌘
k

]k2  C log(n)
k✓k33
k✓k6

⇥ nX

i=1

1

✓(i)
+

log(n)

✓
min

k✓k21
k✓k4 +

nk✓k1
k✓k2

⇤
.

Note that nk✓k1  k✓k2
P

n

i=1
1

✓(i) , it follows that

k⇥�1[⌘̂
k

� ⌘
k

]k2  C log(n)
k✓k33
k✓k6

⇥ nX

i=1

1

✓(i)
+

log(n)

✓
min

k✓k21
k✓k4

⇤
,

and the claim follows by the definition of err
n

; see (2.18).
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C.6. Proof of Lemma B.1. Similar to that in the proof of Lemma
2.2, let e

i

be the n ⇥ 1 vector such that e
i

(j) = 1 if i = j and 0 otherwise.
Write ⇥�1W =

P
i<j

Z(i,j), where Z(i,j) = W (i, j)⇥�1[e
i

e0
j

+ e
j

e0
i

]. Let

�2 = max{k
X

1i<jn

E[Z(i,j)(Z(i,j))0]k, k
X

1i<jn

E[(Z(i,j))0Z(i,j)]k}.

First, by (2.8) and basic statistics, E[W 2(i, j)]  ✓(i)✓(j). It is seen

E[Z(i,j)(Z(i,j))0] = E[W 2(i, j)]⇥�1[e
i

e0
j

+e
j

e0
i

]2⇥�1 = E[W 2(i, j)]⇥�1[e
i

e0
i

+e
j

e0
j

]⇥�1,

which is a diagonal matrix, where the i-th diagonal  ✓(j)/✓(i), the j-th di-
agonal ✓(i)/✓(j), and all other diagonals are 0. Therefore,

P
1i<jn

E[Z(i,j)(Z(i,j))0]
is a diagonal matrix where the i-th coordinate does not exceed k✓k1/✓(i),
and the matrix norm of which  ✓�1

min

k✓k1.
Second, we similarly have

E[(Z(i,j))0Z(i,j)] = E[W 2(i, j)][e
i

e0
j

+ e
j

e0
i

]⇥�2[e
i

e0
j

+ e
j

e0
i

],

which is a diagonal matrix where the i-th coordinate does not exceed ✓(i)/✓(j),
the j-th coordinate  ✓(j)/✓(i). As a result,

P
1i<jn

E[(Z(i,j))0Z(i,j)] is a
diagonal matrix where the i-th coordinate does not exceed ✓(i)

P
n

j=1(1/✓(j)),
and the matrix norm  ✓

max

P
n

i=1(1/✓(i)). Combining these gives

�2  max
� 1

✓
min

k✓k1, ✓max

nX

i=1

1

✓(i)

 
⌘ �20.

Fix q > 0. Applying Theorem B.1 with h0 = 1/✓
min

and t = �0
p

2q log(n)
gives

P (k⇥�1Wk � �0
p
2q log(n))  2nexp


� q log(n)

1 + (1/3)
p
2q log(n)✓�1

min

/�0

�
.

By (B.2), log(n)✓�2
min

 �20, and the claim follows by picking q to be a
su�ciently large constant.

C.7. Proof of Lemma B.2. Let Y1, Y2, . . . , Yn be independent random
variables with |Y

k

|  b, E[Y
k

] = 0, and var(Y
k

)  �2
k

for 1  k  n. Write for
short �2 = �21 + . . .�2

n

. We claim that with probability at least 1 + o(1/n3),

(C.26) |
nX

i=1

Y
i

|2  C log(n)max{�2, log(n)b2}.
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In detail, using Bennett’s Lemma [4, Page 851], for all � > 0,

P (|
nX

i=1

Y
i

| � �) 
⇢

2exp(� c0
2�2�2), �b  �2,

2exp(� c0
2

�

b

), �b � �2.

where c0 =  (1), with  as in [4, Page 851]; note that c0 ⇡ 0.773. Now,
when �/b � 2

p
2 log(n), we take � = 2

p
2 log(n)�. It is seen �b  �2, and

so

P (
��

nX

i=1

Y
i

�� � �)  2exp(�4c0 log(n)) = o(n�3).

When �/b < 2
p
2 log(n), we take � = 8b log(n). It is seen �b � �2. It follows

that

P (
��

nX

i=1

Y
i

�� � �)  2exp(�4c0 log(n)) = o(n�3).

