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Consider a linear model Y = Xβ + z, where X = Xn,p and
z ∼ N(0, In). The vector β is unknown and it is of interest to separate
its nonzero coordinates from the zero ones (i.e., variable selection).
Motivated by examples in long-memory time series [11] and change-
point problem [2], we are primarily interested in the case where the
Gram matrix G = X ′X is non-sparse but sparsifiable by a finite order
linear filter. We focus on the regime where signals are both rare and
weak so that successful variable selection is very challenging but is
still possible.

We approach this problem by a new procedure called the Covari-
ance Assisted Screening and Estimation (CASE). CASE first uses
a linear filtering to reduce the original setting to a new regression
model where the corresponding Gram (covariance) matrix is sparse.
The new covariance matrix induces a sparse graph, which guides us to
conduct multivariate screening without visiting all the submodels. By
interacting with the signal sparsity, the graph enables us to decom-
pose the original problem into many separated small-size subprob-
lems (if only we know where they are!). Linear filtering also induces
a so-called problem of information leakage, which can be overcome
by the newly introduced patching technique. Together, these give rise
to CASE, which is a two-stage Screen and Clean [10, 32] procedure,
where we first identify candidates of these submodels by patching
and screening, and then re-examine each candidate to remove false
positives.

For any procedure β̂ for variable selection, we measure the perfor-
mance by the minimax Hamming distance between the sign vectors
of β̂ and β. We show that in a broad class of situations where the
Gram matrix is non-sparse but sparsifiable, CASE achieves the op-
timal rate of convergence. The results are successfully applied to a
long-memory time series model and a change-point model.

∗Supported in part by National Science Foundation DMS-0704337, the National In-
stitute of General Medical Sciences of the National Institutes of Health through Grant
Numbers R01GM100474 and R01-GM072611.
†Supported in part by NSF CAREER award DMS-0908613.
AMS 2000 subject classifications: Primary 62J05, 62J07; secondary 62C20, 62F12.
Keywords and phrases: Asymptotic minimaxity, Graph of Least Favorables (GOLF),

Graph of Strong Dependence (GOSD), Hamming distance, multivariate screening, phase
diagram, Rare and Weak signal model, sparsity, variable selection.

1

ar
X

iv
:1

20
5.

46
45

v2
  [

m
at

h.
ST

] 
 2

5 
A

ug
 2

01
2

http://www.imstat.org/aos/
http://arxiv.org/abs/math.ST/1205.4645


2 T. KE, J. JIN AND J. FAN

1. Introduction. Consider a linear regression model

(1.1) Y = Xβ + z, X = Xn,p, z ∼ N(0, In).

The vector β is unknown but is sparse, in the sense that only a small fraction
of its coordinates is nonzero. The goal is to separate the nonzero coordinates
of β from the zero ones (i.e., variable selection).

We are primarily interested in the case where the Gram matrix G =
X ′X is non-sparse but sparsifiable. We call G sparse if each of its rows
has relatively few ‘large’ elements, and we call G sparsifiable if G can be
reduced to a sparse matrix by some simple operations (e.g. linear filtering
or low-rank matrix removal). The Gram matrix plays a critical role in sparse
inference, as the sufficient statistics X ′Y ∼ N(Gβ,G). Examples where G is
non-sparse but sparsifiable can be found in the following application areas.

• Change-point problem. Recently, driven by researches on DNA copy
number variation, this problem has received a resurgence of interest
[18, 24, 25, 30]. While existing literature focuses on detecting change-
points, locating change-points is also of major interest in many appli-
cations [1, 28, 34]. Consider a change-point model

(1.2) Yi = θi + zi, zi
iid∼ N(0, 1), 1 ≤ i ≤ p,

where θ = (θ1, . . . , θp)
′ is a piece-wise constant vector with jumps

at relatively few locations. Let X = Xp,p be the matrix such that
X(i, j) = 1{j ≥ i}, 1 ≤ i, j ≤ p. We re-parametrize the parameters by

θ = Xβ, where βk = θk − θk+1, 1 ≤ k ≤ p− 1, and βp = θp,

so that βk is nonzero if and only if θ has a jump at location k. The
Gram matrix G has elements G(i, j) = min{i, j}, which is evidently
non-sparse. However, adjacent rows of G display a high level of sim-
ilarity, and the matrix can be sparsified by a second order adjacent
differencing between the rows.
• Long-memory time series. We consider using time-dependent data to

build a prediction model for variables of interest:

Yt =
∑
j

βjXt−j + εt,

where {Xt} is an observed stationary time series and {εt} are white
noise. In many applications, {Xt} is a long-memory process. Examples
include volatility process [11, 27], exchange rates, electricity demands,
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and river’s outflow (e.g. the Niles). Note that the problem can be refor-
mulated as (1.1), where the Gram matrix G = X ′X is asymptotically
close to the auto-covariance matrix of {Xt} (say, Ω). It is well-known
that Ω is Toeplitz, the off-diagonal decay of which is very slow, and
the matrix L1-norm of which diverges as p→∞. However, the Gram
matrix can be sparsified by a first order adjacent differencing between
the rows.

Further examples include jump detections in (logarithm) asset prices and
time series following a FARIMA model [11]. Still other examples include
the factor models, where G can be decomposed as the sum of a sparse
matrix and a low rank (positive semi-definite) matrix. In these examples, G
is non-sparse, but it can be sparsified either by adjacent row differencing or
low-rank matrix removal.

In this paper, motivated by the above examples, we are primarily inter-
ested in the case where G is non-sparse but can be sparsified by a finite-order
linear filtering. However, the idea developed in the paper applies to much
broader settings, where G can be sparsified by some other methods rather
than linear filtering.

When G is non-sparse, many existing variable selection methods face chal-
lenges. Take the lasso [5, 7, 29] for example. The success of the lasso is hinged
on the so-called irrepresentable condition [35], which usually does not hold
in the current setting as the columns of X are strongly dependent. Similar
conclusion can be drawn for other popular approaches, such as the SCAD
[9] (despite that conditions for its success are far less stringent than those
of the lasso) and the Dantzig selector [4].

In this paper, we propose a new variable selection method which we call
Covariance Assisted Screening and Estimation (CASE). The main method-
ological innovation of CASE is to exploit the rich information hidden in the
‘local’ graphical structures among the design variables, which the lasso and
many other procedures do not utilize.

In the core of CASE is covariance assisted multivariate screening. Screen-
ing is a well-known method of dimension reduction in Big Data. However,
most literature to date has been focused on univariate screening or marginal
screening [10, 15]. The major concern for extending marginal screening to
(brute-force) m-variate screening, m > 1, is the computational cost. The
computational complexity is at least O(pm) (excluding the complexity for
obtaining X ′Y from (X,Y ); same below), which is usually unaffordable in
high-dimensional problems. CASE screens only models that has ≤ m nodes
and that form a connected subgraph of GOSD (a graph to be introduced
below). As a result, in a broad context, CASE only has a computational
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cost of p, up to a factor of multi-log(p), and so overcomes the computational
challenge.

We show that CASE achieves asymptotic minimaxity of Hamming dis-
tance, in the very challenging regime where the signals are both rare and
weak; that is, only a small fraction of the coordinates of β is nonzero, and
each nonzero coordinate is relatively small. See for example [31] and the ref-
erences therein. Many recent works on variable selection focus on the regime
where the signals are rare but strong, and usually the probability of exact
support recovery or the oracle property is used to assess the optimality of a
procedure β̂. When signals are both rare and weak, exact support recovery
is usually impossible, and the Hamming distance—which measures the num-
ber of coordinates at which the sign vectors of β and β̂ disagree—is a more
natural criterion for assessing optimality. Compared to many recent works,
the theoretic framework developed in this paper is not only technically more
challenging, but also scientifically more relevant.

Below, first, in Section 1.1, we introduce the Rare and Weak signal model.
We then formally introduce the notion of sparsifiability in Section 1.2. The
starting point of CASE is the use of a linear filter. In Section 1.3, we explain
how linear filtering helps in variable selection by simultaneously maintaining
signal sparsity and yielding the covariance matrix nearly block diagonal. In
Section 1.4, we explain that linear filtering also causes a so-called problem of
information leakage, and how to overcome such a problem by the technique
of patching. After all these ideas are discussed, we formally introduce the
CASE in Section 1.5. The computational complexity, theoretic properties,
and applications of CASE are investigated in Sections 1.6-1.11.

1.1. Rare and Weak signal model. Our primary interest is in the situa-
tions where the signals are rare and weak, and where we have no information
on the underlying structure of the signals. In such situations, it makes sense
to use the following Rare and Weak signal model; see [3, 8, 20]. Fix ε ∈ (0, 1)
and τ > 0. Let b = (b1, . . . , bp)

′ be the p× 1 vector satisfying

(1.3) bi
iid∼ Bernoulli(ε),

and let Θp(τ) be the set of vectors

(1.4) Θp(τ) = {µ ∈ Rp : |µi| ≥ τ, 1 ≤ i ≤ p}.

We model β by

(1.5) β = b ◦ µ,
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where µ ∈ Θp(τ) and ◦ is the Hadamard product (also called the coordinate-
wise product). In Section 1.7, we further restrict µ to a subset of Θp(τ).

In this model, βi is either 0 or a signal with a strength ≥ τ . Since we
have no information on where the signals are, we assume that they appear
at locations that are randomly generated. We are primarily interested in the
challenging case where ε is small and τ is relatively small, so the signals are
both rare and weak.

Definition 1.1. We call Model (1.3)-(1.5) the Rare and Weak signal
model RW(ε, τ, µ).

We remark that the theory developed in this paper is not tied to the Rare
and Weak signal model, and applies to more general cases. For example, the
main results can be extended to the case where we have some additional
information about the underlying structure of the signals (e.g. Ising model
[17]).

1.2. Sparsifiability, linear filtering, and GOSD. As mentioned before, we
are primarily interested in the case where the Gram matrix G can be spar-
sified by a finite-order linear filtering.

Fix an integer h ≥ 1 and an (h+1)-dimensional vector η = (1, η1, . . . , ηh)′.
Let D = Dh,η be the p× p matrix satisfying
(1.6)
Dh,η(i, j) = 1{i = j}+ η11{i = j − 1}+ . . .+ ηh1{i = j − h}, 1 ≤ i, j ≤ p.

The matrix Dh,η can be viewed as a linear operator that maps any p × 1
vector y to Dh,ηy. For this reason, Dh,η is also called an order h linear filter
[11].

For α > 0 and A0 > 0, we introduce the following class of matrices:
(1.7)
Mp(α,A0) = {Ω ∈ Rp×p : Ω(i, i) ≤ 1, |Ω(i, j)| ≤ A0(1+|i−j|)−α, 1 ≤ i, j ≤ p}.

Matrices in Mp(α,A0) are not necessarily symmetric.

Definition 1.2. Fix an order h linear filter D = Dh,η. We say that G
is sparsifiable by Dh,η if for sufficiently large p, DG ∈ Mp(α,A0) for some
constants α > 1 and A0 > 0.

In the long memory time series model, G can be sparsified by an order 1
linear filter. In the change-point model, G can be sparsified by an order 2
linear filter.



6 T. KE, J. JIN AND J. FAN

The main benefit of linear filtering is that it induces sparsity in the Graph
of Strong Dependence (GOSD) to be introduced below. Recall that the suf-
ficient statistics Ỹ = X ′Y ∼ N(Gβ,G). Applying a linear filter D = Dh,η

to Ỹ gives

(1.8) d ∼ N(Bβ,H),

where d = D(X ′Y ), B = DG, and H = DGD′. Note that no information is
lost when we reduce Model (1.1) to Model (1.8).

At the same time, if G is sparsifiable by D = Dh,η, then both the matrices
B and H are sparse, in the sense that each row of either matrix has relatively
few large coordinates. In other words, for a properly small threshold δ > 0
to be determined, let B∗ and H∗ be the regularized matrices of B and H,
respectively:

B∗(i, j) = B(i, j)1{|B(i, j)| ≥ δ}, H∗(i, j) = H(i, j)1{|H(i, j)| ≥ δ}, 1 ≤ i, j ≤ p.

It is seen that

(1.9) d ≈ N(B∗β,H∗),

where each row of B∗ or H∗ has relatively few nonzeros. Compared to (1.8),
(1.9) is much easier to track analytically, but it contains almost all the
information about β.

The above observation naturally motivates the following graph, which we
call the Graph of Strong Dependence (GOSD).

Definition 1.3. For a given parameter δ, the GOSD is the graph G∗ =
(V,E) with nodes V = {1, 2, . . . , p} and there is an edge between i and j
when any of the three numbers H∗(i, j), B∗(i, j), and B∗(j, i) is nonzero.

Definition 1.4. A graph G = (V,E) is called K-sparse if the degree of
each node ≤ K.

The definition of GOSD depends on a tuning parameter δ, the choice
of which is not critical, and it is generally sufficient if we choose δ = δp =
1/ log(p); see Section 5.1 for details. With such a choice of δ, it can be shown
that in a general context, GOSD is K-sparse, where K = Kδ does not exceed
a multi-log(p) term as p→∞ (see Lemma 5.1).
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1.3. Interplay between the graph sparsity and signal sparsity. With these
being said, it remains unclear how the sparsity of G∗ helps in variable se-
lection. In fact, even when G∗ is 2-sparse, it is possible that a node k is
connected—through possible long paths—to many other nodes; it is unclear
how to remove the effect of these nodes when we try to estimate βk.

Somewhat surprisingly, the answer lies in an interesting interplay between
the signal sparsity and graph sparsity. To see this point, let S = S(β) be
the support of β, and let G∗S be the subgraph of G∗ formed by the nodes in
S only. Given the sparsity of G∗, if the signal vector β is also sparse, then it
is likely that the sizes of all components of G∗S (a component of a graph is
a maximal connected subgraph) are uniformly small. This is justified in the
following lemma which is proved in [20].

Lemma 1.1. Suppose G∗ is K-sparse and the support S = S(β) is a

realization from βj
iid∼ (1−ε)ν0 +επ, where ν0 is the point mass at 0 and π is

any distribution with support ⊆ R\{0}. With a probability (from randomness
of S) at least 1 − p(eεK)m+1, G∗S decomposes into many components with
size no larger than m.

In this paper, we are primarily interested in cases where for large p, ε ≤
p−ϑ for some parameter ϑ ∈ (0, 1) and K is bounded by a multi-log(p)
term. In such cases, the decomposability of G∗S holds for a finite m, with
overwhelming probability.

Lemma 1.1 delineates an interesting picture: The set of signals decomposes
into many small-size isolated signal islands (if only we know where), each
of them is a component of G∗S , and different ones are disconnected in the
GOSD. As a result, the original p-dimensional problem can be viewed as the
aggregation of many separated small-size subproblems that can be solved
parallelly. This is the key insight of this paper.

Note that the decomposability of G∗S attributes to the interplay between
the signal sparsity and the graph sparsity, where the latter attributes to the
use of linear filtering. The decomposability is not tied to the specific model
of β in Lemma 1.1, and holds for much broader situations (e.g. when b is
generated by a sparse Ising model [17]).

1.4. Information leakage and patching. While it largely facilitates the
decomposability of the model, we must note that the linear filtering also
induces a so-called problem of information leakage. In this section, we discuss
how linear filtering causes such a problem and how to overcome it by the
so-called technique of patching.

The following notation is frequently used in this paper.
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Definition 1.5. For I ⊂ {1, 2, . . . , p}, J ⊂ {1, · · · , N}, and a p × N
matrix X, XI denotes the |I|×N sub-matrix formed by restricting the rows
of X to I, and XJ ,I denotes the |J | × |I| sub-matrix formed by restricting
the columns of X to I and rows to J .

Note that when N = 1, X is a p× 1 vector, and XI is an |I| × 1 vector.
To appreciate information leakage, we first consider an idealized case

where each row of G has ≤ K nonzeros. In this case, there is no need
for linear filtering, so B = H = G and d = Ỹ . Recall that G∗S consists of
many signal islands and let I be one of them. It is seen that

(1.10) dI ≈ N(GI,IβI , GI,I),

and how well we can estimate βI is captured by the Fisher Information
Matrix GI,I [21].

Come back to the case where G is non-sparse. Interestingly, despite the
strong correlations, GI,I continues to be the Fisher information for esti-
mating βI . However, when G is non-sparse, we must use a linear filtering
D = Dh,η as suggested, and we have

(1.11) dI ≈ N(BI,IβI , HI,I).

Moreover, letting J = {1 ≤ j ≤ p : D(i, j) 6= 0 for some i ∈ I}, it follows
that

BI,IβI = DI,JGJ ,IβI .

By the definition of D, |J | > |I|, and the dimension of the following null
space ≥ 1:

(1.12) Null(I,J ) = {ξ ∈ R|J | : DI,J ξ = 0}.

Compare (1.11) with (1.10), and imagine the oracle situation where we are
told the mean vector of dI in both. The difference is that, we can fully
recover βI using (1.10), but are not able to do so with only (1.11). In other
words, the information containing βI is partially lost in (1.11): if we estimate
βI with (1.11) alone, we will never achieve the desired accuracy.

The argument is validated in Lemma 1.2 below, where the Fisher infor-
mation associated with (1.11) is strictly “smaller” than GI,I ; the difference
between two matrices can be derived by taking I+ = I and J + = J in
(1.13). We call this phenomenon “information leakage”.

To mitigate this, we expand the information content by including data
in the neighborhood of I. This process is called “patching”. Let I+ be
an extension of I by adding a few neighboring nodes, and define similarly
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J + = {1 ≤ j ≤ p : D(i, j) 6= 0 for some i ∈ I+} and Null(I+,J +).
Assuming that there is no edge between any node in I+ and any node in
G∗S \ I,

(1.13) dI
+ ≈ N(BI

+,IβI , HI
+,I+).

The Fisher Information Matrix for βI under Model (1.13) is larger than that
of (1.11), which is captured in the following lemma.

Lemma 1.2. The Fisher Information Matrix associated with Model (1.13)
is

(1.14) GI,I −
[
U(U ′

(
GJ

+,J+
)−1U

)−1
U ′
]I,I

,

where U is any |J +| × (|J +| − |I+|) matrix whose columns form an or-
thonormal basis of Null(I+,J +).

When the size of I+ becomes appropriately large, the second matrix in
(1.14) is small element-wise (and so is negligible) under mild conditions (see
details in Lemma 2.3). This matrix is usually non-negligible if we set I+ = I
and J + = J (i.e., without patching).

Example 1. We illustrate the above phenomenon with an example where
p = 5000, G is the matrix satisfying G(i, j) = [1 + 5|i − j|]−0.95 for all
1 ≤ i, j ≤ p, and D = Dh,η with h = 1 and η = (1,−1)′. If I = {2000},
then GI,I = 1, but the Fisher information associated with Model (1.11)
is 0.5. The gap can be substantially narrowed if we patch with I+ =
{1990, 1991, . . . , 2010}, in which case the Fisher information in (1.14) is
0.904.

1.5. Covariance Assisted Screening and Estimation (CASE). In sum-
mary, we start from the post-filtering regression model

d = DỸ , where Ỹ = X ′Y and D = Dh,η is a linear filter.

We have observed the following.

• Signal Decomposability. Linear filtering induces sparsity in GOSD, a
graph constructed from the Gram matrix G. In this graph, the set of
all true signal decomposes into many small-size signal islands, each
signal island is a component of GOSD.
• Information Patching. Linear filtering also causes information leakage,

which can be overcome by delicate patching technique.
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Fig 1. Illustration of Graph of Strong Dependence (GOSD). Red: signal nodes. Blue: noise
nodes. (a) GOSD with 10 nodes. (b) Nodes of GOSD that survived the PS-step.

Naturally, these motivate a two-stage Screen and Clean variable selection ap-
proach which we call Covariance Assisted Screening and Estimation (CASE).
CASE contains a Patching and Screening (PS) step, and a Patching and Es-
timation (PE) step.