Combining these, except for a probability of o(n�3),

��
nX

i=1

Y
i

��  2
p

2 log(n)�1{�/b � 2
p
2 log(n)}+8b log(n)1{�/b < 2

p
2 log(n)},

and (C.26) follows.
We now show Lemma B.2. The last item follows directly from (C.26), and

the proofs for first two items are similar, so we only show the second item.
Let e

i

be the n ⇥ 1 vector such that e
i

(j) = 0 if i = j and 0 otherwise.
Write kW✓(k)k2 =

P
n

i=1(e
0
i

W✓(k))2. For each fixed i, applying (C.26) to
Y
j

= W (i, j)✓(k)(j), b = ✓
max

, and �2 = E[(
P

j2V (k) ✓(j)W (i, j))2], we have

that with probability at least 1 + o(1/n3),

|e0
i

W✓(k)|2  C log(n)max{�2, log(n)✓2
max

}.

Now, direct calculation shows that �2  ✓(i)k✓k33. It follows that with prob-
ability at least 1 + o(n�2) that

kW✓(k)k2  C log(n)
nX

i=1

max{✓(i)k✓k33, log(n)✓2max

},

and the claim follows by the first MDV assumption in (B.1).
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C.8. Proof of Lemma B.3. We expand R to be an n⇥K matrix by
adding a column of ones to the left. For notational simplicity, we still call
the matrix by R. It is su�cient to show that R has exactly K distinct rows,
and the `2-distance for each pair of such distinct rows is no smaller than

p
2.

With the new notations, since ⇥ is a diagonal matrix, for any 1  i  n
and 1  k  K,

R(i, k) =
⌘
k

(i)

⌘1(i)
=

(⇥�1⌘
k

)(i)

(⇥�1⌘1)(i)
,

where ⌘1, ⌘2, . . . , ⌘K are the K leading eigenvectors of ⌦. Combining this
with Lemma 2.1 and recalling that d

j

= k✓(j)k/k✓k,

R(i, k) =

P
K

j=1 ak(j)1j(i)/djP
K

j=1 a1(j)1j(i)/dj
,

which equals to a
k

(`)/a1(`) if and only if node i belongs to the `-th com-
munity V (`), ` = 1, 2, . . . ,K. It is now evident that R has K distinct rows,
each is one of the following row-vectors:

1

a1(`)

�
a1(`), a2(`), . . . , aK(`)

�
, ` = 1, 2, . . . ,K.

Fix k 6= `. The square of the `2-distance between the vector 1
a1(k)

�
a1(k), . . . , aK(k)

�

and the vector 1
a1(`)

�
a1(`), . . . , aK(`)

�
is

1

a21(k)

KX

j=1

a2
j

(k) +
1

a21(`)

KX

j=1

a2
j

(`)� 2

a1(k)a1(`)

KX

j=1

a
j

(k)a
j

(`).

Since a1, a2, . . . , aK form an orthonormal base,
P

K

j=1 a
2
j

(k) = 1,
P

K

j=1 a
2
j

(`) =

1, and
P

K

j=1 aj(k)aj(`) = 0. Therefore, the square of the `2-distance between

these two vectors is a�2
1 (k) + a�2

1 (`) and the claim follows since |a1(k)|  1
and |a1(`)|  1.

C.9. Proof of Lemma C.1. Write for short U = diag(⌦) and H =
(W�diag(⌦))/�̂

k

. For 1  i, j  K, B(k)(i, j) = (✓(i))0[I
n

�H]�1✓(j)/(k✓(i)k·
k✓(j)k). By (2.15), for all 1  i  K, k✓(i)k ⇣ k✓k. All we need to show is
(C.27)��(✓(i))0[(I

n

�H)�1 � I
n

]✓(j)
��  C log(n)k✓k1k✓k33/k✓k4, 1  i, j  K;

note that (✓(i))0✓(j) = k✓(i)k2 if i = j and 0 otherwise.
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Write

(C.28) (✓(i))0[(I
n

�H)�1 � I
n

]✓(j) = I + II,

where
I = (✓(i))0H✓(j), II = (✓(i))0H[I

n

�H]�1H✓(j).

Consider I first. By H = (W � U)/�̂
k

, we have

(C.29) I =
1

�̂
k

(Ia� Ib),

where Ia = (✓(i))0W✓(j), Ib = (✓(i))0U✓(j). First, by (2.8) and that all ✓(i) 
1, |Ib|  k✓k44  k✓k33 with probability at least 1 + o(n�3). Second, by
Lemma B.2, Ia  C

p
log(n) max{k✓k33,

p
log(n)✓2

max

}. Last, by (2.16), with

probability at least 1+o(n�3), |�̂
k

| ⇣ k✓k2. Inserting these into (C.29) gives

(C.30) |I|  C
p
log(n)max{k✓k33,

p
log(n)✓2

max

}/k✓k2.

Consider II next. First, by Schwartz inequality, |II|  k(I
n

�H)�1/2H✓(i)k·
k(I

n

� H)�1/2H✓(j)k. Second, by (2.11) and Lemma 2.3, with probability
at least 1 + o(n�3), kI

n

� Hk�1/2 . 1 and �̂
k

⇣ k✓k2. Therefore, for any
1  i  K, k(I

n

�H)�1/2H✓(i)k2 does not exceed

1

�̂2
k

k(I
n

�H)�1/2(W�U)✓(i)k2  Ck(W�U)✓(i)k2/k✓k4  (IIa+IIb)/k✓k4,

where IIa = kW✓(i)k2 and IIb = kU✓(i)k2. Now, on one hand, by Lemma
B.2, with probability at least 1 + o(n�3),

kW✓(i)k2  C log(n)k✓k1k✓k33.

On the other hand, by basic algebra and that k✓(i)k1 < 1,

kU✓(i)k2  k✓k66  k✓k33.

Note that by (2.11)-(2.12), log(n)k✓k1 � k✓k4 � 1. Combining these gives
that with probability at least 1 + o(1/n2),

(C.31) |II|  C log(n)k✓k1k✓k33/k✓k4.

Inserting (C.30) and (C.31) into (C.28) gives that with probability at least
1 + o(1/n2),
(C.32)
��(✓(i))0[(I

n

�H)�1�I
n

]✓(j)
��  C log(n)

k✓k4 [max{k✓k33,
p
log(n)✓2

max

}k✓k2+k✓k1k✓k33].
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Write max{k✓k33,
p
log(n)✓2

max

}k✓k2  k✓k33k✓k2 +
p

log(n)✓2
max

k✓k2. First,
since k✓k1 < 1, k✓k2k✓k33  k✓k1k✓k33. Second, by (2.11),

p
log(n)✓2

max

k✓k2 
k✓k4  k✓k33k✓k1. Inserting these into (C.32) gives (C.27) and the claim fol-
lows.

C.10. Proof of Lemma C.2. By the assumptions and elementary al-

gebra, it is seem that (�(1)
k

, ⇠(1)
k

) and (�(2)
k

, ⇠(2)
k

) take real values. By defini-

tions, (U + Err)⇠(2)
k

= �(2)
k

⇠(2)
k

, and so

(⇠(2)
k

)0[�(2)
k

I
K

� U ]2⇠(2)
k

= (⇠(2)
k

)0(Err)2⇠(2)
k

.

Since {⇠(1)1 , ⇠(1)2 , . . . , ⇠(1)
K

} constitute an orthonormal base, we have

(⇠(2)
k

)0[�(2)
k

I
K

�U ]2⇠(2)
k

=
KX

i=1

(�(2)
k

��(1)
i

)2(⇠(2)
k

, ⇠(1)
i

)2 �
X

i 6=k

(�(2)
k

��(1)
i

)2(⇠(2)
k

, ⇠(1)
i

)2.

Combining these gives

(C.33)
X

i 6=k

(�(2)
k

� �(1)
i

)2(⇠(2)
k

, ⇠(1)
i

)2  (⇠(2)
k

)0(Err)2⇠(2)
k

 kErrk2.

By the assumption of kErrk  (1/2)eigsp(U), for all 1  i  K and i 6= k,

|�(2)
k

� �(1)
i

| � (1/2)eigsp(U). Inserting this into (C.33) gives

X

i 6=k

(⇠(2)
k

, ⇠(1)
i

)2  4kErrk2/eigsp(U)2.

Since (⇠(2)
k

, ⇠(1)
k

)2 = 1 �
P

i 6=k

(⇠(2)
k

, ⇠(1)
i

)2, it follows that (⇠(2)
k

, ⇠(1)
k

)2 � 1 �
4kErrk2/eigsp(U)2, and the claim follows by basic algebra.

C.11. Proof of Lemma C.3. Write for short U = diag(⌦) and H =
(W � diag(⌦))/�̂

k

. Similarly, write

✓̂(i,k) � ✓(i) = [(I
n

�H)�1 � I
n

]✓(i) = (I
n

�H)�1H✓(i).

By Lemma 2.3, with probability at least 1 + o(n�3), kHk = o(1),

(C.34) k✓̂(i,k) � ✓(i)k  k(I
n

�H)�1kkH✓(i)k . kH✓(i)k.

Next, by (2.16), with probability at least 1 + o(n�3), �̂
k

⇣ k✓k2. It follows
from basic algebra that

(C.35) kH✓(i)k2  1

�̂2
k

(I + II)  C(I + II)/k✓k4,
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where I = kW✓(i)k2 and II = kU✓(i)k2. Note that, first, since k✓k1 < 1,

(C.36) II  k✓k66  k✓k33.

Second, by the assumption (B.1) and Lemma B.2, with probability at least
1 + o(n�3),

(C.37) I  C log(n)k✓k1k✓k33.