• PS-step. We use sequential χ2-tests to identify candidates for each
signal island. Each χ2-test is guided by G∗, and aided by a carefully
designed patching step. This achieves multivariate screening without
visiting all submodels.
• PE-step. We re-investigate each candidate with penalized MLE and

certain patching technique, in hope of removing false positives.

For the purpose of patching, the PS-step and the PE-step use tuning
integers `ps and `pe, respectively. The following notations are frequently
used in this paper.

Definition 1.6. For any index 1 ≤ i ≤ p, {i}ps = {1 ≤ j ≤ p : |j− i| ≤
`ps}. For any subset I of {1, 2, . . . , p}, Ips = ∪i∈I{i}ps. Similar notation
applies to {i}pe and Ipe.

We now discuss two steps in detail. Consider the PS-step first. Fix m > 1.
Suppose that G∗ has a total of T connected subgraphs with size ≤ m, which
we denote by {Gt}Tt=1, arranged in the ascending order of the sizes, with ties
breaking lexicographically.

Example 2(a). We illustrate this with a toy example, where p = 10
and the GOSD is displayed in Figure 1(a). For m = 3, GOSD has T = 30
connected subgraphs, which we arrange as follows. Note that {Gt}10

t=1 are
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singletons, {Gt}20
t=11 are connected pairs, and {Gt}30

t=21 are connected triplets.

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}
{1, 2}, {1, 7}, {2, 4}, {3, 4}, {4, 5}, {5, 6}, {7, 8}, {8, 9}, {8, 10}, {9, 10}
{1, 2, 4}, {1, 2, 7}, {1, 7, 8}, {2, 3, 4}, {2, 4, 5}, {3, 4, 5}, {4, 5, 6}, {7, 8, 9}, {7, 8, 10}, {8, 9, 10}

In this example, the multivariate screening exams sequentially only the
30 submodels above to decide whether any variables have additional utili-
ties given the variables recruited before, via χ2-tests. The first 10 screening
problems are just the univariate screening. After that, starting from bivari-
ate screening, we examine the variables given those selected so far. Suppose
that we are examining the variables {1, 2}. The testing problem depends on
how variables {1, 2} are selected in the previous steps. For example, if vari-
ables {1, 2, 4, 6} have already been selected in the univariate screening, there
is no new recruitment and we move on to examine the submodel {1, 7}. If
the variables {1, 4, 6} have been recruited so far, we need to test if variable
{2} has additional contributions given variable {1}. If the variables {4, 6}
have been recruited in the previous steps, we will examine whether vari-
ables {1, 2} together have any significant contributions. Therefore, we have
never run regression for more than two variables. Similarly, for trivariate
screening, we will never run regression for more than 3 variables. Clearly,
multivariate screening improves the marginal screening in that it gives sig-
nificant variables chances to be recruited if it is wrongly excluded by the
marginal method.

We now formally describe the procedure. The PS-step contains T sub-
stages, where we screen Gt sequentially, t = 1, 2, . . . , T . Let U (t) be the set
of retained indices at the end of stage t, with U (0) = ∅ as the convention.
For 1 ≤ t ≤ T , the t-th sub-stage contains two sub-steps.

• (Initial step). Let N̂ = U (t−1)∩Gt represent the set of nodes in Gt that
have already been accepted by the end of the (t−1)-th sub-stage, and
let F̂ = Gt \ N̂ be the set of other nodes in Gt.
• (Updating step). Write for short I = Gt. Fixing a tuning parameter `ps

for patching, introduce
(1.15)
W = (BI

ps,I)′(HI
ps,Ips)−1dI

ps
, Q = (BI

ps,I)′(HI
ps,Ips)−1(BI

ps,I),

where W is a random vector and Q can be thought of as the covariance
matrix of W . Define WN̂ , a subvector of W , and QN̂,N̂ , a submatrix
of Q, as follows:
(1.16)

WN̂ = (BI
ps,N̂ )′(HI

ps,Ips)−1dI
ps
, QN̂,N̂ = (BI

ps,N̂ )′(HI
ps,Ips)−1(BI

ps,N̂ ).
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Introduce the test statistic

(1.17) T (d, F̂ , N̂) = W ′Q−1W −W ′
N̂

(QN̂,N̂ )−1WN̂ .

For a threshold t = t(F̂ , N̂) to be determined, we update the set
of retained nodes by U (t) = U (t−1) ∪ F̂ if T (d, F̂ , N̂) > t, and let
U (t) = U (t−1) otherwise. In other words, we accept nodes in F̂ only
when they have additional utilities.

The PS-step terminates when t = T , at which point, we write U∗p = U (T ),
and so

U∗p = the set of all retained indices at the end of the PS-step.

In the PS-step, as we screen, we accept nodes sequentially. Once a node
is accepted in the PS-step, it stays there till the end of the PS-step; of
course, this node could be killed in the PE-step. In spirit, this is similar to
the well-known forward regression method, but the implementation of two
methods are significantly different.

The PS-step uses a collection of tuning thresholds

Q = {t(F̂ , N̂) : (F̂ , N̂) are defined above}.

A convenient choice for these thresholds is to let t(F̂ , N̂) = 2q̃ log(p)|F̂ | for
a properly small fixed constant q̃ > 0. See Section 1.9 (and also Sections
1.10-1.11) for more discussion on the choices of t(F̂ , N̂).

How does the PS-step help in variable selection? In Section 2, we show that
in a broad context, provided that the tuning parameters t(F̂ , N̂) are properly
set, the PS-step has two noteworthy properties: the Sure Screening (SS)
property and the Separable After Screening (SAS) property. The SS property
says that U∗p contains all but a negligible fraction of the true signals. The
SAS property says that if we view U∗p as a subgraph of G∗ (more precisely,
as a subgraph of G+, an expanded graph of G∗ to be introduce below), then
this subgraph decomposes into many disconnected components, each having
a moderate size.

Together, the SS property and the SAS property enable us to reduce the
original large-scale problem to many parallel small-size regression problems,
and pave the way for the PE-step. See Section 2 for details.

Example 2(b). We illustrate the above points with the toy example in
Example 2(a). Suppose after the PS-step, the set of retained indices U∗p is
{1, 4, 5, 7, 8, 9}; see Figure 1(b). In this example, we have a total of three
signal nodes, {1}, {4}, and {8}, which are all retained in U∗p and so the
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PS-step yields Sure Screening. On the other hand, U∗p contains a few nodes
of false positives, which will be further cleaned in the PE-step. At the same
time, viewing it as a subgraph of G∗, U∗p decomposes into two disconnected
components, {1, 7, 8, 9} and {4, 5}; compare Figure 1(a). The SS property
and the SAS property enable us to reduce the original problem of 10 nodes
to two parallel regression problems, one with 4 nodes, and the other with 2
nodes.

We now discuss the PE-step. Recall that `pe is the tuning parameter
for the patching of the PE-step, and let {i}pe be as in Definition 1.6. The
following graph can be viewed as an expanded graph of G∗.

Definition 1.7. Let G+ = (V,E) be the graph where V = {1, 2, . . . , p}
and there is an edge between nodes i and j when there exist nodes k ∈ {i}pe
and k′ ∈ {j}pe such that there is an edge between k and k′ in G∗.

Recall that U∗p is the set of retained indices at the end of the PS-step.

Definition 1.8. Fix a graph G and its subgraph I. We say I E G if
I is a connected subgraph of G, and I C G if I is a component (maximal
connected subgraph) of G.

Fix 1 ≤ j ≤ p. When j /∈ U∗p , CASE estimates βj as 0. When j ∈ U∗p ,
viewing U∗p as a subgraph of G+, there is a unique subgraph I such that

j ∈ I C U∗p . Fix two tuning parameters upe and vpe. We estimate βI by
minimizing

(1.18) min
θ

{
1

2
(dI

pe −BIpe,Iθ)′(HIpe,Ipe)−1(dI
pe −BIpe,Iθ) +

(upe)2

2
‖θ‖0

}
,

where θ is an |I| × 1 vector where each nonzero coordinate ≥ vpe, and ‖θ‖0
denotes the L0-norm of θ. Putting these together gives the final estimator of
CASE, which we denote by β̂case = β̂case(Y ; δ,m,Q, `ps, `pe, upe, vpe, Dh,η, X, p).

CASE uses tuning parameters (δ,m,Q, `ps, `pe, upe, vpe). Earlier in this
paper, we have briefly discussed how to choose (δ,Q). As for m, usually, a
choice of m = 3 is sufficient unless the signals are relatively ‘dense’. The
choices of (`ps, `pe, upe, vpe) are addressed in Section 1.9 (see also Sections
1.10-1.11).

1.6. Computational complexity of CASE, comparison with multivariate
screening. The PS-step is closely related to the well-known method of
marginal screening, and has a moderate computational complexity.
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Marginal screening selects variables by thresholding the vector d coordinate-
wise. The method is computationally fast, but it neglects ‘local’ graphical
structures, and is thus ineffective. For this reason, in many challenging prob-
lems, it is desirable to use multivariate screening methods which adapt to
‘local’ graphical structures.

Fix m > 1. An m-variate χ2-screening procedure is one of such desired
methods. The method screens all k-tuples of coordinates of d using a χ2-test,
for all k ≤ m, in an exhaustive (brute-force) fashion. Seemingly, the method
adapts to ‘local’ graphical structures and could be much more effective than
marginal screening. However, such a procedure has a computational cost
of O(pm) (excluding the computation cost for obtaining X ′Y from (X,Y );
same below) which is usually not affordable when p is large.

The main computational innovation of the PS-step is to use a graph-
assisted m-variate χ2-screening, which is both effective in variable selection
and efficient in computation. In fact, the PS-step only screens k-tuples of
coordinates of d that form a connected subgraph of G∗, for all k ≤ m. There-
fore, if G∗ is K-sparse, then there are ≤ Cp(eK)m+1 connected subgraphs
of G∗ with size ≤ m; so if K = Kp is no greater than a multi-log(p) term
(see Definition 1.10), then the computational complexity of the PS-step is
only O(p), up to a multi-log(p) term.

Example 2(c). We illustrate the difference between the above three
methods with the toy example in Example 2(a), where p = 10 and the GOSD
is displayed in Figure 1(a). Suppose we choose m = 3. Marginal screening
screens all 10 single nodes of the GOSD. The brute-force m-variate screening
screens all k-tuples of indices, 1 ≤ k ≤ m, with a total of

(
p
1

)
+. . .+

(
p
m

)
= 175

such k-tuples. The m-variate screening in the PS-step only screens k-tuples
that are connected subgraphs of G∗, for 1 ≤ k ≤ m, and in this example, we
only have 30 such connected subgraphs.

The computational complexity of the PE-step consists two parts. The first
part is the complexity of obtaining all components of U∗p , which is O(pK)
and where K is the maximum degree of G+; note that for settings considered
in this paper, K = K+

p does not exceed a multi-log(p) term (see Lemma 5.2).
The second part of the complexity comes from solving (1.18), which hinges
on the maximal size of I. In Lemma 2.2, we show that in a broad context,
the maximal size of I does not exceed a constant l0, provided the thresholds
Q are properly set. Numerical studies in Section 3 also support this point.
Therefore, the complexity in this part does not exceed p · 3l0 . As a result,
the computational complexity of the PE-step is moderate. Here, the bound
O(pK+p ·3l0) is conservative; the actual computational complexity is much
smaller than this.
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How does CASE perform? In Sections 1.7-1.9, we set up an asymptotic
framework and show that CASE is asymptotically minimax in terms of the
Hamming distance over a wide class of situations. In Sections 1.10-1.11, we
apply CASE to the long-memory time series and the change-point model,
and elaborate the optimality of CASE in such models with the so-called
phase diagram.

1.7. Asymptotic Rare and Weak model. In this section, we add an asymp-
totic framework to the Rare and Weak signal model RW (ε, τ, µ) introduced
in Section 1.1. We use p as the driving asymptotic parameter and tie (ε, τ)
to p through some fixed parameters.

In particular, we fix ϑ ∈ (0, 1) and model the sparse parameter ε by

(1.19) ε = εp = p−ϑ.

Note that as p grows, the signal becomes increasingly sparse. At this sparsity
level, it turns out that the most interesting range of signal strength is τ =
O(
√

log(p)). For much smaller τ , successful recovery is impossible. For much
larger τ , the problem is relatively easy. In light of this, we fix r > 0 and let

(1.20) τ = τp =
√

2r log(p).

At the same time, recalling that in RW (ε, τ, µ), we require µ ∈ Θp(τ) so
that |µi| ≥ τ for all 1 ≤ i ≤ p. Fixing a > 1, we now further restrict µ to
the following subset of Θp(τ):

(1.21) Θ∗p(τp, a) = {µ ∈ Θp(τp) : τp ≤ |µi| ≤ aτp, 1 ≤ i ≤ p}.

Definition 1.9. We call (1.19)-(1.21) the Asymptotic Rare and Weak
model ARW (ϑ, r, a, µ).

Requiring the strength of each signal ≤ aτp is mainly for technical reasons,
and hopefully, such a constraint can be removed in the near future. From a
practical point of view, since usually we do not have sufficient information
on µ, we prefer to have a larger a: we hope that when a is properly large,
Θ∗p(τp, a) is broad enough, so that neither the optimal procedure nor the
minimax risk needs to adapt to a.

Towards this end, we impose some mild regularity conditions on a and
the Gram matrix G. Let g be the smallest integer such that

(1.22) g ≥ max{(ϑ+ r)2/(2ϑr),m}.
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For any p× p Gram matrix G and 1 ≤ k ≤ p, let λ∗k(G) be the minimum of
the smallest eigenvalues of all k × k principle sub-matrices of G. Introduce

(1.23) M̃p(c0, g) = {G is a p× p Gram matrix, λ∗k(G) ≥ c0, 1 ≤ k ≤ g}.

For any two subsets V0 and V1 of {1, 2, . . . , p}, consider the optimization
problem

(θ
(0)
∗ (V0, V1;G), θ

(1)
∗ (V0, V1;G)) = argmin{(θ(1) − θ(0))′G(θ(1) − θ(0))},

up to the constraints that |θ(k)
i | ≥ τp if i ∈ Vk and θ

(k)
i = 0 otherwise, where

k = 0, 1, and that in the special case of V0 = V1, the sign vectors of θ(0) and
θ(1) are unequal. Introduce

a∗g(G) = max
{(V0,V1):|V0∪V1|≤g}

max{‖θ(0)
∗ (V0, V1;G)‖∞, ‖θ(1)

∗ (V0, V1;G)‖∞}.

The following lemma is elementary, so we omit the proof.

Lemma 1.3. For any G ∈ M̃p(c0, g), there is a constant C = C(c0, g) >
0 such that a∗g(G) ≤ C.

In this paper, except for Section 1.11 where we discuss the change-point
model, we assume

(1.24) G ∈ M̃(c0, g), a > a∗g(G).

Under such conditions, Θ∗p(τp, a) is broad enough and the minimax risk (to be
introduced below) does not depend on a. See Section 1.8 for more discussion.

For any variable selection procedure β̂, we measure the performance by
the Hamming distance

hp(β̂;β,G) = E

 p∑
j=1

1
{

sgn(β̂j) 6= sgn(βj)
}∣∣∣∣∣∣X,β

 ,
where the expectation is taken with respect to β̂. Here, for any p× 1 vector
ξ, sgn(ξ) denotes the sign vector (for any number x, sgn(x) = 1, 0,−1 when
x < 0, x = 0, and x > 0 correspondingly).

Under ARW (ϑ, r, a, µ), β = b ◦ µ, so the overall Hamming distance is

Hp(β̂; εp, µ,G) = Eεp

[
hp(β̂;β,G)

∣∣∣X] ,
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where Eεp is the expectation with respect to the law of b. Finally, the mini-
max Hamming distance under ARW (ϑ, r, a, µ) is

Hamm∗p(ϑ, r, a,G) = inf
β̂

sup
µ∈Θ∗p(τp,a)

Hp(β̂; εp, µ,G).

In next section, we will see that the minimax Hamming distance does not
depend on a as long as (1.24) holds.

In many recent works, the probability of exact support recovery or oracle
property is used to assess optimality, e.g. [9, 35]. However, when signals are
rare and weak, exact support recovery is usually impossible, and the Ham-
ming distance is a more appropriate criterion for assessing optimality. In
comparison, study on the minimax Hamming distance is not only mathe-
matically more demanding but also scientifically more relevant than that on
the oracle property.

1.8. Lower bound for the minimax Hamming distance. We view the (global)
Hamming distance as the aggregation of ‘local’ Hamming distances. To con-
struct a lower bound for the (global) minimax Hamming distance, the key
is to construct lower bounds for ‘local’ Hamming errors. Fix 1 ≤ j ≤ p. The
‘local’ Hamming error at index j is the risk we make among the neighboring
indices of j in GOSD, say, {k : d(j, k) ≤ g}, where g is as in (1.22) and
d(j, k) is the geodesic distance between j and k in the GOSD. The lower
bound for such a ‘local’ Hamming error is characterized by an exponent ρ∗j ,
which we now introduce.

For any subset V ⊂ {1, 2, . . . , p}, let IV be the p× 1 vector such that the
j-th coordinate is 1 if j ∈ V and 0 otherwise. Fixing two subsets V0 and V1

of {1, 2, . . . , p}, introduce
(1.25)

$∗(V0, V1) = τ−2
p

(
min

{θ(k)=IVk◦µ
(k):µ(k)∈Θ∗p(τp,a),k=0,1,sgn(θ(0))6=sgn(θ(1))}

{
(θ(1)−θ(0))′G(θ(1)−θ(0))

})
,

and
(1.26)

ρ(V0, V1) = max{|V0|, |V1|}ϑ+
1

4

[(√
$∗(V0, V1)r − |(|V1| − |V0|)|ϑ√

$∗(V0, V1)r

)
+

]2

.

The exponent ρ∗j = ρ∗j (ϑ, r, a,G) is defined by

(1.27) ρ∗j (ϑ, r, a,G) = min
(V0,V1):j∈V0∪V1

ρ(V0, V1).

The following notation Lp is frequently used in this paper.
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Definition 1.10. Lp, as a positive sequence indexed by p, is called a
multi-log(p) term if for any fixed δ > 0, limp→∞ Lpp

δ =∞ and limp→∞ Lpp
−δ =

0.

It can be shown that Lpp
−ρ∗j provides a lower bound for the ‘local’ mini-

max Hamming distance at index j, and that when (1.24) holds, ρ∗j (ϑ, r, a,G)
does not depend on a; see [20, Section 1.5] for details. In the remaining part
of the paper, we will write it as ρ∗j (ϑ, r,G) for short.

At the same time, in order for the aggregation of all lower bounds for
‘local’ Hamming errors to give a lower bound for the ‘global’ Hamming
distance, we need to introduce Graph of Least Favorables (GOLF). Towards
this end, recalling g and ρ(V0, V1) as in (1.22) and (1.26), respectively, let

(V ∗0j , V
∗

1j) = argmin{(V0,V1):j∈V0∪V1,|V0∪V1|≤g}ρ(V0, V1),

and when there is a tie, pick the one that appears first lexicographically. We
can think (V ∗0j , V

∗
1j) as the ‘least favorable’ configuration at index j; see [20,

Section 1.5] for details.

Definition 1.11. GOLF is the graph G� = (V,E) where V = {1, 2, . . . , p}
and there is an edge between j and k if and only if (V ∗0j∪V ∗1j)∩(V ∗0k∪V ∗1k) 6= ∅.

The following theorem is similar to [20, Theorem 1.1] so we omit the
proof.