Combining (C.36)-(C.37) with (C.34)-(C.35) gives

(C.38) k✓̂(i,k) � ✓(i)k2  C log(n)(k✓k1 + 1)k✓k33/k✓k4.

By (2.11) and basic algebra, k✓k1 � k✓k2 � log(n), and so k✓k1+1  2k✓k1.
Inserting this into (C.38) gives the claim.

C.12. Proof of Lemma C.4. Write for short U = diag(⌦) and H =
(W � diag(⌦))/�̂

k

. Since (I
n

�H)�1 � I
n

= H +H(I
n

�H)�1H, it follows
from definitions and basic algebra that

(C.39) k⇥�1[✓̂(i,k) � ✓(i)]k2 = k⇥�1[(I
n

�H)�1 � I
n

]✓(i)k2  2(I + II),

where

I = k⇥�1H✓(i)k2, II = k⇥�1H(I
n

�H)�1H✓(i)k2.

Consider I first. Similarly, by Lemma 2.3, with probability at least 1 +
o(n�3), �̂

k

⇣ k✓k2, and so

(C.40) I =
1

�̂2
k

k⇥�1W✓(i) �⇥�1U✓(i)k  C

k✓k4 [Ia+ Ib],

where
Ia = k⇥�1W✓(i)k2, Ib = k⇥�1U✓(i)k2.

Now, first, since k✓k1 < 1,

(C.41) Ib  k✓k44  k✓k33.

Second, by (B.1) and Lemma B.2, with probability at least 1 + o(n�3),

(C.42) Ia  C log(n)k✓k33
nX

i=1

(1/✓(i)).
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Inserting (C.41)-(C.42) into (C.40) gives that with probability at least 1 +
o(n�3),

(C.43) I  C log(n)
k✓k33
k✓k4 ·


1 +

nX

i=1

1

✓(i)

�
 C log(n)

k✓k33
k✓k4 ·


nX

i=1

1

✓(i)

�
.

Next, we analyze II. By definitions, II = 1
�̂

4
k

k⇥�1(W�U)(I
n

�H)�1(W�

H)✓(i)k2. Recalling that �̂
k

⇣ k✓k2 with probability at least 1+ o(n�3), and
so by basic algebra,

(C.44) II  1

k✓k8 k⇥
�1(W �U)(I

n

�H)�1(W �U)✓(i)k2  1

k✓k8 IIa · IIb,

where IIa = k⇥�1(W � U)(I �H)�1k2 and IIb = k(W � U)✓(i)k2.
Consider IIa first. By Lemma 2.2, with probability 1 + o(n�3), kHk =

o(1). Therefore,

IIa . k⇥�1(W � U)k2  C
⇥
k⇥�1Wk2 + k⇥�1Uk2

⇤
.

Next, by (B.2) and Lemma B.1, we have with probability at least 1+o(n�3),

k⇥�1Wk2  C log(n)max{✓
max

nX

i=1

1

✓(i)
,

1

✓
min

k✓k1}.

At the same time, it is seen k⇥�1Uk2  1, which is much smaller than the
right hand side of the equation above. Combining these gives

(C.45) IIa  C log(n)max{✓
max

nX

i=1

1

✓(i)
,

1

✓
min

k✓k1}.

Next, we consider IIb. Write

IIb = k(W � U)✓(i)k2  C
⇥
kW✓(i)k2 + kU✓(i)k2

⇤
.

On one hand, by Lemma B.2, with probability at least 1 + o(n�3),

kW✓(i)k2  C log(n)k✓k1 · k✓k33.

On the other hand, since k✓k1 < 1, by definitions and direct calculations,

kU✓(i)k2  k✓k44  k✓k33.
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Recall that that (2.11) implies k✓k1 � k✓k2 � 1. Combining these gives

(C.46) IIb  C log(n)[1 + k✓k1]k✓k23  C log(n)k✓k1 · k✓k33.

Inserting (C.45)-(C.46) into (C.44) gives

(C.47) II  C log2(n)
k✓1k · k✓k33

k✓k8 max{✓
max

nX

i=1

1

✓(i)
,

1

✓
min

k✓k1}.

Inserting (C.43) and (C.47) into (C.39), k⇥�1[✓̂(i,k)�✓(i)]k2 does not exceed

C log(n)k✓k33
k✓k4


nX

i=1

1

✓(i)
+

log(n)k✓k1
k✓k4 max{✓

max

nX

i=1

1

✓(i)
,

1

✓
min

k✓k1}
�
.

By (2.11), log(n)✓
max

k✓k1/k✓k4 ! 0, and so

k⇥�1[✓̂(i,k) � ✓(i)]k2  C log(n)k✓k33
k✓k4


nX

i=1

1

✓(i)
+

1

✓
min

log(n)k✓k21
k✓k4

�
,

and the claim follows.
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