Theorem 1.1. Suppose (1.24) holds so that ρ∗j (ϑ, r, a,G) does not de-
pend on the parameter a for sufficiently large p. As p→∞, Hamm∗p(ϑ, r, a,G) ≥
Lp[dp(G�)]−1

∑p
j=1 p

−ρ∗j (ϑ,r,G), where dp(G�) is the maximum degree of all
nodes in G�.

In many examples, including those of primary interest of this paper,

(1.28) dp(G�) ≤ Lp.

In such cases, we have the following lower bound:

(1.29) Hamm∗p(ϑ, r, a,G) ≥ Lp
p∑
j=1

p−ρ
∗
j (ϑ,r,G).
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1.9. Main results. In this section, we show that in a broad context, pro-
vided the tuning parameters are properly set, CASE achieves the lower
bound prescribed in Theorem 1.1, up to some Lp terms. Therefore, the
lower bound in Theorem 1.1 is tight, and CASE achieves the optimal rate
of convergence.

For a given γ > 0, we focus on linear models with the Gram matrix from

M∗p(γ, g, c0, A1) = M̃p(c0, g) ∩Mp(γ,A1),

where we recall that the two terms on the right hand side are defined in
(1.7) and (1.23), respectively. The following lemma is proved in Section 5.

Lemma 1.4. For G ∈M∗p(γ, g, c0, A1), dp(G�) ≤ Lp. As a result, Hamm∗p(ϑ, r, a,G) ≥
Lp
∑p

j=1 p
−ρ∗j (ϑ,r,G).

For any linear filter D = Dh,η, let

ϕη(z) = 1 + η1z + . . .+ ηhz
h

be the so-called characterization polynomial. We assume the following regu-
larity conditions.

• Regularization Condition A (RCA). For any root z0 of ϕη(z), |z0| ≥ 1.
• Regularization Condition B (RCB). There are constants κ > 0 and
c1 > 0 such that λ∗k(DGD

′) ≥ c1k
−κ (see Section 1.7 for the definition

of λ∗k).

For many well-known linear filters such as adjacent differences, seasonal
differences, etc., RCA is satisfied. Also, RCB is only a mild condition since
κ can be any positive number. For example, RCB holds in the change-
point model and long-memory time series model with certain D matrices.
In general, κ is not 0 because when DG is sparse, DGD′ is very likely to
be approximately singular and the associated value of λ∗k can be small when
k is large. This is true even for very simple G (e.g. G = Ip, D = D1,η and
η = (1,−1)′).

At the same time, these conditions can be further relaxed. For example,
for the change-point problem, the Gram matrix has barely any off-diagonal
decay, and does not belong toM∗p. Nevertheless, with slight modification in
the procedure, the main results continue to hold.

CASE uses tuning parameters (δ,m,Q, `ps, `pe, upe, vpe). The choice of δ
is flexible, and we usually set δ = 1/ log(p). For the main theorem below,
we treat m as given. In practice, taking m to be a small integer (say, ≤ 3) is
usually sufficient, unless the signals are relatively dense (say, ϑ < 1/4). The
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choice of `ps and `pe are also relatively flexible, and letting `ps be a sufficiently
large constant and `pe be (log(p))ν for some constant ν < (1−1/α)/(κ+1/2)
is sufficient, where α is as in Definition 1.2, and κ is as in RCB.

At the same time, in principle, the optimal choices of (upe, vpe) are

(1.30) upe =
√

2ϑ log p, vpe =
√

2r log p,

which depend on the underlying parameters (ϑ, r) that are unknown to us.
Despite this, our numeric studies in Section 3 suggest that the choices of
(upe, vpe) are relatively flexible; see Sections 3-4 for more discussions.

Last, we discuss how to chooseQ = {t(F̂ , N̂) : (F̂ , N̂) are defined as in the
PS-step}. Let t(F̂ , N̂) = 2q log(p), where q > 0 is a constant. It turns out
that the main result (Theorem 1.2 below) holds as long as

(1.31) q0 ≤ q ≤ q∗(F̂ , N̂),

where q0 > 0 is an appropriately small constant, and for any subsets (F,N),

(1.32)

q∗(F,N) = max
{
q : (|F |+ |N |)ϑ+ [(

√
ω̃(F,N)r −

√
q|F |)+]2 ≥ ψ(F,N)

}
;

here,
(1.33)

ψ(F,N) =
(|F |+ 2|N |)ϑ

2
+

{ 1
4ω(F,N)r, |F | is even,
ϑ
2 + 1

4 [(
√
ω(F,N)r − ϑ/

√
ω(F,N)r)+]2, |F | is odd,

with

(1.34) ω(F,N) = min
ξ∈R|F |:|ξi|≥1

ξ′[GF,F −GF,N (GN,N )−1GN,F ]ξ,

and

(1.35) ω̃(F,N) = min
ξ∈R|F |:|ξi|≥1

ξ′[QF,F −QF,N (QN,N )−1QN,F ]ξ,

where QF,N = (BI
ps,F )′(HI

ps,Ips)−1(BI
ps,N ) with I = F ∪ N , and QN,F ,

QF,F and QN,N are defined similarly. Compared to (1.15), we see that QF,N ,
QF,N , QN,F and QN,N are all submatrices of Q. Hence, ω̃(F,N) can be
viewed as a counterpart of ω(F,N) by replacing the submatrices of GI,I by
the corresponding ones of Q.

From a practical point of view, there is a trade-off in choosing q: a larger q
would increase the number of Type II errors in the PS-step, but would also
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reduce the computation cost in the PE-step. The following is a convenient
choice which we recommend in this paper:

(1.36) t(F̂ , N̂) = 2q̃|F̂ | log(p),

where 0 < q̃ < c0r/4 is a constant and c0 is as in M∗p(γ, g, c0, A1).
We are now ready for the main result of this paper.

Theorem 1.2. Suppose that for sufficiently large p, G ∈M∗p(γ, g, c0, A1),

Dh,ηG ∈Mp(α,A0) with α > 1, and that RCA-RCB hold. Consider β̂case =

β̂case(Y ; δ,m,Q, `ps, `pe, upe, vpe, Dh,η, X, p) with the tuning parameters spec-
ified above. Then as p→∞,

(1.37) sup
µ∈Θ∗p(τp,a)

Hp(β̂
case; εp, µ,G) ≤ Lp[p1−(m+1)ϑ+

p∑
j=1

p−ρ
∗
j (ϑ,r,G)] +o(1).

Combine Lemma 1.4 and Theorem 1.2. Given the parameter m is appro-
priately large, both the upper bound and the lower bound are tight and
CASE achieves the optimal rate of convergence prescribed by

(1.38) Hamm∗p(ϑ, r, a,G) = Lp

p∑
j=1

p−ρ
∗
j (ϑ,r,G) + o(1).

Theorem 1.2 is proved in Section 2, where we explain the key idea behind
the procedure, as well as the selection of the tuning parameters.

1.10. Application to the long-memory time series model. The long-memory
time series model in Section 1 can be written as a regression model:

Y = Xβ + z, z ∼ N(0, In),

where the Gram matrix G is asymptotically Toeplitz and has slow off-
diagonal decays. Without loss of generality, we consider the idealized case
where G is an exact Toeplitz matrix generated by a spectral density f :

G(i, j) =
1

2π

∫ π

−π
cos(|i− j|ω)f(ω)dω, 1 ≤ i, j ≤ p.

In the literature [6, 23], the spectral density for a long-memory process is
usually characterized as

(1.39) f(ω) = |1− e
√
−1ω|−2φf∗(ω),
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where φ ∈ (0, 1/2) is the long-memory parameter, f∗(ω) is a positive sym-
metric function that is continuous on [−π, π] and is twice differentiable ex-
cept at ω = 0.

In this model, the Gram matrix is non-sparse but it is sparsifiable. To
see the point, let η = (1,−1)′ and let D = D1,η be the first-order adjacent
row-differencing. On one hand, since the spectral density f is singular at the
origin, it follows from the Fourier analysis that

|G(i, j)| ≥ C(1 + |i− j|)−(1−2φ)

and hence G is non-sparse. On the other hand, it is seen that

B(i, j) =
√
−1

∫ |j−i|+1

|j−i|
ω̂f(ω)(λ)dλ,

where we recall that B = DG and note that ĝ denotes the Fourier transform
of g. Compared to f(ω), ωf(ω) is non-singular at the origin. Additionally,
it is seen that B ∈Mp(2− 2φ,A), where 2− 2φ > 1, so B is sparse (similar
claim applies to H = DGD′). This shows that G is sparsifiable by adjacent
row-differencing.

In this example, there is a function ρ∗lts(ϑ, r; f) that only depends on
(ϑ, r, f) such that

max
{j:log(p)≤j≤p−log(p)}

{|ρ∗j (ϑ, r,G)− ρ∗lts(ϑ, r; f)|} → 0, as p→∞,

where the subscript ‘lts’ stands for long-memory time series. The following
theorem can be derived from Theorem 1.2, and is proved in Section 5.

Theorem 1.3. For a long-memory time series model where |(f∗)′′(ω)| ≤
C|ω|−2, the minimax Hamming distance satisfies Hamm∗p(ϑ, r,G) = Lpp

1−ρ∗lts(ϑ,r;f).
If we apply CASE where (m+1)ϑ > ρ∗lts(ϑ, r; f), η = (1,−1)′, and the tuning
parameters are as in Section 1.9, then

sup
µ∈Θ∗p(τp,a)

Hp(β̂
case; εp, µ,G) ≤ Lpp1−ρ∗lts(ϑ,r;f) + o(1).

Theorem 1.3 can be interpreted by the so-called phase diagram. Phase
diagram is a way to visualize the class of settings where the signals are so
rare and weak that successful variable selection is simply impossible [19]. In
detail, for a spectral density f and ϑ ∈ (0, 1), let

r∗lts(ϑ) = r∗lts(ϑ; f)
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be the unique solution of ρ∗lts(ϑ, r; f) = 1. Note that r = r∗lts(ϑ) characterizes
the minimal signal strength required for exact support recovery with high
probability. We have the following proposition, which is proved in Section 5.

Lemma 1.5. Under the conditions of Theorem 1.3, if (f∗)′′(0) exists,
then r∗lts(ϑ; f) is a decreasing function in ϑ, with limits 1 and 2

π

∫ π
−π f

−1(ω)dω
as ϑ→ 1 and ϑ→ 0, respectively.

Call the two-dimensional space {(ϑ, r): 0 < ϑ < 1, r > 0} the phase space.
Interestingly, there is a partition of the phase space as follows.

• Region of No Recovery {(ϑ, r): 0 < r < ϑ, 0 < ϑ < 1}. In this region,
the minimax Hamming distance & pεp, where pεp is approximately the
number of signals. In this region, the signals are too rare and weak and
successful variable selection is impossible.
• Region of Almost Full Recovery {(ϑ, r): ϑ < r < r∗lts(ϑ; f), 0 < ϑ < 1}.

In this region, the minimax Hamming distance is much larger than
1 but much smaller than pεp. Therefore, the optimal procedure can
recover most of the signals but not all of them.
• Region of Exact Recovery {(ϑ, r): r > r∗lts(ϑ; f), 0 < ϑ < 1}. In this re-

gion, the minimax Hamming distance is o(1). Therefore, the optimal
procedure recovers all signals with probability ≈ 1.

Because of the partition of the phase space, we call this the phase diagram.
From time to time, we wish to have a more explicit formula for the rate

ρ∗lts(ϑ, r; f) and the critical value r∗lts(ϑ; f). In general, this is a hard prob-
lem, but both quantities can be computed numerically when f is given. In
Figure 2, we display the phase diagrams for the FARIMA(0, φ, 0) process
where

(1.40) f∗(ω) =
Γ2(1− φ)

Γ(1− 2φ)
.

Take φ = 0.35, 0.25 for example, r∗lts(ϑ; f) ≈ 7.14, 5.08 for small ϑ.

1.11. Application to the change-point model. The change-point model in
the introduction can be viewed as a special case of Model (1.1), where β is
as in (1.5), and the Gram matrix satisfies

(1.41) G(i, j) = min{i, j}, 1 ≤ i, j ≤ p.

For technical reasons, it is more convenient not to normalize the diagonals
of G to 1.
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Fig 2. Phase diagrams corresponding to the FARIMA(0, φ, 0) process. Left: φ = 0.35.
Right: φ = 0.25.

The change-point model can be viewed as an ‘extreme’ case of what is
studied in this paper. On one hand, the Gram matrix G is ‘ill-posed’ and
each row of G does not satisfy the condition of off-diagonal decay in Theorem
1.2. On the other hand, G has a very special structure which can be largely
exploited. In fact, if we sparsify G with the linear filter D = D2,η, where
η = (1,−2, 1)′, it is seen that B = DG = Ip, and H = DGD′ is a tri-diagonal
matrix with H(i, j) = 2 · 1{i = j}− 1{|i− j| = 1}− 1{i = j = p}, which are
very simple matrices. For these reasons, we modify the CASE as follows.

• Due to the simple structure of B, we don’t need patching in the PS-
step (i.e., `ps = 0).
• For the same reason, the choices of thresholds t(F̂ , N̂) are more flexible

than before, and taking t(F̂ , N̂) = 2q log(p) for a proper constant q > 0
works.
• However, since H is ‘extreme’ (the smallest eigenvalue tends to 0 as
p→∞), we have to modify the PE-step carefully.

In detail, the PE-step for the change-point model is as follows. Given `pe,
let G+ be as in Definition 1.7. Recall that U∗p denotes the set of all retained
indices at the end of the PS-step. Viewing U∗p as a subgraph of G+, and
let I C U∗p be one of its components. The goal is to split I into N different
subsets

I = I(1) ∪ . . . ∪ I(N),

and for each subset I(k), 1 ≤ k ≤ N , we construct a patched set I(k),pe. We
then estimate βI

(k)
separately using (1.18). Putting βI

(k)
together gives our

estimate of βI .
The subsets {(I(k), I(k),pe)}Nk=1 are recursively constructed as follows. De-
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note l = |I|, M = (`pe/2)1/(l+1), and write

I = {j1, j2, · · · , jl}, j1 < j2 < . . . < jl.

First, letting k1 be the largest index such that jk1 − jk1−1 > `pe/M , define

I(1) = {jk1 , · · · , jl}, and I(1),pe = {jk1 − `pe/(2M), · · · , jl + `pe/2}.

Next, letting k2 < k1 be the largest index such that jk2 − jk2−1 > `pe/M2,
define

I(2) = {jk2 , · · · , jk1}, I(2),pe = {jk2 − `pe/(2M2), · · · , jk1 + `pe/(2M)}.

Continue this process until for some N , 1 ≤ N ≤ l, kN = 1. In this con-
struction, for each 1 ≤ k ≤ N , if we arrange all the nodes of I(k),pe in the
ascending order, then the number of nodes in front of I(k) is significantly
smaller than the number of nodes behind I(k).

In practice, we introduce a suboptimal but much simpler patching ap-
proach as follows. Fix a component I = {j1, · · · , jl} of G+. In this approach,
instead of splitting it into smaller sets and patching them separately as in
the previous approach, we patch the whole set I by

(1.42) Ipe = {i : j1 − `pe/4 < i < jl + 3`pe/4},

and estimate βI using (1.18). Our numeric studies show that two approaches
have comparable performances.

Define

(1.43) ρ∗cp(ϑ, r) =

{
ϑ+ r/4, r/ϑ ≤ 6 + 2

√
10,

3ϑ+ (r/2− ϑ)2/(2r), r/ϑ > 6 + 2
√

10,

where ‘cp’ stands for change-point. Choose the tuning parameters of CASE
such that

(1.44) `pe = 2 log(p), upe =
√

2ϑ log(p), and vpe =
√

2r log(p),

that (m+ 1)ϑ ≥ ρ∗cp(ϑ, r), and that 0 < q < r
4(
√

2− 1)2 (recall that we take

t(F̂ , N̂) = 2q log(p) for all (F̂ , N̂) in the change-point setting). Note that
the choice of `pe is different from that in Section 1.5. The main result in this
section is the following theorem which is proved in Section 5.

Theorem 1.4. For the change-point model, the minimax Hamming dis-
tance satisfies Hamm∗p(ϑ, r,G) = Lpp

1−ρ∗cp(ϑ,r). Furthermore, the CASE β̂case

with the tuning parameters specified above satisfies

sup
µ∈Θ∗p(τp,a)

Hp(β̂
case; εp, µ,G) ≤ Lpp1−ρ∗cp(ϑ,r) + o(1).
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Fig 3. Phase diagrams corresponding to the change-point model. Left: CASE; the boundary
is decided by (4−10ϑ)+2

√
(2− 5ϑ)2 − ϑ2 (left part) and 4(1−ϑ) (right part). Right: hard

thresholding; the upper boundary is decided by 2(1 +
√

1− ϑ)2 and the lower boundary is
decided by 2ϑ.

It is noteworthy that the exponent ρ∗cp(ϑ, r) has a phase change depend-

ing on the ratios of r/ϑ. The insight is, when r/ϑ < 6 + 2
√

10, the minimax
Hamming distance is dominated by the Hamming errors we make in dis-
tinguishing between an isolated change point and a pair of adjacent change
points, and when r/ϑ > 6 + 2

√
10, the minimax Hamming distance is domi-

nated by the Hamming errors of distinguishing the case of consecutive change
point triplets (say, change points at {j− 1, j, j− 1}) from the case where we
don’t have a change point in the middle of the triplets (that is, the change
points are only at {j − 1, j + 1}).

Similarly, the main results on the change-point problem can be visualized
with the phase diagram, displayed in Figure 3. An interesting point is that,
it is possible to have almost full recovery even when the signal strength
parameter τp is as small as o(

√
2 log(p)). See the proof of Theorem 1.4 for

details.
Alternatively, one may use the following approach to the change-point

problem. Treat the liner change-point model as a regression model Y =
Xβ + z as in Section 1 (Page 2), and let W = (X ′X)−1X ′Y be the least-
squares estimate. It is seen that

W ∼ N(β,Σ),

where we note that Σ = (X ′X)−1 is tridiagonal and coincides with H.
In this simple setting, a natural approach is to apply a coordinate-wise
thresholding β̂threshj = Wj1{|Wj | > t} to locate the signals. But this neglects
the covariance of W in detecting the locations of the signals and is not
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optimal even with the ideal choice of thresholding parameter t0, since the
corresponding risk satisfies

sup
{µ∈Θ∗p(τp,a)}

Hp(β̂
thresh(t0); εp, µ,G) = Lpp

1−(r/2+ϑ)2/(2r).

The proof of this is elementary and omitted. The phase diagram of this
method is displayed in Figure 3, right panel, which suggests the method is
non-optimal.

Other popular methods in locating multiple change-points include the
global methods (e.g. [16, 25, 29, 33]) and local methods (e.g. SaRa [24]).
The global methods are usually computationally expensive and can hardly
be optimal due to the strong correlation nature of this problem. Our pro-
cedure is related to the local methods but is different in important ways.
Our method exploits the graphical structures and uses the GOSD to guide
both the screening and cleaning, but SaRa does not utilize the graphical
structures and can be shown to be non-optimal.

1.12. Content. The remaining sections are organized as follows. Section
2 discusses the key steps for proving Theorem 1.2. Section 3 contains nu-
meric studies and comparisons with other methods. Section 4 contains sum-
marizing remarks and discussions. Section 5 contains the proofs for all other
theorems and lemmas in the paper.

Throughout this paper, D = Dh,η, d = D(X ′Y ), B = DG, H = DGD′,
and G∗ denotes the GOSD (In contrast, dp denotes the degree of GOLF
and Hp denotes the Hamming distance). Also, R and C denote the sets
of real numbers and complex numbers respectively, and Rp denotes the p-
dimensional real Euclidean space. Given 0 ≤ q ≤ ∞, for any vector x, ‖x‖q
denotes the Lq-norm of x; for any matrix M , ‖M‖q denotes the matrix Lq-
norm of M . When q = 2, ‖M‖q coincides with the matrix spectral norm; we
shall omit the subscript q in this case. When M is symmetric, λmax(M) and
λmin(M) denote the maximum and minimum eigenvalues of M respectively.
For two matrices M1 and M2, M1 � M2 means that M1 −M2 is positive
semi-definite.

2. Proof of the main theorem. As mentioned before, the success of
CASE relies on two noteworthy properties: the Sure Screening (SS) property
and the Separable After Screening (SAS) property. In this section, we discuss
the two properties in detail, and illustrate how these properties enable us
to decompose the original regression problem to many small-size regression
problems which can be fit separately. We then use these properties to prove
Theorem 1.2.
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We start with the SS property. Recall that U∗p is the set of all retained
indices at the end of the PS-step. The following lemma is proved in Section
5.

Lemma 2.1 (SS). Under the conditions of Theorem 1.2,

p∑
j=1

P
(
βj 6= 0, j /∈ U∗p

)
≤ Lp[p1−(m+1)ϑ +

p∑
j=1

p−ρ
∗
j (ϑ,r,G)] + o(1).

This says that all but a negligible fraction of signals are retained in U∗p .
At the same time, we have the following lemma, which says that as a

subgraph of G+, U∗p splits into many disconnected components, and each
component has a small size.

Lemma 2.2 (SAS). As p → ∞, under the conditions of Theorem 1.2,
there is a fixed integer l0 > 0 such that with probability at least 1 − o(1/p),
each component of U∗p has a size ≤ l0.

Together, these two properties enable us to decompose the original re-
gression problem to many small-size regression problems. To see the point,
let I be a component of U∗p , and Ipe be the associated patching set. Recall
that d ∼ N(Bβ,H). If we limit our attention to nodes in Ipe, then

(2.45) dI
pe

= (Bβ)I
pe

+N(0, HI
pe,Ipe).

Denote V = {1, · · · , p}\U∗p . Write

(2.46) (Bβ)I
pe

= BI
pe,IβI + ξ1 + ξ2,

where
ξ1 =

∑
J :JCU∗p ,J 6=I

BI
pe,J βJ , ξ2 = BI

pe,V βV .

Now, first, by the SS property, V contains only a negligible number of signals,
so we expect to see that ‖ξ2‖∞ to be negligibly small. Second, by the SAS
property, for any J C U∗p and J 6= I, nodes in I and J are not connected
in G+. By the way G+ is defined, it follows that nodes in Ipe and J are
not connected in the GOSD G∗. Therefore, we expect to see that ‖ξ1‖∞
is negligibly small as well. These heuristics are validated in the proof of
Theorem 1.2; see Section 2.1 for details.

As a result,

(2.47) dI
pe ≈ N(BI

pe,IβI , HI
pe,Ipe),
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where the right hand side is a small-size regression model. In other words,
the original regression model decomposes into many small-size regression
models, and each has a similar form to that of (2.47).

We now discuss how to fit Model (2.47). In our model ARW (ϑ, r, a, µ),
βI = bI◦µI , and P (‖βI‖0 = k) ∼ εkp. At the same time, given a realization of

βI , dI
pe

is (approximately) distributed as Gaussian as in (2.47). Combining
these, for any eligible |I|×1 vector θ, the log-likelihood for βI = θ associated
with (2.47) is

(2.48) −
[

1

2
(dI

pe −BIpe,Iθ)′(HIpe,Ipe)−1(dI
pe −BIpe,Iθ) + ϑ log(p)‖θ‖0

]
.

Note that θ is eligible if and only if its nonzero coordinates ≥ τp in magni-
tude. Comparing (2.48) with (1.18), if the tuning parameters (upe, vpe) are
set as upe =

√
2ϑ log(p) and vpe =

√
2r log(p), then the PE-step is actually

the MLE constrained in Θp(τp). This explains the optimality of the PE-step.
The last missing piece of the puzzle is how the information leakage is

patched. Consider the oracle situation first where βI
c

is known. In such a
case, by Ỹ = X ′Y ∼ N(Gβ,G), it is easy to derive that

Ỹ I −GI,IcβIc ∼ N(GI,IβI , GI,I).

Comparing this with Model (2.47) and applying Lemma 1.2, we see that
the information leakage associated with the component I is captured by the
matrix [U(U ′(GJ

pe,J pe
)−1U)−1U ′]I,I , where J pe = {1 ≤ j ≤ p : D(i, j) 6=

0, for some i ∈ Ipe} and U contains an orthonormal basis of Null(Ipe,J pe).
To patch the information leakage, we have to show that this matrix has a
negligible influence. This is justified in the following lemma, which is proved
in Section 5.

Lemma 2.3. (Patching). Under the conditions of Theorem 1.2, for any
I E G+ such that |I| ≤ l0, and any |J pe| × (|J pe| − |Ipe|) matrix U whose
columns form an orthonormal basis of Null(Ipe,J pe),∥∥[U(U ′(GJ

pe,J pe
)−1U)−1U ′]I,I

∥∥ = o(1), p→∞.

We are now ready for proving Theorem 1.2.

2.1. Proof of Theorem 1.2 . For short, write β̂ = β̂case and ρ∗j = ρ∗j (ϑ, r,G).
For any µ ∈ Θ∗p(τp, a), write

Hp(β̂; εp, µ,G) = I + II,
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where
(2.49)

I =

p∑
j=1

P
(
βj 6= 0, j /∈ U∗p

)
, II =

p∑
j=1

P
(
j ∈ U∗p , sgn(β̂j) 6= sgn(βj)

)
.

Using Lemma 2.1, I ≤ Lp[p
1−(m+1)ϑ +

∑p
j=1 p

−ρ∗j ] + o(1). So it is sufficient
to show

(2.50) II ≤ Lp[p1−(m+1)ϑ +

p∑
j=1

p−ρ
∗
j ] + o(1).

View U∗p as a subgraph of G+. By Lemma 2.2, there is an event Ap and a
fixed integer `0 such that P (Acp) ≤ o(1/p) and that over the event Ap, each
component of U∗p has a size ≤ `0. It is seen that

II ≤
p∑
j=1

P
(
j ∈ U∗p , sgn(β̂j) 6= sgn(βj), Ap

)
+ o(1).

Moreover, for each 1 ≤ j ≤ p, there is a unique component I such that
j ∈ I CU∗p , and that |I| ≤ `0 over the event Ap (note that I depends on U∗p
and it is random). Since any realization of I must be a connected subgraph
(but not necessarily a component) of G+,

(2.51) II ≤
p∑
j=1

∑
I:j∈IEG+,|I|≤l0

P
(
j ∈ ICU∗p , sgn(β̂j) 6= sgn(βj), Ap

)
+o(1);

see Definition 1.8 for the difference between C and E. We stress that on the
right hand side of (2.51), we have changed the meaning of I and use it to
denote a fixed (non-random) connected subgraph of G+.

Next, let E(Ipe) be the set of nodes that are connected to Ipe by a length-1
path in G∗:

E(Ipe) = {k : there is an edge between k and k′ in G∗ for some k′ ∈ Ipe}.

Heuristically, S(β) ∩ E(Ipe) is the set of signals that have major effects on
dI

pe
. Let Ep,I be the event that (S(β) ∩ E(Ipe)) ⊂ I (note that I is non-

random and the event is defined with respect to the randomness of β). From
(2.51), we have
(2.52)

II ≤
p∑
j=1

∑
I:j∈IEG+,|I|≤l0

P
(
j ∈ ICU∗p , sgn(β̂j) 6= sgn(βj), Ap ∩Ep,I

)
+ rem,
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where it is seen that

(2.53) rem ≤
p∑
j=1

∑
I:j∈IEG+,|I|≤l0

P
(
I C U∗p , Ap ∩ Ecp,I

)
.

The following lemma is proved in Section 5.

Lemma 2.4. Under the conditions of Theorem 1.2,

p∑
j=1

∑
I:j∈IEG+,|I|≤l0

P
(
I C U∗p , Ap ∩ Ecp,I) ≤ Lp

p∑
j=1

P (βj 6= 0, j /∈ U∗p
)
.

Combining (2.53) with Lemma 2.4 and using Lemma 2.1,

(2.54) rem ≤ Lp[p1−(m+1)ϑ +

p∑
j=1

p−ρ
∗
j ] + o(1).

Insert (2.54) into (2.52). To show (2.50), it suffices to show for each 1 ≤ j ≤
p,
(2.55) ∑
I:j∈IEG+,|I|≤l0

P
(
j ∈ I C U∗p , sgn(β̂j) 6= sgn(βj), Ap ∩ Ep,I

)
≤ Lpp−ρ

∗
j .

We now further reduce (2.55) to a simpler form using the sparsity of G+.
Fix 1 ≤ j ≤ p. The number of subgraphs I satisfying that j ∈ I E G+ and
that |I| ≤ l0 is no more than C(eK+

p )l0 [14], where K+
p is the maximum

degree of G+. By Lemma 5.1 and Lemma 5.2 (to be stated in Section 5),
K+
p ≤ C(`pe)2Kp, where Kp is the maximum degree of G∗, which is an Lp

term. Therefore, C(eK+
p )l0 is also an Lp term. In other words, the total

number of terms in the summation of (2.55) is an Lp term. As a result, to
show (2.55), it suffices to show for each fixed I such that j ∈ I E G+ and
|I| ≤ l0,

(2.56) P (j ∈ I C U∗p , sgn(β̂j) 6= sgn(βj), Ap ∩ Ep,I) ≤ Lpp−ρ
∗
j .

Moreover, note that the left hand side of (2.56) is no more than∑
V0,V1⊂I:j∈V0∪V1

P
(
Supp(βI) = V0,Supp(β̂I) = V1, ICU∗p , sgn(β̂j) 6= sgn(βj), Ap∩Ep,I

)
,

where V0 and V1 are any non-random subsets satisfying the restriction. Since
|I| ≤ l0, there are only finite pairs (V0, V1) in the summation. Therefore, to
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show (2.56), it is sufficient to show for each fixed triplet (I, V0, V1) satisfying
I E G+, |I| ≤ l0, V0, V1 ⊂ I and j ∈ V0 ∪ V1 that
(2.57)
P
(
Supp(βI) = V0,Supp(β̂I) = V1, ICU∗p , sgn(β̂j) 6= sgn(βj), Ap∩Ep,I

)
≤ Lpp−ρ

∗
j .

We now show (2.57). Fix (I, V0, V1), and write d1 = dI
pe

, B1 = BI
pe,I

and H1 = HI
pe,Ipe for short. Define Θp(I, a) = {θ ∈ R|I| : θj = 0 or τp ≤

|θj | ≤ aτp} and Θp(I) ≡ Θp(I,∞). Since upe =
√

2ϑ log(p) and vpe = τp,
the objective function (1.18) in the PE-step is

L(θ) ≡ 1

2
(d1 −B1θ)

′H−1
1 (d1 −B1θ) + ϑ log(p)‖θ‖0.

Over the event {I C U∗p}, β̂I minimizes the objective function, so

L(β̂I) ≤ L(βI).

As a result, the left hand side of (2.57) is no greater than
(2.58)
P
(
Supp(βI) = V0,Supp(β̂I) = V1,L(β̂I) ≤ L(βI), sgn(β̂j) 6= sgn(βj), Ap∩Ep,I

)
.

We now calculate (2.58). Write for short Q1 = B′1H
−1
1 B1, $̂ = τ−2

p (β̂I −
βI)′Q1(β̂I − βI), and define

$j(V0, V1, I) ≡ 1

τ2
p

min
(β(0),β(1))

(β(1) − β(0))′Q1(β(1) − β(0)),

where the minimum is taken over (β(0), β(1)) such that sgn(β
(0)
j ) 6= sgn(β

(1)
j )

and β(k) ∈ Θp(I), Supp(β(k)) = Vk, k = 0, 1. Introduce
(2.59)

ρj(V0, V1; I) = max{|V0|, |V1|}ϑ+
1

4

[(√
$j(V0, V1; I)r − |(|V1| − |V0|)|)ϑ√

$j(V0, V1; I)r

)
+

]2

.

Over the event {Supp(βI) = V0,Supp(β̂I) = V1}, L(β̂I) ≤ L(βI) implies
(2.60)

−(d1−B1β
I)′H−1

1 B1(β̂I−βI) ≥ 1

2
(β̂I−βI)′B′1H−1

1 B1(β̂I−βI)+(|V1|−|V0|)ϑ log(p).

With the notation $̂, the right hand side of (2.60) is equal to

(2.61)
1

2
$̂τ2

p + (|V1| − |V0|)ϑ log(p).

To simplify the left hand side of (2.60), we need the following lemma, which
is proved in Section 5.
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Lemma 2.5. For any fixed I such that |I| ≤ l0, and any realization of β
over the event Ep,I ,

(Bβ)I
pe

= ζ +BI
pe,IβI ,

for some ζ satisfying ‖ζ‖ ≤ C(`pe)1/2[log(p)]−(1−1/α)τp.

Using Lemma 2.5, we can write d1 − B1β
I = ζ + H

1/2
1 z̃, where ζ is as in

Lemma 2.5 and z̃ ∼ N(0, I|Ipe|). It follows that the left hand side of (2.60)
is equal to

(2.62) −ζ ′H−1
1 B1(β̂I − βI) + z̃′H

−1/2
1 B1(β̂I − βI).

First, by Cauchy-Schwartz inequality, the second term in (2.62) is no larger

than ‖z̃‖
√
$̂τ2

p . Second, we argue that the first term in (2.62) is o(‖β̂I −
βI‖τp). To see the point, it suffices to check ‖B′1H

−1
1 ζ‖ = o(τp). In fact,

note that since B ∈ Mp(α,A0), ‖B1‖ ≤ ‖B‖ ≤ C; in addition, by RCB,
‖H−1

1 ‖ ≤ c−1
1 |Ipe|κ = O((`pe)κ). Applying Lemma 2.5 and noticing that

`pe = (log(p))ν with ν < (1 − 1/α)/(κ + 1/2), we have ‖B′1H
−1
1 ζ‖ ≤

‖B1‖‖H−1
1 ‖‖ζ‖ ≤ C(`pe)κ+1/2[log(p)]−(1−1/α)τp, and the claim follows. Third,

from Lemma 1.2 and Lemma 2.3, ‖GI,I − Q1‖ = o(1) as p grows. So for
sufficiently large p, λmin(Q1) ≥ 1

2λmin(GI,I) ≥ C for some constant C > 0.

It follows from the definition of $̂ that
√
$̂τ2

p ≥ C‖β̂I − βI‖. Combining

these with (2.62), over the event Ap ∩Ep,I , the left hand side of (2.60) is no
larger than

(2.63)
√
$̂τ2

p (‖z̃‖+ o(τp)) .

Inserting (2.61) and (2.63) into (2.60), we see that over the event {Supp(βI) =
V0, Supp(β̂I) = V1,L(β̂I) ≤ L(βI), Ap ∩ Ep,I},

(2.64) ‖z̃‖ ≥ 1

2

(√
$̂r +

(|V1| − |V0|)ϑ√
$̂r

)
+

√
2 log(p) + o(

√
log(p)).

Introduce two functions defined over (0,∞): J1(x) = |V0|ϑ + 1
4

[(√
x +

(|V1|−|V0|)ϑ√
x

)
+

]2
and J2(x) = max{|V0|, |V1|}ϑ + 1

4

[(√
x − |(|V1|−|V0|)|ϑ√

x

)
+

]2
.

By elementary calculations, J1(x) ≥ J2(y) for any x ≥ y > 0. Now, by these
notations, (2.64) can be written equivalently as ‖z̃‖2 ≥ [J1($̂r)− |V0|ϑ] ·
2 log(p) + o(log(p)), and ρj(V0, V1; I) defined in (2.59) reduces to J2($jr),

where $j = $j(V0, V1; I) for short. Moreover, when sgn(β̂Ij ) 6= sgn(βIj ),
$̂ ≥ $j by definition, and hence J1($̂r) ≥ J2($jr). Combining these,
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it follows from (2.64) that over the event {Supp(βI) = V0, Supp(β̂I) =
V1,L(β̂I) ≤ L(βI), sgn(β̂Ij ) 6= sgn(βIj ), Ap ∩ Ep,I},

‖z̃‖2 ≥
[
ρj(V0, V1; I)− |V0|ϑ

]
· 2 log(p) + o(log(p)),

where compared to (2.64), the right hand side is now non-random. It follows
that the probability in (2.58)
(2.65)

≤ P
(

Supp(βI) = V0, ‖z̃‖2 ≥
[
ρj(V0, V1; I)− |V0|ϑ

]
· 2 log(p) + o(log(p))

)
.

Recall that βI = bI ◦ µI , where bj ’s are independent Bernoulli variables
with surviving probability εp = p−ϑ. It follows that P (Supp(βI) = V0) =
Lpp

−|V0|ϑ. Moreover, ‖z̃‖2 is independent of βI , and is distributed as χ2 with
degree of freedom |Ips| ≤ Lp. From basic properties of the χ2-distribution,
P (‖z̃‖2 > 2C log(p) + o(log(p))) ≤ Lpp

−C for any C > 0. Combining these,
we find that the term in (2.65)

(2.66) ≤ Lpp−|V0|ϑ−[ρj(V0,V1;I)−|V0|ϑ] = Lpp
−ρj(V0,V1;I).

The claim follows by combining (2.66) and the following lemma.

Lemma 2.6. Under conditions of Theorem 1.2, for any (j, V0, V1, I) sat-
isfying I E G+, |I| ≤ l0, V0, V1 ⊂ I and j ∈ V0 ∪ V1,

ρj(V0, V1; I) ≥ ρ∗j (ϑ, r,G) + o(1).
�

3. Simulations. We conducted a small-scale simulation experiment.
The goal is to investigate how CASE performs with representative parame-
ters. We focus the study on the change-point model and long-memory time
series model discussed earlier.

3.1. Change-point model. In this section, we use Model (1.2) to inves-
tigate the performance of CASE in identifying multiple change-points. For
a given set of parameters (p, ϑ, r, a), we set εp = p−ϑ and τp =

√
2r log(p).

First, we generate a (p− 1)× 1 vector β by βj
iid∼ (1− εp)ν0 +

εp
2 U(τp, aτp) +

εp
2 U(−aτp,−τp), where U(s, t) is the uniform distribution over [s, t] (when
s = t, U(s, t) represents the point mass at s). Next, we construct the mean
vector θ in Model (1.2) by θj = θj−1 + βj−1, 2 ≤ j ≤ p. Last, we generate
the data vector Y by Y ∼ N(θ, Ip).
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CASE uses tuning parameters (δ,m,Q, `pe, upe, vpe). Among these tun-
ing parameters, (δ,m,Q, `pe) are reasonably flexible. The optimal choice of
(upe, vpe) depends on the unknown parameters (εp, τp), and how to estimate
them in general settings is a lasting open problem (even for linear models
with orthogonal designs). However, we note that, first, Experiment 1.1(a)
shows that if we mis-specify (εp, τp) by a reasonably small amount and use
them to decide the optimal choice of (upe, vpe), then the misspecification
usually has only a negligible effect on the performance of CASE. Second, in
some cases, (εp, τp) can be estimated satisfactorily; see Experiment 1.1(b).
For these reasons, in most experiments below, we set the tuning parame-
ters in a way by assuming (εp, τp) (or equivalently, (ϑ, r)) as known. To be
fair, when we compare CASE with other methods, we also assume (εp, τp)
as known when we set the tuning parameters for the latter.

In light of this, we set m = 3 when ϑ < 0.3, m = 2 when 0.3 ≤ ϑ <
0.5, and m = 1 otherwise. In this setting, any δ ∈ (0, 1) gives the same
graph G∗, so we take δ = 0.5. Additionally, we set upe =

√
2 log(1/εp) and

vpe = τp. The choice of `pe is heuristic and depends on how small p−ϑ is;
in our numerical studies, `pe ranges from 10 to 35 in the case p = 5000 for
different ϑ, and it ranges from 20 to 200 in the case p = 106. Last, we take
the patching method as described in (1.42) and then apply the PE-step.

Experiment 1.1(a). In this experiment, we misspecify (εp, τp), say, as
(ε̃p, τ̃p), and set upe =

√
2 log(1/ε̃p) and vpe = τ̃p, and investigate how

the misspecification affects the performance of CASE. Fix (p, ϑ, τp, a) =
(5000, 0.60, 5, 1), so that (εp, τp) = (0.006, 5). We misspecify (εp, τp) by a
small amount where we let τ̃p vary in {4, 4.5, · · · , 6}, and let ε̃p vary in
{0.005, 0.0055, · · · , 0.007}. Table 1 reports the average Hamming errors of
50 independent repetitions. The results suggest that CASE is reasonably
insensitive to the misspecification: the performance of CASE where (εp, τp)
are misspecified is close to the case where (εp, τp) are assumed as known.

For comparison, we also investigate the performance of SaRa (see [24]),
which is defined as

β̂SaRai = Wi1{|Wi| > λ}, where Wi =
1

h
(
i+h∑
j=i+1

Yj −
i∑

j=i−h+1

Yj).

SaRa uses two tuning parameters (h, λ) which we set ideally assuming (εp, τp)
as known: for all (h, λ) satisfying h ≤ b1/εpc and λ ≤ τp, we choose (by ex-
haustive numerical search) the pair that yields the smallest Hamming error.
In this setting, the average Hamming error of SaRa is 9.02 (compare Table
1). We see that CASE consistently outperforms SaRa, even when CASE
uses the misspecified (εp, τp) to determine the tuning parameters (upe, vpe),
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Table 1
Hamming errors in Experiment 1.1(a). p = 5000, ϑ = 0.60 and τp = 5. The expected

number of signals is p1−ϑ = 30.

ε̃p
τ̃p

4 4.5 5 5.5 6

0.0050 5.50 5.26 5.04 5.08 5.22

0.0055 5.10 5.04 4.84 4.82 5.12

0.0060 5.02 4.82 4.78 4.74 4.98

0.0065 5.06 4.86 4.78 4.76 4.98

0.0070 5.26 4.96 4.84 4.84 5.00

and SaRa uses the true values of (εp, τp) to determine the tuning parameters
(λ, h).

Experiment 1.1(b). In this experiment, we investigate the performance of
CASE when (εp, τp) are unknown but can be estimated. We propose the
following approach to estimate (εp, τp):

ε̂p =
1

p

p∑
i=1

1{|Wi| > λ}, τ̂p =
1

pε̂p

p∑
i=1

|Wi|1{|Wi| > λ},

where Wi = 1
h(
∑i+h

j=i+1 Yj−
∑i

j=i−h+1 Yj), and (λ, h) are tuning parameters.
Our numerical studies find that the approach works satisfactorily, especially
when τp is moderately large and εp is moderately small.

Fix (p, a, λ, h) = (5000, 1, 4.5, 5). We investigate different settings with
ϑ ∈ {0.60, 0.45} and τp ∈ {4, · · · , 9}. We compare the performance of CASE
where (upe, vpe) are computed based on (ε̂p, τ̂p), CASE where (upe, vpe) are
computed based on (εp, τp), and SaRa. Figure 4 summarizes the results based
on 50 independent repetitions. The results suggest that two versions of the
CASE have similar performance, which is substantially better than that of
SaRa.

Experiment 1.2. In this experiment, we compare CASE with the naive
hard thresholding (nHT) introduced in Section 1.11. The tuning parameters
of CASE are set in a way assuming (τp, εp) as known. The threshold of nHT
is set ideally as (r + 2ϑ)2/(2r) · log(p) (where we also assume that (εp, τp)
as known). Fix p = 106 and a = 1. Let ϑ range in {0.35, 0.5, 0.75}, and τp
range in {5, · · · , 13}. Figure 5 summaries the average Hamming errors of
50 independent repetitions. The results suggest that CASE outperforms the
naive hard thresholding.

Experiment 1.3. In this experiment, we compare the performance of three
procedures, CASE, SaRa and the lasso, with a few representative pairs of
(ϑ, τp). Note here that the lasso estimate, β̂lasso, is the minimizer of the



COVARIANCE ASSISTED SCREENING 37

5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

τ
 

 

ϑ = 0.45

GS(unkonwn τ,ε )
GS(known τ,ε)
SaRa

4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

τ
 

 

ϑ = 0.60

GS(unkonwn τ,ε )
GS(known τ,ε)
SaRa

Fig 4. Hamming errors in Experiment 1.1(b) (p = 5000). The x axis is τp, and the y axis
is the ratio between Hamming error and p1−ϑ.
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Fig 5. Hamming errors in Experiment 1.2 (p = 106). The x axis is τp, and the y axis is
the ratio between Hamming error and p1−ϑ.

following functional

min
β

1

2
‖Y −Xβ‖2 + λ‖β‖1,

where λ > 0 is a tuning parameter. We use the the glmnet package [13] in
the simulations.

Fix p = 5000 and a = 1. We let ϑ range in {0.3, 0.45, 0.65} and τp range in
{3, 4, · · · , 10}. The tuning parameters of CASE and SaRa are set ideally as in
Experiment 1.1(a), assuming (εp, τp) as known. The lasso tuning parameter
λ is also set ideally (we calculate the whole solution path and choose the
one with the smallest Hamming error). Table 2 displays the results based
on 50 independent repetitions, which suggests that CASE outperforms the
other two methods in most cases.

In particular, the lasso behaves unsatisfactorily, due to the strong depen-
dence among the design variables. Similar conclusion can be drawn in most
of the examples considered in the section, but to save space, we only report
that of the lasso here.

Experiment 1.4. In this experiment, we let a > 1 so the signals may
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Table 2
Hamming errors in Experiment 1.3 (p = 5000).

ϑ sp
τp

3 4 5 6 7 8 9 10

0.30 388.4
CASE 212.8 106.9 52.4 25.1 14.8 9.90 7.64 6.66
lasso 375.2 373.3 374.9 371.9 372.6 378.1 369.9 374.0
SaRa 245.3 175.1 106.4 50.4 21.2 6.12 2.98 1.38

0.45 108.3
CASE 56.6 28.9 11.6 4.70 1.68 0.82 0.72 0.64
lasso 105.4 106.1 105.8 102.6 103.1 106.2 103.7 105.1
SaRa 76.0 48.3 31.1 18.3 9.16 3.84 1.76 1.06

0.65 19.7
CASE 11.8 5.94 2.36 0.96 0.38 0.18 0.12 0.14
lasso 19.7 18.3 18.8 19.2 19.1 20.1 20.1 19.4
SaRa 14.5 8.50 5.42 3.94 2.16 1.42 1.06 1.00

Table 3
Hamming errors in Experiment 1.4. p = 5000, ϑ = 0.5, p1−ϑ = 70.7 and τp = 4.5.

a
1 1.5 2 2.5 3

half-half
CASE 14.26 6.32 5.50 4.78 4.56
SaRa 24.98 18.96 16.56 14.00 12.50

all-positive
CASE 13.44 6.18 4.90 5.38 4.14
SaRa 24.26 18.58 16.80 13.66 12.12

have different strengths. Fix (p, ϑ, τp) = (5000, 0.50, 4.5), and let a range
in {1, 1.5, · · · , 4}. We investigate a case where the signals have the “half-

positive-half-negative” sign pattern, i.e., βj
iid∼ (1 − εp)ν0 +

εp
2 U(τp, aτp) +

εp
2 U(−aτp,−τp), and a case where the the signals have the “all-positive” sign

pattern, i.e., βj
iid∼ (1− εp)ν0 + εpU(τp, aτp). We compare CASE with SaRa

for different values of a and sign-patterns. The results of 50 independent
repetitions are reported in Table 3, which suggest that CASE uniformly
outperforms SaRa for various values of a and the two sign patterns.

3.2. Long-memory time series model. In this section, we consider the
long-memory time seris model with a specific f as in (1.39) and (1.40).
Fix (p, φ, ϑ, τp, a), where φ is the long-memory parameter. We first use f to

compute G and let X = G1/2. We then generate the vector β by βj
iid∼ (1−

εp)ν0 +
εp
2 U(τp, aτp) +

εp
2 U(−aτp,−τp). Finally, we generate Y ∼ N(Xβ, Ip).

CASE uses tuning parameters (m, δ, `ps,Q, `pe, upe, vpe). In experiments
below, we choose them as follows: m = 2, δ = 0.35, upe =

√
2ϑ log(p) and

vpe =
√

2r log(p). We take t(F̂ , N̂) = q∗(F̂ , N̂) log(p), where q∗(F̂ , N̂) is
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Table 4
Hamming errors in Experiment 2.1 (φ = 0.35, p = 5000).

ϑ sp
τp

4 5 6 7 8 9 10 11

0.35 253.7
CASE 130.6 66.9 29.4 11.1 4.20 2.26 1.36 1.42
lasso 144.2 96.0 62.2 38.1 24.0 17.4 12.0 9.1

0.50 70.7
CASE 45.6 24.8 11.3 3.76 1.52 0.68 0.52 0.72
lasso 42.0 25.8 14.1 7.54 4.44 2.00 1.38 1.12

0.65 19.7
CASE 12.2 6.56 2.48 0.76 0.38 0.22 0.06 0.12
lasso 11.4 6.24 2.74 1.14 0.36 0.18 0.08 0.00

defined in (1.31), and 5 ≤ `ps ≤ 10, depending on how large ϑ is (small ϑ
corresponds to large `ps). `pe is chosen in this way: for a certain range of
integers, run the CASE for each and choose the largest integer such that
each component of U∗p (as a subgraph G+) has a size ≤ 10. In general, larger
`pe has better performance, but may result in longer computation time.

Experiment 2.1. Fix p = 5000, φ = 0.35 and a = 1. Let ϑ range in
{0.35, 0.5, 0.65}, and τp range in {4, · · · , 11}. We compare the performance
of CASE with that of the lasso. The tuning parameters of CASE are set
as above. The tuning parameters of the lasso are the oracle ones as in Ex-
periment 1.3. The results based on 50 independent repetitions are summa-
rized in Table 4. We see that CASE uniformly outperforms the lasso when
ϑ = 0.35, 0.5. When ϑ = 0.65, the performances of the two methods are
similar.

Experiment 2.2. In this experiment, we force the signals to appear in
adjacent pairs or triplets. Fix p = 5000, φ = 0.35, ϑ = 0.75 and let τp
range in {5, · · · , 10}. We use ‘+−’ to denote the signal pattern ‘pairs of
opposite signs’, ‘++’ ‘pairs of the same sign’. Other signal patterns are
denoted similarly. To generate β corresponding to ‘+−’, we first generate a

(p/2)× 1 vector θ by θj
iid∼ (1− εp)ν0 +

εp
2 U(τp, aτp) +

εp
2 U(−aτp,−τp), then

let β2j−1 = θj and β2j = θj . Similarly for other signal patterns. Figure 6
displays the results of 50 independent repetitions. We see that in the four
patterns ‘+−’, ‘+ +−’, ‘+−+’ and ‘+−−’, CASE uniformly outperforms
the lasso when τp ≥ 6.

4. Discussion. Variable selection when the Gram matrix G is non-
sparse is a challenging problem. We approach this problem by first sparsify-
ing G with a finite order linear filter, and then constructing a sparse graph
GOSD. The key insight is that, in the post-filtering data, the true signals
live in many small-size components that are disconnected in GOSD, but
we do not know where. We propose CASE as a new approach to variable
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Fig 6. Hamming errors in Experiment 2.2.

selection. This is a two-stage Screen and Clean method, where we first use
a covariance-assisted multivariate screening to identify candidates for such
small-size components, and then re-examine each candidate with penalized
least squares. In both stages, to overcome the problem of information leak-
age, we employ a delicate patching technique.

We develop an asymptotic framework focusing on the regime where the
signals are rare and weak so that successful variable selection is challeng-
ing but is still possible. We show that CASE achieves the optimal rate of
convergence in Hamming distance across a wide class of situations where G
is non-sparse but sparsifiable. Such optimality cannot be achieved by many
popular methods, including but not limited to the lasso, SCAD, and Dantzig
selector. When G is non-sparse, these methods are not expected to behave
well even when the signals are strong. We have successfully applied CASE to
two different applications: the change-point problem and the long-memory
times series.

Compared to the well-known method of marginal screening [10, 32], CASE
employs a covariance-assisted multivariate screening procedure, so that it is
theoretically more effective than marginal screening, with only a moderate
increase in the computational complexity. CASE is closely related to the
graphical lasso [12, 22], which also attempts to exploit the graph structure.
However, the setting considered here is very different from that in [12, 22]
and our emphasis on optimality is also very different.

The paper is closely related to the recent work [20] (see also [19]), but is
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different in important ways. The work in [20] is motivated by recent litera-
ture of Compressive Sensing and Genetic Regulatory Network, and is largely
focused on the case where the Gram matrix G is sparse in an unstructured
fashion. The current work is motivated by the recent interest on DNA-copy
number variation and long-memory time series, and is focused on the case
where there are strong dependence between different design variables so G
is usually non-sparse and some times ill-posed. To deal with the strong de-
pendence, we have to use a finite-order linear filter and delicate patching
techniques. Additionally, the current paper also studies applications to the
long-memory time series and change-point problem which have not been
considered in [20]. Especially, the studies on the change-point problem en-
compasses very different and very delicate analysis on both the derivation
of the lower bound and upper bound which we have not seen before in the
literature. For these reasons, the two papers have very different scopes and
techniques, and the results in one paper cannot be deduced from those in
the other.

The main results in this paper can be extended to much broader settings.
For example, we have used a Rare and Weak signal model where the signals
are randomly generated from a two-component mixture. The main results
continue to hold if we choose to use a much more relaxed model, as long as
the signals live in small-size isolated islands in the post-filtering data.

In this paper, we have focused on the change-point model and the long-
memory time series model, where the post-filtering matrices have polynomial
off-diagonal decay and are sparse in a structured fashion. CASE can be
extended to more general settings, where the sparsity of the post-filtering
matrices are unstructured, provided that we modify the patching technique
accordingly: the patching set can be constructed by including nodes which
are connected to the original set through a short-length path in the GOSD
G∗.

Another extension is that the Gram matrix can be sparsified by an op-
erator D, but D is not necessary linear filtering. To apply CASE to this
setting, we need to design specific patching technique. For example, when
D−1 is sparse, for a given I, we can construct Ipe = {j : |D−1(i, j)| >
δ1, for some i ∈ I}, where δ1 is a chosen threshold.

The paper is closely related to recent literature on DNA copy number
variation and financial data analysis, but is different in focus and scope. It
is of interest to further investigate such connections. To save space, we leave
explorations along this line to the future.
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5. Proofs. This section is organized as follows. In Section 5.1, we state
and prove three preliminary lemmas, which are useful for this section. In
Sections 5.2-5.12, we give the proofs of all the main theorems and lemmas
stated in the preceding sections.

5.1. Preliminary lemmas. We introduce Lemmas 5.1-5.3, where Lemmas
5.1-5.2 are proved below, and Lemma 5.3 is proved in [20, Lemma 1.4].

Recall that B = DG and G∗ is the GOSD in Definition 1.3 with δ =
1/ log(p). Introduce the matrix B∗∗ by

B∗∗(i, j) = B(i, j) · 1
{
j ∈ E({i})

}
, 1 ≤ i, j ≤ p,

where for any set V ⊂ {1, · · · , p},

E(V ) =
{
k : there is an edge between k and k′ in G∗ for some k′ ∈ V

}
.

Recall that Mp(α,A0) is the class of matrices defined in (1.7).

Lemma 5.1. When B ∈Mp(α,A0), G∗ is Kp-sparse for Kp ≤ C[log(p)]1/α,
and ‖B −B∗∗‖∞ ≤ C[log(p)]−(1−1/α).

Proof. Consider the first claim. Since B ∈ Mp(α,A0) and H(i, j) =∑h
k=0 ηkB(i, j+k), there exists a constant A′0 > 0 such that H ∈Mp(α,A

′
0).

Let Kp be the smallest integer satisfying

Kp ≥ 2[max(A0, A
′
0) log(p)]1/α,

where it is seen that Kp ≤ C(log(p))1/α. At the same time, for any i, j such
that |i− j|+ 1 > Kp/2, we have |B(i, j)| < δ, |B(j, i)| < δ and |H(i, j)| < δ.
By definition, there is no edge between nodes i and j in G∗. This proves that
G∗ is Kp-sparse, and the claim follows.

Consider the second claim. When |B(i, j)| > δ, there is an edge between
nodes i and j in G∗, and it follows that (B − B∗∗)(i, j) = 0. Therefore, for
any 1 ≤ i ≤ p,
p∑
j=1

|(B −B∗∗)(i, j)| ≤
∑

j:|j−i|+1>Kp/2

|B(i, j)|+
∑

j:|j−i|+1≤Kp/2,|B(i,j)|≤δ

|B(i, j)|

≡ I + II,

where I ≤ 2A0
∑

k+1>Kp/2
k−α ≤ CK1−α

p and II ≤ Kpδ = CK1−α
p . Recall-

ing Kp ≤ C[log(p)]α, ‖B − B∗∗‖∞ ≤ CK1−α
p ≤ C[log(p)]−(1−1/α), and the

claim follows. �
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Next, recall that G+ is an expanded graph of G∗, given in Definition 1.7,
and I C G denotes that I is a component of G, as in Definition 1.8.

Lemma 5.2. When G∗ is K-sparse, G+ is K(2`pe + 1)2-sparse. In addi-
tion, for any set V ⊂ {1, · · · , p}, let G+

V be the subgraph of G+ formed by
nodes in V . Then for any I C G+

V , (V \I) ∩ E(Ipe) = ∅.

Proof. Consider the first claim. It suffices to show that for any fixed
1 ≤ i ≤ p, there are at most K(2`pe+1)2 different nodes j such that there is
an edge between i and j in G+. Towards this end, note that {i}pe contains
no more than (2`pe + 1) nodes. Since G∗ is K-sparse, for each k ∈ {i}pe,
there are no more than K nodes k′ such that there is an edge between k and
k′ in G∗. Again, for each such k′, there are no more than (2`pe + 1) nodes j
such that k′ ∈ {j}pe. Combining these gives the claim.

Consider the second claim. Fix V and I C G+
V . Since I is a component,

for any i ∈ I and j ∈ V \I, there is no edge between i and j in G+
V . By

definition, this implies {j}pe ∩ E({i}pe) = ∅, and especially j /∈ E({i}pe).
Since this holds for all such i and j, using that E(Ipe) = ∪i∈IE({i}pe), we
have (V \I) ∩ E(Ipe) = ∅, and the claim follows. �

Finally, recall the definition of ρ∗j (ϑ, r, a,G) in (1.27) and that of ψ(F,N)
in (1.33).

Lemma 5.3. When a > a∗g(G), ρ∗j (ϑ, r, a,G) does not depend on a and
ρ∗j (ϑ, r, a,G) ≡ ρ∗j (ϑ, r,G) = min(F,N):j∈F,F∩N=∅,F 6=∅ ψ(F,N).

5.2. Proof of Lemma 1.2. For preparation, note that the Fisher Infor-
mation Matrix associated with model (1.13) is

Q ≡ (BI
+,I)′(HI

+,I+)−1(BI
+,I).

Write D1 = DI
+,J+

and G1 = GJ
+,J+

for short. It follows that BI
+,J+

=
D1G1 andHI

+,I+ = D1G1D
′
1. Let F be the mapping from J + to {1, · · · , |J +|}

that maps each j ∈ J + to its order in J +, and let I1 = F(I). By these
notations, we can write

(5.67) Q = QI1,I11 , where Q1 ≡ G1D
′
1(D1G1D

′
1)−1D1G1.

Comparing (5.67) with the desired claim, it suffices to show

(5.68) Q1 = G1 − U(U ′G−1
1 U)−1U ′.
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Let R = D1G
1/2
1 and PR = R′(RR′)−1R. It is seen that

(5.69) Q1 = G
1/2
1 PRG

1/2
1 = G1 −G1/2

1 (I − PR)G
1/2
1 .

Now, we study the matrix I − PR. Let k = |J +|, and denote S(R) the row
space of R and N (R) the orthogonal complement of S(R) in Rk. By con-
struction, PR is the orthogonal projection matrix from Rk to S(R). Hence,
I −PR is the orthogonal projection matrix from Rk to N (R). By definition,

N (R) = {η ∈ Rk : Rη = 0}. Recall that R = D1G
1/2
1 . Therefore, Rη = 0 if

and only if there exists ξ ∈ Rk such that η = G
−1/2
1 ξ and D1ξ = 0. At the

same time, Null(I+,J +) = {ξ ∈ Rk : D1ξ = 0}. Combining these, we have

(5.70) N (R) =
{
G
−1/2
1 ξ : ξ ∈ Null(I+,J +)

}
.

Introduce a new matrix V = G
−1/2
1 U . Since the columns of U form an or-

thonormal basis of Null(I+,J +), it follows from (5.70) that the columns of
V form a basis (but not necessarily an orthonormal basis) of N (R). Conse-
quently,

(5.71) I − PR = V (V ′V )−1V ′ = G
−1/2
1 U(U ′G−1

1 U)−1U ′G
−1/2
1 .

Plugging (5.71) into (5.69) gives (5.68). �

5.3. Proof of Lemma 1.4. Write ρ∗j = ρ∗j (ϑ, r,G) for short. It suffices to
show for any log(p) ≤ j ≤ p− log(p), there exists (V0, V1) such that
(5.72)
ρ(V0, V1) ≤ ρ∗j + o(1), j ∈ (V0 ∪ V1) ⊂ {j + i : − log(p) ≤ i ≤ log(p)}.

In fact, once (5.72) is proved, then dp(G�) ≤ 2 log(p) + 1, and the claim
follows directly.

We now construct (V0, V1) to satisfy (5.72) for any j such that log(p) ≤
j ≤ p − log(p). The key is to construct a sequence of set pairs (V

(t)
0 , V

(t)
1 )

recursively as follows. Let V
(1)

0 = V ∗0j and V
(1)

1 = V ∗1j , where (V ∗0j , V
∗

1j) are as

defined in Section 1.8. For any integer t ≥ 1, we update (V
(t)

0 , V
(t)

1 ) as follows.

If all inter-distance between the nodes in V
(t)

0 ∪V (t)
1 (assuming all nodes are

sorted ascendingly) does not exceed log(p)/g, then the process terminates.

Otherwise, there are a pair of adjacent nodes i1 and i2 in (V
(t)

0 ∪V
(t)

1 ) (again,
assuming the nodes are sorted ascendingly) such that i2 > i1 + log(p)/g. In

our construction, it is not hard to see that j ∈ V
(t)

0 ∪ V (t)
1 . Therefore, we

have either the case of j ≤ i1 or the case of j ≥ i2. In the first case, we let

N (t+1) = N (t) ∩ {i : i ≤ i1}, F (t+1) = F (t) ∩ {i : i ≤ i1},
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and in the second case, we let

N (t+1) = N (t) ∩ {i : i ≥ i2}, F (t+1) = F (t) ∩ {i : i ≥ i2},

where N (t) = V
(t)

0 ∩ V (t)
1 and F (t) = (V

(t)
0 ∪ V (t)

1 ) \N (t). We then update by
defining

V
(t+1)

0 = N (t+1) ∪ F ′, V
(t+1)

1 = N (t+1) ∪ F ′′

where (F ′, F ′′) are constructed as follows: Write F (t) = {j1, j2, · · · , jk} where
j1 < j2 < . . . < jk and k = |F (t)|. When k is even, let F ′ = {j1, · · · , jk/2}
and F ′′ = F (t)\F ′; otherwise, let F ′ = {j1, · · · , j(k−1)/2} and F ′′ = F (t)\F ′.

Now, first, by the construction, |F (t) ∪ N (t)| is strictly decreasing in t.
Second, by [20, Lemma 1.2], |F (1) ∪N (1)| ≤ |V ∗0j ∪ V ∗1j | ≤ g. As a result, the
recursive process above terminates in finite rounds. Let T be the number of
rounds when the process terminates, we construct (V0, V1) by

(5.73) V0 = V
(T )

0 , V1 = V
(T )

1 .

Next, we justify (V0, V1) constructed in (5.73) satisfies (5.72). First, it is
easy to see that j ∈ V0 ∪ V1 and |V0 ∪ V1| ≤ g. Second, all pairs of adjacent
nodes in V0 ∪ V1 have an inter-distance ≤ log(p)/g (assuming all nodes are
sorted), so (V0 ∪ V1) ⊂ {j − log(p), · · · , j + log(p)}. As a result, all remains
to show is

(5.74) ρ(V0, V1) ≤ ρ∗j + o(1).

By similar argument as in [20, Lemma 1.4] and definitions (i.e. (1.33) and
[20, (1.23)]), if a > a∗g(G), then for any (V ′0 , V

′
1) such that |V ′0 ∪ V ′1 | ≤ g, we

have ρ(V ′0 , V
′

1) ≥ ψ(F ′, N ′), where N ′ = V ′0 ∩ V ′1 and F ′ = (V ′0 ∪ V ′1)\N ′.
Moreover, the equality holds when |V ′0 | = |V ′1 | in the case |F ′| is even, and
|V ′0 | − |V ′1 | = ±1 in the case |F ′| is odd. Combining these with definitions,

ρ(V0, V1) = ψ(F (T ), N (T )), ρ∗j ≡ ρ(V ∗0j , V
∗

1j) = ρ(V
(1)

0 , V
(1)

1 ) ≥ ψ(F (1), N (1)).

Recall that T is a finite number. So to show (5.74), it suffices to show for
each 1 ≤ t ≤ T − 1,

(5.75) ψ(F (t+1), N (t+1)) ≤ ψ(F (t), N (t)) + o(1).

Fixing 1 ≤ t ≤ T − 1, write for short F = F (t), N = N (t), N1 = N (t+1)

and F1 = F (t+1). Let I = F ∪N and I1 = F1 ∪N1. With these notations,
(5.75) reduces to

(5.76) ψ(F1, N1) ≤ ψ(F,N) + o(1).
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By the way ψ is defined (i.e., (1.33)), it is sufficient to show

(5.77) ω(F1, N1) ≤ ω(F,N) + o(1).

In fact, once (5.77) is proved, (5.75) follows by noting that |F1| + 2|N1| ≤
|F |+ 2|N | − 1.

We now show (5.77). Letting Ω = diag(GI1,I1 , GI\I1,I\I1), we write

ω(F,N) = min
θ∈R|I|:|θi|≥1,∀i∈F

θ′GI,Iθ

≥ min
θ∈R|I|:|θi|≥1,∀i∈F

θ′Ωθ − max
θ∈R|I|:|θi|≤2a,∀i

|θ′(GI,I − Ω)θ|

≥ min
θ∈R|I1|:|θi|≥1,∀i∈F1

θ′GI1,I1θ − max
θ∈R|I|:|θi|≤2a,∀i

|θ′(GI,I − Ω)θ|(5.78)

= ω(F1, N1)− max
θ∈R|I|:|θi|≤2a,∀i

|θ′(GI,I − Ω)θ|,

where in the first and last equalities we use equivalent forms of ω(F,N), in
the second inequality we use the fact that the constraints |θi| ≥ 1 can be
replaced by 1 ≤ |θi| ≤ a for any a > a∗g and the triangular inequality, and
in the third inequality we use the definition of Ω.

Finally, note that for any k ∈ I1 and k′ ∈ I\I1, |k − k′| > log(p)/g
holds. In addition, G has polynomial off-diagonal decays with rate γ > 0.
Together we find that ‖GI,I − Ω‖ ≤ C(log(p)/g)−γ = o(1). As a result,
maxθ∈R|I|:|θi|≤2a,∀i |θ′(GI,I − Ω)θ| ≤ Ca2 · ‖GI,I − Ω‖ · |I| = o(1). Inserting
this into (5.78) gives (5.77). �

5.4. Proof of Theorem 1.3. First, we define ρ∗lts(ϑ, r; f) as follows. For
any spectral density function f , let G∞ = G∞(f) be the (infinitely dimen-
sional) Toeplitz matrix generated by f : G∞(i, j) = f̂(|i−j|) for any i, j ∈ Z,
where f̂(k) is the k-th Fourier coefficient of f . In the definition of ρ(V0, V1)
in (1.25)-(1.26), replace G by G∞ and call the new term ρ∞(V0, V1). For any
fixed j, let

(5.79) ρ∗j,lts(ϑ, r; f) = min
(V0,V1):j∈V0∪V1

ρ∞(V0, V1),

where V0, V1 are subsets of Z. Due to the definition of Toeplitz matrices,
ρ∗j,lts(ϑ, r; f) does not depend on j, so we write it as ρ∗lts(ϑ, r; f) for short.
By (5.72), it is seen that

(5.80) ρ∗j (ϑ, r,G) = ρ∗lts(ϑ, r; f) + o(1), for any log(p) ≤ j ≤ p− log(p).

Now, to show the claim, it is sufficient to check the main conditions of
Theorem 1.2. In detail, it suffices to check that



COVARIANCE ASSISTED SCREENING 47

(a) G ∈M∗p(γ, g, c0, A1) with γ = 1− 2φ > 0, A1 > 0 and c0 > 0.
(b) B ∈Mp(α,A0) with α = 2− 2φ > 1 and A0 > 0.
(c) Conditions RCA and RCB hold with κ = 2− 2φ > 0 and c1 > 0.

To show these claims, we need some lemmas and results in elementary
calculus. In detail, first, we have

(5.81) |f ′(ω)| ≤ C|ω|−(2φ+1), |f ′′(ω)| ≤ C|ω|−(2φ+2).

For a proof of (5.81), we rewrite f(ω) = f∗(ω)/|2 sin(ω/2)|2φ, where by
assumption f∗(ω) is a continuous function that is twice differentiable except
at 0, and |(f∗)′′(ω)| ≤ C|ω|−2. It can be derived from basic properties in
analysis that

(5.82) |(f∗)′′(ω)| ≤ C|ω|−2, |(f∗)′(ω)| ≤ C|ω|−1, and |f∗(ω)| ≤ C.

At the same time, by elementary calculation,

|f ′(ω)| ≤ C|ω|−(2φ+1)(|f∗(ω)|+ |ω(f∗)′(ω)|),
|f ′′(ω)| ≤ C|ω|−(2φ+2)(|f∗(ω)|+ |ω(f∗)′(ω)|+ |ω2(f∗)′′(ω)|),

and (5.81) follows by plugging in (5.82).
Second, we need the following lemma, whose proof is a simple exercise of

analysis and omitted.

Lemma 5.4. Suppose g is a symmetric real function which is differen-
tiable in [−π, 0) ∪ (0, π] and |g′(ω)| ≤ C|ω|−α for some α ∈ (1, 2). Then as
x→∞,

∫ π
−π cos(ωx)g(ω)dω = O

(
|x|−(2−α)

)
.

We now show (a)-(c). Consider (a) first. First, by (5.81) and Lemma 5.4,∫ π
−π cos(kω)f(ω)dω ≤ Ck−(1−2φ) for large k, so that |G(i, j)| ≤ C(1 + |i −
j|)−(1−2φ). Second, by well-known results on Toeplitz matrices, λmin(G) ≥
minω∈[−π,π] f(ω) > 0. Combining these, (a) holds with γ = 1 − 2φ and
c0 = minω∈[−π,π] f(ω).

Next, we consider (b). Recall that B = DG where D is the first-order row-
differencing matrix. So B(i, j) = 1

2π

∫ π
−π [cos(kω)− cos((k + 1)ω)] f(ω)dω,

where k = i− j. Without loss of generality, we only consider the case k ≥ 1.



48 T. KE, J. JIN AND J. FAN

Denote g(ω) = ωf(ω). By Fubini’s theorem and integration by part,

B(i, j) =
1

π

∫ π

0

[∫ k+1

k
ω sin(ωx)dx

]
f(ω)dω

=
1

π

∫ k+1

k

[∫ π

0
g(ω) sin(ωx)dω

]
dx

=
1

π

∫ k+1

k

[
−g(π)

cos(πx)

x
+

∫ π

0

cos(ωx)

x
g′(ω)dω

]
dx

= −g(π)

π

∫ k+1

k

cos(πx)

x
dx+

1

2π

∫ k+1

k

1

x

[∫ π

−π
cos(ωx)g′(ω)dω

]
dx

≡ I1 + I2

First, using integration by part, |I1| =
∣∣∣π−1g(π)

∫ k+1
k

sin(πx)
πx2

dx
∣∣∣ = O(k−2).

Second, similar to (5.81), we derive that g′′(ω) = O(|ω|−(1+2φ)). Applying
Lemma 5.4 to g′, we have |

∫ π
−π cos(ωx)g′(ω)dω| ≤ C|x|−(1−2φ), and so |I2| ≤∫ k+1

k Cx−(2−2φ)dx = O(k−(2−2φ)). Combining these gives |B(i, j)| ≤ C(1 +

|i− j|)−(2−2φ), and (b) holds with α = 2− 2φ.
Last, we show (c). Since ϕη(z) = 1 − z, RCA holds trivially, and all

remains is to check that RCB holds. Recall that H = DGD′, where D is
the first-order row-differencing matrix. The goal is to show there exsits a
constant c1 > 0 such that for any triplet (k, b, V ),

(5.83) b′HV,V b ≥ c1k
−(2−2φ)‖b‖2,

where 1 ≤ k ≤ p is an integer, b ∈ Rk is a vector, and V ⊂ {1, 2, . . . , p} is a
subset with |V | = k.

Towards this end, we introduce f1(ω) = 4 sin2(ω/2)f(ω), where we recall
that f is the spectral density associated with G. Fixing a triplet (k, b, V ), we
write b = (b1, b2, . . . , bk)

′ and V = {j1, · · · , jk} such that j1 < j2 < . . . < jk.
By definitions and basic algebra,

H(i, j) = G(i, j)−G(i+ 1, j)−G(i, j + 1) +G(i+ 1, j + 1)

=
1

2π

∫ π

−π
[2 cos(kω)− cos((k + 1)ω)− cos((k − 1)ω)] f(ω)dω

=
1

2π

∫ π

−π
cos(kω)f1(ω)dω, where for short k = i− j,

which, together with direct calculations, implies that

b′HV,V b =
1

2π

∫ π

−π

k∑
s=1

k∑
t=1

bsbt cos((js−jt)ω)f1(ω)dω =
1

2π

∫ π

−π

∣∣ k∑
s=1

bse
√
−1jsω

∣∣2f1(ω)dω.
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At the same time, note that f1(ω) ≥ C|ω|2−2φ for any ω 6= 0 and |ω| ≤ π.
Combining these with symmetry and monotonicity gives
(5.84)

b′HV,V b ≥ C

π

∫ π

0

∣∣ k∑
s=1

bse
√
−1jsω

∣∣2ω2−2φdω ≥ C

π

∫ π

π/(2k)

∣∣ k∑
s=1

bse
√
−1jsω

∣∣2ω2−2φdω.

Next, we write

(5.85) ‖b‖2 =
1

π

∫ π

0

∣∣ k∑
s=1

bse
√
−1jsω

∣∣2dω = I + II,

where I and II are the integration in the interval of [0, π/(2k)] and [π/(2k), π],
respectively. By (5.84) and the monotonicity of the function ω2−2φ in [π/(2k), π],

(5.86) b′HV,V b ≥ Ck−(2−2φ) · 1
π

∫ π

π/(2k)

∣∣ k∑
s=1

bse
√
−1jsω

∣∣2dω ≡ Ck−(2−2φ) ·II.

At the same time, by the Cauchy-Schwartz inequality, |
∑k

s=1 bse
√
−1jsω|2 ≤

(
∑k

s=1 |e
√
−1jsω|2)(

∑k
s=1 |bs|2) = k‖b‖2, and so I ≤ 1

π

∫ π/(2k)
0 k‖b‖2dω ≤

‖b‖2/2. Inserting this into (5.85) gives

(5.87) II ≥ ‖b‖2 − ‖b‖2/2 = ‖b‖2/2,

and (5.83) follows by combining (5.86) and (5.87). �

5.5. Proof of Lemma 1.5. First, we show r∗lts(ϑ) ≡ r∗lts(ϑ; f) is a decreas-
ing function of ϑ. Similarly to the proof of Theorem 1.3, in the definition
of ω(F,N) and ψ(F,N) (recall (1.33) and (1.34)), replace G by G∞, and
denote the new terms by ω∞(F,N) ≡ ω∞(F,N ;ϑ, r, f) and ψ∞(F,N) ≡
ψ∞(F,N ;ϑ, r, f), respectively. By similar argument in Lemma 5.3,

ρ∗lts(ϑ, r; f) = min
(F,N):F∩N=∅,F 6=∅

ψ∞(F,N).

For each pair of sets (F,N) and ϑ ∈ (0, 1) let r∗(ϑ;F,N) ≡ r∗(ϑ;F,N, f) be
the minimum r such that ψ∞(F,N ;ϑ, r, f) ≥ 1. It follows that

r∗lts(ϑ) = max
(F,N):F∩N=∅,F 6=∅

r∗(ϑ;F,N).

It is easy to see that r∗(ϑ;F,N) is a decreasing function of ϑ for each fixed
(F,N). So r∗lts(ϑ) is also a decreasing function of ϑ.
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Next, we consider limϑ→1 r
∗
lts(ϑ). In the special case of F = {j} and

N = ∅, ω∞(F,N) = 1, limϑ→1 r
∗(ϑ;F,N) = 1, and so lim infϑ→1 r

∗
lts(ϑ) ≥ 1.

At the same time, for any (F,N) such that |F |+ |N | > 1, ψ∞(F,N) ≥ ϑ and
so limϑ→1 r

∗(ϑ;F,N) ≤ 1. Hence, lim supϑ→1 r
∗
lts(ϑ) ≤ 1. Combining these

gives the claim.
Last, we consider limϑ→0 r

∗
lts(ϑ). First, since limϑ→0 ψ

∞(F,N) = ω∞(F,N)r/4
for any fixed (F,N), we have

(5.88) lim
ϑ→0

r∗lts(ϑ) = 4

[
min

(F,N):F∩N=∅,F 6=∅
ω∞(F,N)

]−1

.

Second, by definitions,
(5.89)

min
(F,N):F∩N=∅,F 6=∅

ω∞(F,N) = lim
p→∞

min
(F,N):(F∪N)⊂{1,··· ,p},F∩N=∅,F 6=∅

ω(F,N),

whenever the limit on the right hand side exists.
Third, note that (a) Given F , ω(F,N) decreases as N increases and (b)

Given F ∪N , ω(F,N) decreases as N increases (the proofs are straightfor-
ward and we omit them). As a result, for all (F,N) such that (F ∪ N) ⊂
{1, · · · , p}, ω(F,N) is minimized at F = {j} and N = {1, · · · , p}\{j} for
some j, with the minimal value equaling the reciprocal of the j-th diagonal
of G−1. In other words,
(5.90)

lim
p→∞

min
(F,N):(F∪N)⊂{1,··· ,p},F∩N=∅,F 6=∅

ω(F,N) =
[

lim
p→∞

max
1≤j≤p

G−1(j, j)
]−1

.

Fourth, if we write G = Gp to emphasize on the size of G, then by basic
algebra and the Toeplitz structure of G, we have (G−1

p )(j, j) ≤ (G−1
p+k)(j +

k, j + k) for all 1 ≤ k ≤ p − j and (G−1
p )(j, j) ≤ (G−1

p+k)(j − k, j − k) for
1 ≤ k ≤ j − 1. Especially, if we take k = log(p), then it follows that

(5.91) lim
p→∞

max
1≤j≤p

G−1(j, j) = lim
p→∞

max
log(p)≤j≤p−log(p)

G−1(j, j).

Last, we have the following lemma which is proved in Appendix A.

Lemma 5.5. Under conditions of Lemma 1.5,

lim
p→∞

max
log(p)≤j≤p−log(p)

G−1(j, j) =
1

2π

∫ π

−π
f−1(ω)dω.

Combining (5.88)-(5.91) and using Lemma 5.5,

lim
ϑ→0

r∗lts(ϑ) = 4 ·
[

lim
p→∞

max
log(p)≤j≤p−log(p)

G−1(j, j)
]

=
2

π

∫ π

−π
f−1(ω)dω.

�
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5.6. Proof of Theorem 1.4. Write for short β̂ = β̂case and ρ∗cp = ρ∗cp(ϑ, r).
It suffices to show

(5.92) Hamm∗p(ϑ, r,G) ≥ Lpp1−ρ∗cp ;

and for any µ ∈ Θ∗p(τp, a),

(5.93) Hp(β̂; εp, µ,G) ≡
p∑
j=1

P
(
sgn(β̂j) 6= sgn(βj)

)
≤ Lpp1−ρ∗cp + o(1).

First, we show (5.92). The statement is similar to that of Theorem 1.1,
but dp(G�) ≤ Lp does not hold. Therefore, we introduce a different graph
GO as follows: Define a counter part of ρ∗j (ϑ, r,G) as

(5.94) ρ̃∗j (ϑ, r,G) = min
(V0,V1):min(V0∪V1)=j

ρ(V0, V1),

where min(V0∪V1) = j means j is the smallest node in V0∪V1. Let (V ∗0j , V
∗

1j)
be the minimizer of (5.94), and when there is a tie, pick the one that appears
first lexicographically. Define the graph GO with nodes {1, · · · , p}, and that
there is an edge between nodes j and k whenever (V ∗0j∪V ∗1j)∩(V ∗0k∪V ∗1k) 6= ∅.

Denote dp(GO) the maximum degree of nodes in GO. Similar to Theorem
1.1, as p→∞,

(5.95) Hamm∗p(ϑ, r,G) ≥ Lp[dp(GO)]−1
p∑
j=1

p−ρ̃
∗
j (ϑ,r,G).

The proof is a trivial extension of [20, Theorem 1.1] and we omit it. Moreover,
the following lemma is proved below.

Lemma 5.6. As p → ∞, maxlog(p)≤j≤p−log(p) |ρ̃∗j (ϑ, r,G) − ρ∗cp(ϑ, r)| =
o(1), and dp(GO) ≤ Lp.

Combining (5.95) with Lemma 5.6 gives (5.92).
Second, we show (5.93). The change-point model is an ‘extreme’ case and

Theorem 1.2 does not apply directly. However, once we justify the following
claims (a)-(c), (5.93) follows by similar arguments in Theorem 1.2.

(a) SS property:

p∑
j=1

P
(
βj 6= 0, j /∈ U∗p

)
≤ Lpp1−ρ∗cp + o(1).
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(b) SAS property: If we view U∗p as a subgraph of G+, there is a fixed
integer l0 > 0 such that with probability at least 1 − o(1/p), each
component of U∗p has a size ≤ l0.

(c) A counter part of Lemma 2.6: For any log(p) ≤ j ≤ p − log(p), and
fixed I E G+ such that j ∈ I and |I| ≤ l0, suppose we construct
{I(k′), I(k′),pe, 1 ≤ k′ ≤ N} using the process introduced in the PE-
step, and j ∈ I(k). Then for any pair of sets (V0, V1) such that I(k) =
V0 ∪ V1,

ρj(V0, V1; I(k)) ≥ ρ∗cp + o(1),

where ρj(V0, V1; I(k)) is defined in (2.59).

Consider (a) first. Following the proof of Lemma 2.1 until (5.119), we find
that for each log(p) ≤ j ≤ p− log(p),

P
(
βj 6= 0, j /∈ U∗p

)
≤

∑
(I,F,N):j∈IEG∗,|I|≤m,F∪N=I,F∩N=∅,F 6=∅

Lpp
−|I|ϑ−[(

√
ω0r−

√
q)+]2

+Lpp
−(m+1)ϑ + o(1/p)

where ω0 = τ−2
p (βF )′[QF,F − QF,N (QN,N )−1QN,F ]βF and Q is defined as

in (1.15). First, by the choice of m, Lpp
−(m+1)ϑ ≤ Lpp

−ρ∗cp . Second, using
similar arguments in Lemma 2.1, the summation contains at most Lp terms.
Third, by (1.35), ω0 ≥ ω̃(F,N). Combining the above, it suffices to show for
each triplet (I, F,N) in the summation,

(5.96) |I|ϑ+ [(
√
ω̃(F,N)r −√q)+]2 ≥ ρ∗cp.

The key to (5.96) is to show

(5.97) ω̃(F,N) ≥ 1/2.

Once (5.97) is proved, since q ≤ r
4(
√

2− 1)2,

|I|ϑ+ [(
√
ω̃(F,N)r −√q)+]2 ≥ |I|ϑ+ r/4 ≥ ρ∗cp,

where in the last inequality we use the facts ρ∗cp ≤ ϑ+ r/4 and |I| ≥ 1. This
gives (5.96).

All remains is to show (5.97). We argue that it suffices to consider those
(I, F,N) where both I(= F ∪N) and F are formed by consecutive nodes.
First, since G is tri-diagonal, the definition of G∗ implies that any I E G∗ is
formed by consecutive nodes. Second, by (1.35) and basic algebra,

(5.98) ω̃(F,N) = min
ξ∈R|F |:|ξi|≥1

ξ′[(Q−1)F,F ]−1ξ,
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where Q is defined in (1.15). Note that B is an identity matrix and Ips = I.
So Q−1 = HI,I , which is a tri-diagonal matrix. It follows from (5.98) that
if F is not formed by consecutive nodes, there exist F1 ⊂ F and N1 = I\F1

such that ω̃(F1, N1) ≤ ω̃(F,N). The argument then follows.
From now on, we focus on (I, F,N) such that both I and F are formed

by consecutive nodes. Elementary calculation yields

(5.99) [(Q−1)F,F ]−1 = (HF,F )−1 = Ω(k) − 1

k + 1
ηη′,

where k = |F |, Ω(k) is the k × k matrix defined by Ω(k)(i, j) = min{i, j}
and η = (1, · · · , k)′. We see that ω̃(F,N) only depends on k. When k = 1,
ω̃(F,N) = 1/2 by direct calculations following (5.98) and (5.99). When
k ≥ 2, from (5.98) and (5.99),

ω̃(F,N) = min
ξ∈R|F |:|ξi|≥1

[
k∑
l=1

(ξl + · · ·+ ξk)
2 − 1

k + 1
(ξ1 + 2ξ2 + · · ·+ kξk)

2

]
.

Let sl =
∑k

j=l ξj . The above right hand side is lower bounded by
∑k

l=1 s
2
l −

(
∑k

l=1 sl)
2/k =

∑
l<l′(sl − sl′)

2/k, where
∑

l<l′(sl − sl′)
2 ≥

∑k−1
l=1 (sl+1 −

sl)
2 ≥ k − 1. Therefore,

ω̃(F,N) ≥ (k − 1)/k ≥ 1/2.

This proves (5.97).
Next, consider (b). We check RCB, and the remaining proof is exactly the

same as in Lemma 2.2. Towards this end, the goal is to show there exists a
constant c1 > 0 such that for any (k, V ) where V ⊂ {1, · · · , p} and k = |V |,

(5.100) λmin(HV,V ) ≥ c1k
−2.

Since H is tri-diagonal, it suffices to show that (5.100) holds when V is
formed by consecutive nodes, i.e., V = {j, · · · , j+k} for some 1 ≤ j ≤ p−k.
In this case, we introduce a matrix Σ(k), which is ‘smaller’ than HV,V but
much easier to analyse:

Σ(k)(i, j) = 2 · 1{i = j} − 1{|i− j| = 1} − 1{i = j = k}, 1 ≤ i, j ≤ k.

It is easy to see that HV,V − Σ(k) is positive semi-definite. Hence,

(5.101) λmin(HV,V ) ≥ λmin(Σ(k)).
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Observing that (Σ(k))−1 = Ω(k), where Ω(k) is as in (5.99), we have

(5.102) λmin(Σ(k)) =
[
λmax(Ω(k))

]−1 ≥
[
‖Ω(k)‖∞

]−1
= 2/(k2 + k).

Combining (5.101)-(5.102) gives (5.100).
Finally, consider (c). Fix 1 ≤ j ≤ p and the triplet (I(k), V0, V1), where

|I(k)| ≤ l0. The goal is to show

(5.103) ρj(V0, V1; I(k)) ≥ ρ∗cp + o(1).

Introduce the following quantities: From the PE-step and the choice `pe =
2 log(p), we can write

I(k),pe = {j1 + 1, · · · , j1 + L} and I(k) = {j1 +M1, · · · , j1 +M2},

where the integers L, M1 and M2 staisfy
(5.104)
M2−M1 ≤ l0 + 1, M1 ≥ [log(p)]1/(l0+1), (L−M2)/M1 ≥ [log(p)]1/(l0+1).

Denote K = M2−M1 +1, M0 = M1−
M2

1
L+1 and I ′′ = {M0, · · · ,M0 +K−1}.

Let F be the one-to-one mapping from I(k) to I ′′ such that F(i) = i− (j1 +
M1) + M0. Denote V ′′0 = F(V0) and V ′′1 = F(V1). Recall the definitions of
$j(V0, V1; I(k)) and $∗(V0, V1) (see (2.59) and (1.25)). We claim that

(5.105) $j(V0, V1; I(k)) ≥ $∗(V ′′0 , V ′′1 ) + o(1).

Once we have (5.105), plug it into the definition ρj(V0, V1; I(k)) and use
the monotonicity of the function f(x) = [(x − a/x)+]2 over (0,∞) when
a > 0. It follows that

ρj(V0, V1; I(k)) ≥ max{|V0|, |V1|}ϑ+
1

4

[(
√
$∗r −

∣∣|V1| − |V0|
∣∣ϑ

√
$∗r

)
+

]2

+o(1).

where $∗ is short for $∗(V ′′0 , V
′′

1 ). Compare the first term on the right hand
side with (1.26) and recall that |V ′′0 | = |V0| and |V ′′1 | = |V1|. It follows that

(5.106) ρj(V0, V1; I(k)) ≥ ρ(V ′′0 , V
′′

1 ) + o(1).

Moreover, since M0 = min(V ′′0 , V
′′

1 ), by (5.94),

(5.107) ρ(V ′′0 , V
′′

1 ) ≥ ρ̃∗M0
.



COVARIANCE ASSISTED SCREENING 55

Note that (5.104) implies M0 &M1 ≥ [log(p)]1/(1+l0). By a trivial extension
of Lemma 5.6, we can derive that max(log(p))1/(1+l0)≤j≤p−(log(p))1/(1+l0) |ρ̃∗j −
ρ∗cp| = o(1). These together imply

(5.108) ρ̃∗M0
= ρ∗cp + o(1).

Combining (5.106)-(5.108) gives (5.103).
What remains is to show (5.105). The proof is similar to that of (5.152).

In detail, write for short $j = $j(V0, V1; I(k)), $∗ = $∗(V ′′0 , V
′′

1 ), B1 =

BI
(k),pe,I(k) , H1 = HI

(k),pe,I(k),pe and Q1 = B′1H
−1
1 B1. By similar arguments

in (5.153), $j ≥ minj∈I $j , and there exists a constant a1 > 0 such that

|min
j∈I

$j −$∗| ≤ max
ξ∈RK :‖ξ‖∞≤2a1

∣∣ξ′(GI′′,I′′ −Q1)ξ
∣∣ ≤ C‖GI′′,I′′ −Q1‖.

Therefore, it suffices to show that

(5.109) ‖GI′′,I′′ −Q1‖ = o(1).

Note thatQ1 is the (I ′, I ′)-block ofH−1
1 , where the index set I ′ = {M1, · · · ,M2}.

By (5.99), H−1
1 = Ω(L) − 1

L+1ηη
′, where η = (1, 2, · · · , L)′. It follows that

Q1 = (M1 − 1)1K1′K + Ω(K) − 1

L+ 1
ξξ′,

where 1K is the K-dimensional vector whose elements are all equal to 1,

and ξ = (M1, · · · ,M2)′. Define the L× L matrix ∆ by ∆(i, j) =
ij−M2

1
L+1 , for

1 ≤ i, j ≤ L and let ∆1 be the submatrix of ∆ by restricting the rows and
columns to I ′. By these notations,

Q1 = (M0 − 1)1K1′K + Ω(K) −∆1.

At the same time, we observe that

GI
′′,I′′ = (M0 − 1)1K1′K + Ω(K).

Combining the above yields that GI
′′,I′′ − Q1 = ∆1. Note that |∆(i, j)| ≤

M2
2−M2

1
L+1 ≤ (l0+1)(2M1+l0+1)

L+1 = o(1) for all i, j ∈ I ′. Hence, ‖∆1‖ = o(1) and
(5.109) follows directly. �

5.6.1. Proof of Lemma 5.6. To show the claim, we need to introduce
some quantities and lemmas. First, by a trivial extension of Lemma 5.3,

ρ̃∗j (ϑ, r,G) = min
(F,N):min(F∪N)=j,F∩N=∅,F 6=∅

ψ(F,N).
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where ψ(F,N) = ψ(F,N ;ϑ, r,G), defined in (1.33).
Second, let Rp denote the collection of all subsets of {1, · · · , p} that are

formed by consecutive nodes. Define

˜̃ρ∗j (ϑ, r,G) = min
(F,N):min(F∪N)=j,F∩N=∅,F 6=∅,F∪N∈Rp,F∈Rp,|F |≤3,|N |≤2

ψ(F,N),

where we emphasize that the minimum is taken over finite pairs (F,N). The
following lemma is proved in Appendix A.

Lemma 5.7. As p→∞, maxlog(p)≤j≤p−log(p) |ρ̃∗j (ϑ, r,G)− ˜̃ρ∗j (ϑ, r,G)| =
o(1).

Third, for each dimension k, define the k × k matrix Σ
(k)
∗ as

(5.110) Σ
(k)
∗ (i, j) = 2 · 1{i = j} − 1{|i− j| = 1},

except that Σ
(k)
∗ (1, 1) = Σ

(k)
∗ (k, k) = 1, and the k × k matrix Ω

(k)
∗ as

(5.111) Ω
(k)
∗ (i, j) = min{i, j} − 1.

Let

ω(∞)(F,N) =


minξ∈R|F |:|ξj |≥1 ξ

′[(Σ
(k)
∗ )F,F ]−1ξ, |N | > 0

minξ∈R|I|:|ξj≥1,1′ξ=0 ξ
′Ω

(k)
∗ ξ, |N | = 0, |F | > 1

∞, |N | = 0, |F | = 1

and define ψ(∞)(F,N) = ψ(∞)(F,N ;ϑ, r,G), a counter part of ψ(F,N), by
replacing ω(F,N) by ω(∞)(F,N) in the definition (1.33). Let

ρ(∞)(ϑ, r) = min
(F,N):min(F∪N)=1,F∩N=∅,F 6=∅,F∈Rp,F∪N∈Rp,|F |≤3,|N |≤2

ψ(∞)(F,N),

where we note that ρ(∞)(ϑ, r) does not depend on j. The following lemma
is proved in Appendix A.

Lemma 5.8. As p→∞, maxlog(p)≤j≤p−log(p) | ˜̃ρ∗j (ϑ, r,G)− ρ(∞)(ϑ, r)| =
o(1).

Now, we show the claims. Write for short ρ̃∗j = ρ̃∗j (ϑ, r,G), and ˜̃ρ∗j , ρ
∗
cp

similarly. First, we show
dp(GO) ≤ Lp.
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Denote (F ∗j , N
∗
j ) the minimum in defining ˜̃ρ∗j , and if there is a tie, we pick

the one that appears first lexicographically. By definition and Lemma 5.7,
for any log(p) ≤ j ≤ p− log(p),

ψ(F ∗j , N
∗
j ) ≡ ˜̃ρ∗j = ρ̃∗j + o(1), and (F ∗j ∪N∗j ) ⊂ {j, · · · , j + 4}.

By the definition of GO, these imply that there is an edge between nodes j
and k only when |k − j| ≤ 4. So dp(GO) ≤ C.

Next, we show for all log(p) ≤ j ≤ p− log(p),

ρ̃∗j = ρ∗cp + o(1).

By Lemma 5.7 and Lemma 5.8, it suffices to show

(5.112) ρ(∞) = ρ∗cp.

Introduce the function ν(·;F,N) for each (F,N):

ν(x;F,N) =

{
(|F |+ 2|N |)/2 + ω(∞)x/4, |F | is even,

(|F |+ 2|N |+ 1)/2 + [(
√
ω(∞)x− 1/

√
ω(∞)x)+]2/4, |F | is odd,

where ω(∞) is short for ω(∞)(F,N). Then we can write

ψ(∞)(F,N ;ϑ, r,G) = ϑ · ν(r/ϑ;F,N).

Let ν∗(x) = min(F,N) ν(x;F,N), where the minimum is taken over those

(F,N) in defining ρ(∞). It follows that

(5.113) ρ(∞)(ϑ, r) = min
(F,N)

ϑ · ν(r/ϑ;F,N) = ϑ · ν∗(r/ϑ).

Below, we compute the function ν∗(·) by computing the functions ν(·;F,N)
for the finite pairs (F,N) in defining ρ(∞). After excluding some obviously
non-optimal pairs, all possible cases are displayed in Table 5. Using Table
5, we can further exclude the cases with |F | = 3. In the remaining, for each
fixed value of ω(∞), we keep two pairs of (F,N) which minimize |F |+ 2|N |
among those with |F | odd and even respectively. The results are displayed in
Table 6. Then ν∗(·) is the lower envelope of the four functions listed. Direct
calculations yield

ν∗(x) =

{
1 + x/4, 0 < x ≤ 6 + 2

√
10;

3 + (
√
x− 2/

√
x)2/8, x > 6 + 2

√
10.

Plugging this into (5.113) and comparing it with the definition of ρ∗cp, we
obtain (5.112). �
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Table 5
Calculation of ω(∞)(F,N)

F N (Σ
(k)
∗ )F,F Ω

(k)
∗ ξ∗ ω(∞)(F,N)

{1} {2} 1 - 1 1
{2} {1, 3} 2 - 1 1

2

{1, 2} ∅ -

(
0 0
0 1

)
(1,−1)′ 1

{1, 2} {3}
(

1 −1
−1 2

)
- (1,−1)′ 1

{2, 3} {1, 4}
(

2 −1
−1 2

)
- (1,−1)′ 2

3

{1, 2, 3} ∅ -

0 0 0
0 1 1
0 1 2

 (1,−2, 1)′ 2

{1, 2, 3} {4}

 1 −1 0
−1 2 −1
0 −1 2

 - (1,− 3
2
, 1)′ 3

2

{2, 3, 4} {1, 5}

 2 −1 0
−1 2 −1
0 −1 2

 - (1,−1, 1)′ 1

Table 6
Calculation of ν(x;F,N)

ω(∞) |F | |N | ν(x;F,N) ‖ξ∗‖∞
1 1 1 2 + 1

4
(
√
x− 1√

x
)2+ 1

1 2 0 1 + x
4

1
1
2

1 2 3 + 1
8
(
√
x− 2√

x
)2+ 1

2
3

2 2 3 + x
6

1

5.7. Proof of Lemma 2.1. Fix ϑ and r. Write for short ρ∗j = ρ∗j (ϑ, r,G).
To show the claim, it suffices to show for each 1 ≤ j ≤ p,

(5.114) P
(
βj 6= 0, j /∈ U∗p

)
≤ Lp[p−ρ

∗
j + p−(m+1)ϑ] + o(1/p).

Fix 1 ≤ j ≤ p. Recall that G∗S is the subgraph of G∗ by restricting the
nodes into S(β). Over the event {βj 6= 0}, there is a unique component I
such that j ∈ I C G∗S . By [14, 20], |I| ≤ m except for a probability of at
most Lpp

−(m+1)ϑ, where the randomness comes from the law of β. Denote
this event as Ap = Ap,j . To show (5.114), it suffices to show

(5.115) P
(
βj 6= 0, j /∈ U∗p , Ap

)
≤ Lpp−ρ

∗
j + o(1/p).

Note that I depends on β (and so is random), and also that over the event
Ap, any realization of I is a connected subgraph in G∗ with size ≤ m.
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Therefore,

P
(
βj 6= 0, j /∈ U∗p , Ap

)
≤

∑
I:j∈IEG∗,|I|≤m

P
(
j ∈ I C G∗S , j /∈ U∗p , Ap

)
,

where on the right hand side, we have misused the notation slightly by
denoting I as a fixed (non-random) connected subgraph of G∗. Since G∗ is
Kp-sparse (see Lemma 5.1), for any fixed j, there are no more than C(eKp)

m

connected subgraph I such that j ∈ I and |I| ≤ m [14]. Noticing that
C(eKp)

m ≤ Lp, to show (5.115), it is sufficient to show for any fixed I such
that j ∈ I E G∗ and |I| ≤ m,

(5.116) P
(
j ∈ I C G∗S , j /∈ U∗p , Ap

)
≤ Lpp−ρ

∗
j + o(1/p).

Fix such an I. The subgraph (as a whole) has been screened in some sub-
stage of the PS-step, say, sub-stage t. Let N̂ = U (t−1) ∩ I and F̂ = I\N̂ be
as in the initial sub-step of the PS-step. By definitions, the event {j /∈ U∗p} is
contained in the event that I fails to pass the χ2-test in (1.17). As a result,

P
(
j ∈ I C G∗S , j /∈ U∗p , Ap

)
≤ P

(
j ∈ I C G∗S , T (d, F̂ , N̂) ≤ 2q(F̂ , N̂) log(p), Ap

)
≤

∑
(F,N):F∪N=I,F∩N=∅,F 6=∅

P
(
j ∈ I C G∗S , T (d, F,N) ≤ 2q(F,N) log(p), Ap

)
,

where (F,N) are fixed (non-random) subsets, and q = q(F,N) is either as
in (1.31) or in (1.36). Since |I| ≤ m, the summation in the second line only
involves at most finite terms. Therefore, to show (5.116), it suffices to show
for each fixed triplet (I, F,N) satisfying j ∈ I E G∗, |I| ≤ m, F ∪ N = I,
F ∩N = ∅ and F 6= ∅,
(5.117)

P
(
j ∈ I C G∗S , T (d, F,N) ≤ 2q(F,N) log(p), Ap

)
≤ Lpp−ρ

∗
j + o(1/p).

Now, we show (5.117). The following lemma is proved below.

Lemma 5.9. For each fixed (I, F,N) such that I = F ∪N , F ∩N = ∅,
F 6= ∅ and |I| ≤ m, there exists a random variable T0 such that with probabil-
ity at least 1−o(1/p), |T (d, F,N)−T0| ≤ C(log(p))1/α, and conditioning on
βI , T0 has a non-central χ2-distribution with the degree of freedom k ≤ |I|
and the non-centrality parameter

δ0 = (βF )′
[
QF,F −QF,N (QN,N )−1QN,F

]
βF ,

where Q is as defined in (1.15).



60 T. KE, J. JIN AND J. FAN

Fix a triplet (I, F,N) and let δ0 be as in Lemma 5.9. Then

P
(
I C G∗S , T (d, F,N) ≤ 2q(F,N) log(p), Ap,j

)
(5.118)

≤ P
(
I C G∗S , T0 ≤ 2q(F,N) log(p) + C(log(p))1/α

)
+ o(1/p)

≤ P
(
I C G∗S

)
· P
(
T0 ≤ 2q(F,N) log(p) + C(log(p))1/α

∣∣βI)+ o(1/p).

Denote ω0 = τ−2
p δ0. By Lemma 5.9, (T0|βI) ∼ χ2

k(2rω0 log(p)), where k ≤
m. In addition, (log(p))1/α � log(p) by recalling that α > 1. Combining
these and using the basic property of non-central χ2-distributions,

P
(
T0 ≤ 2q(F,N) log(p) + C(log(p))1/α

∣∣βI) ≤ Lpp−[(
√
ω0r−
√
q(F,N))+]2 .

Inserting this into (5.118) and noting that P
(
I C G∗S

)
≤ Lpp−|I|ϑ, we have

P
(
ICG∗S , T (d, F,N) ≤ 2q(F,N) log(p), Ap

)
≤ Lpp−|I|ϑ−[(

√
ω0r−
√
q(F,N))+]2+o(1/p).

Comparing this with (5.117) and using the expression of ρ∗j in Lemma 5.3,
it suffices to show

(5.119) |I|ϑ+ [(
√
ω0r −

√
q(F,N))+]2 ≥ ψ(F,N).

Recall that q = q(F,N) is chosen from either (1.31) or (1.36). In the
former case, since ω0 ≥ ω̃(F,N) by definition (see (1.35)), it follows imme-
diately from (1.31) and (1.32) that (5.119) holds. Therefore, we only consider
the latter, in which case q(F,N) = q̃|F | and (5.119) reduces to

(5.120) |I|ϑ+ [(
√
ω0r −

√
q̃|F |)+]2 ≥ ψ(F,N).

By the expression of ψ(F,N),

ψ(F,N) ≤ (|I| − |F |/2)ϑ+ (ωr/4 + ϑ/2) ≤ |I|ϑ+ ωr/4,

where ω is a shorthand of ω(F,N). Therefore, to show (5.120), it suffices to
check

(5.121)
(√
ω0r −

√
q̃|F |

)
+
≥
√
ωr/2.

Towards this end, recalling that F ⊂ I, we let Σ and Σ̃ be the respective
submatrices of (GI,I)−1 andQ−1 formed by restricting the rows and columns
from I to F . Let ξ∗ = τ−1

p βF . By elementary calculation and noting that
a > a∗g(G),

ω = min
ξ∈R|F |:1≤|ξi|≤a

ξ′Σ−1ξ, ω0 = (ξ∗)′Σ̃−1ξ∗.
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On one hand, since G ∈M∗p(γ, g, c0, A1) and |I| ≤ m ≤ g,

(5.122) ω ≥ |F | · λmin(GI,I) ≥ c0 · |F |.

On the other hand, noting that ‖ξ∗‖∞ ≤ a,

(5.123) |ω−ω0| ≤ max
ξ∈R|F |:1≤|ξi|≤a

|ξ′(Σ−1− Σ̃−1)ξ| ≤ (a2 · ‖Σ−1− Σ̃−1‖)|F |.

We argue that ‖Σ−1−Σ̃−1‖ can be taken to be sufficiently small by `ps suffi-
ciently large. To see the point, note that ‖Σ−1−Σ̃−1‖ ≤ ‖GI,I‖2‖Q−1‖2‖GI,I−
Q‖. First, since |I| ≤ m, ‖GI,I‖2 ≤ C. Second, note that Q is the Fisher In-
formation Matrix associated with the model dI

ps ∼ N(BI
ps,IβI , HI

ps,Ips).
Using Lemma 1.2 and (5.143), ‖GI,I−Q‖ ≤ C(`ps)−γ . Third, ‖(GI,I)−1‖ ≤
c−1

0 , since G ∈ M∗p(γ, g, c0, A1). Finally, ‖Q−1‖ ≤ 2c−1
0 when GI,I and Q

are sufficiently close. Combining these gives that ‖Σ−1 − Σ̃−1‖ ≤ C(`ps)−γ ,
for sufficiently large `ps, and the claim follows.

As a result, by taking `ps a sufficiently large constant integer, we have

(5.124) a2‖Σ−1 − Σ̃−1‖ ≤
(1

2

√
c0 −

√
q̃/r
)2
,

where we note the right hand side is a fixed positive constant. Combining
(5.122)-(5.124),√

(ω − ω0)+ ≤
(1

2

√
c0 −

√
q̃/r
)√
|F | ≤ 1

2

√
ω −

√
q̃|F |/r,

where the first inequality follows from (5.123) and (5.124), as well as the
fact that q̃ < c0r/4 (so that 1

2

√
c0 −

√
q̃/r > 0); and the last inequality

follows from (5.122). Combining this to the well known inequality that
√
a+√

(b− a)+ ≥
√
b for any a, b ≥ 0, we have

√
ω0 ≥

√
ω −

√
(ω − ω0)+ ≥

√
ω −

(1

2

√
ω −

√
q̃|F |/r

)
≥ 1

2

√
ω +

√
q̃|F |/r,

and (5.121) follows directly. �

5.7.1. Proof of Lemma 5.9. Recall that T (d, F,N) = W ′Q−1W−W ′N (QN,N )−1WN

where d = DY , W and Q are defined in (1.15) which depend on I = F ∪N ,
and WN and QN,N are defined in (1.16). Let V = S(β)\I. By definitions,

W = QβI+ξ+u, where ξ = (BI
ps,I)′(HI

ps,Ips)−1BI
ps,V βV and u ∼ N(0, Q).

Denote W̃ = QβI + u. Introduce a proxy of T (d, F,N) by

T0(d, F,N) = W̃ ′Q−1W̃ − (W̃N )′(QN,N )−1W̃N .



62 T. KE, J. JIN AND J. FAN

Write for short T = T (d, F,N) and T0 = T0(d, F,N). To show the claim,
it is sufficient to show (a) |T − T0| ≤ C(log(p))1/α with probability at least
1− o(1/p) and (b) (T0|βI) ∼ χ2

k(δ0).
Consider (a) first. By direct calculations,

(5.125) |T − T0| ≤ 2‖ξ‖ ·
(
2‖βI‖+ ‖Q−1‖‖ξ‖+ 2‖Q−1/2‖‖Q−1/2u‖

)
.

First, since |I| ≤ m and ‖β‖∞ ≤ aτp ≤ C
√

log(p), ‖βI‖ ≤ C
√

log(p). Sec-
ond, by definitions, max{‖Q−1/2‖, ‖Q−1‖} ≤ C. Last, note that Q−1/2u ∼
N(0, I|I|) and so with probability at least 1−o(1/p), ‖Q−1/2u‖ ≤ C

√
log(p).

Inserting these into (5.125), we have that with probability at least 1−o(1/p),

|T − T0| ≤ C‖ξ‖
(√

log(p) + ‖ξ‖
)
.

We now study ‖ξ‖. By definitions, it is seen that

‖ξ‖ ≤ ‖BIps,I‖ · ‖(HIps,Ips)−1‖ · ‖BIps,V βV ‖.

First, we have ‖BIps,I‖ ≤ ‖B‖ ≤ C. Second, since |Ips| ≤ C, by RCB,
λmin(HI

ps,Ips) ≥ c1|Ips|−κ ≥ C > 0, and so ‖(HIps,Ips)−1‖ ≤ C. Third, by
basic algebra,

(5.126) ‖BIps,V βV ‖ ≤
√
|Ips| · ‖BIps,V βV ‖∞ ≤ C‖BI

ps,V ‖∞ · ‖βV ‖∞.

Here, we note that ‖BIps,V ‖∞ ≤ ‖B − B∗∗‖∞, where B∗∗ is defined in
Section 5.1, and where by Lemma 5.1, ‖B − B∗∗‖∞ ≤ C(log(p))−(1−1/α).
As a result, ‖BIps,V ‖∞ ≤ C(log(p))−(1−1/α). Inserting this into (5.126) and
recalling that ‖βV ‖∞ ≤ C

√
log(p),

‖BIps,V βV ‖ ≤ C(log(p))−(1−1/α) ·
√

log(p) = C(log(p))1/α−1/2.

Combining these gives that ‖ξ‖ ≤ C(log(p))1/α−1/2. This, together with
(5.125), implies that

|T−T0| ≤ C(log(p))1/α−1/2[
√

log(p)+(log(p))1/α−1/2] ≤ C[(log(p))1/α+(log(p))2/α−1],

and the claim follows by recalling α > 1.
Next, consider (b). Write for short R = (HI

ps,Ips)−1/2BI
ps,I . Also, recall

that F and N are subsets of I. We let RF and RN be the submatrices of R
by restricting the columns to F and N , respectively (no restriction on the
rows). By definitions, Q = R′R and u ∼ N(0, Q), so that we can rewrite
u = R′z̃ for some random vector z̃ ∼ N(0, I|Ips|). With these notations, we
can rewrite T0 as

T0 = (RβI + z̃)′[R(R′R)−1R′ −RN (R′NRN )−1R′N ](RβI + z̃).
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Therefore, (T0|βI) ∼ χ2
k(δ̃0) [21], where k = rank(R)− rank(RN ) ≤ |I|, and

δ̃0 ≡ (RβI)′[R(R′R)−1R′ −RN (R′NRN )−1R′N ](RβI).

By basic algebra, δ̃0 = δ0. This completes the proof. �

5.8. Proof of Lemma 2.2. Viewing U∗p as a subgraph of G+, we recall
that ICU∗p stands for that I is a component of U∗p . The assertion of Lemma
2.2 is that there exists a constant integer l0 such that

(5.127) P
(
|I| > l0 for some I C U∗p

)
= o(1/p).

The key to show the claim is the following lemma, which is proved below:

Lemma 5.10. There is an event Ap and a constant C1 > 0 such that
P (Acp) = o(1/p) and that over the event Ap, ‖dI

ps‖2 ≥ 5C1|I| log(p) for all
I C U∗p .

By Lemma 5.10, to show (5.127), it suffices to show

(5.128) P
(
|I| > l0 for some I C U∗p , Ap

)
= o(1/p).

Now, for each 1 ≤ j ≤ p, there is a unique component I such that j ∈ ICU∗p .
Such I is random, but any of its realization is a connected subgraph of G+.
Therefore,
(5.129)

P
(
|I| > l0 for some ICU∗p , Ap

)
≤

p∑
j=1

∞∑
l=l0+1

∑
I:j∈IEG+,|I|=l

P
(
j ∈ ICU∗p , Ap

)
,

where on the right hand side we have changed the meaning of I to denote
a fixed (non-random) connected subgraph of G+. We argue that

(a) for each (j, l), the third summation on the right of (5.129) sums over
no more than Lp terms;

(b) there are constants C2, C3 > 0 such that for any (j, I) satisfying j ∈
I E G+, P

(
j ∈ I C U∗p , Ap

)
≤ Lp

[
p−C2

√
|I| + p−C3|I|

]
.

Once (a) and (b) are proved, then it follows from (5.129) that

P
(
|I| > l0 for some I C U∗p , Ap

)
≤ Lp

[
p1−C2

√
l0 + p1−C3l0

]
,

and (5.128) follows by taking `0 sufficiently large.
It remains to show (a) and (b). Consider (a) first. Note that the number of

connected subgraph I of size l such that j ∈ IEG+ is bounded by C(eK+
p )l
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[14], where K+
p is the maximum degree of G+. At the same time, by Lemma

5.1 and Lemma 5.2, K+
p is an Lp term. Combining these gives (a).

Consider (b). Denote V = {j : B∗∗(i, j) 6= 0, for some i ∈ Ips}, where
B∗∗ is defined in Section 5.1. Write for short d1 = dI

ps
, B1 = BI

ps,V and
H1 = HI

ps,Ips . With these notations and by Lemma 5.10, (b) reduces to

(5.130) P
(
j ∈ I C U∗p , ‖d1‖2 ≥ 5C1|I| log(p)

)
≤ Lp

[
p−C2

√
|I| + p−C3|I|].

We now show (5.130). Note that d1 = B1β
V + ξ + z̃, where ξ = [(B −

B∗∗)β]I
ps

and z̃ ∼ N(0, H1). For preparation, we claim that

(5.131) ‖ξ‖2 = |I| · o(log(p)).

In fact, first since `ps is finite, |Ips| ≤ C|I| and it follows that ‖ξ‖2 ≤
C|I| · ‖ξ‖2∞. Second, by Lemma 5.1, ‖B − B∗∗‖∞ = o(1). Since ‖β‖∞ ≤
aτp ≤ C

√
log(p), it follows that ‖ξ‖∞ ≤ ‖B − B∗∗‖∞‖β‖∞ = o(

√
log(p)).

Combining these gives (5.131).
Now, combining (5.130) and (5.131) and using the well-known inequality

(a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R, we find that for sufficiently large p,

P
(
j ∈ I C U∗p , ‖d1‖2 ≥ 5C1|I| log(p)

)
(5.132)

≤ P
(
j ∈ I C U∗p , ‖B1β

V + z̃‖2 ≥ 4C1|I| log(p)
)

≤ P
(
j ∈ I C U∗p , ‖B1β

V ‖2 + ‖z̃‖2 ≥ 2C1|I| log(p)
)

≤ P
(
‖B1β

V ‖2 ≥ C1|I| log(p)
)

+ P
(
‖z̃‖2 ≥ C1|I| log(p)

)
≡ I + II.

We now analyze I and II separately. Consider I first. We claim there is a
constant C4 > 0, not depending on |I|, such that ‖B1β

V ‖ ≤
√
C4 log(p)‖βV ‖0.

To see this, note that ‖B1β
V ‖ ≤ ‖B1β

V ‖1 ≤ ‖B1‖1‖βV ‖1, where ‖B1‖1 ≤
‖B‖1 ≤ C, with C > 0 a constant independent of |I|. At the same time,
‖βV ‖1 ≤ aτp‖βV ‖0. So the argument holds for C4 = 2ra2C2. Additionally,
‖βV ‖0 has a multinomial distribution, where the number of trials is |V | ≤ Lp
and the success probability is εp = p−ϑ. Combining these, we have

(5.133) I ≤ P
(
‖βV ‖0 ≥

√
(C1/C4)|I|

)
≤ Lpp−ϑb

√
(C1/C4)|I|c,

where bxc denotes the the largest integer k such that k ≤ x.
Next, consider II. Note that ‖H1‖ ≤ ‖H‖ ≤ C5, where C5 > 0 is a

constant independent of |I|. It follows that ‖z̃‖2 ≤ C−1
5 ‖H

−1/2
1 z̃‖2, where

‖H−1/2
1 z̃‖2 has a χ2-distribution with degree of freedom |Ips| ≤ C|I|. Using

the property of χ2-distributions,

(5.134) II ≤ P
(
‖H−1/2

1 z̃‖2 ≥ C1C5|I| log(p)
)
≤ Lpp−(C1C5/2)|I|.
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Inserting (5.133) and (5.134) into (5.132), (5.130) follows by taking C2 >
ϑ
√
C1/C4 and C3 > C1C5/2. �

5.8.1. Proof of Lemma 5.10. For preparation, we need some notations.
First, for a constant δ0 > 0 to be determinded, define the p× p matrices B̃
and H̃ by

B̃(i, j) = B(i, j)1{|B(i, j)| > δ0}, H̃(i, j) = H(i, j)1{|H(i, j)| > δ0}.

Second, view U∗p as a subgraph of G+. Note that in the PS-step, each
Gt is a connected subgraph of G+. Hence, any Gt that passed the test must
be contained as a whole in one component of U∗p . It follows that for any
I C U∗p , there exists a (random) set T ⊂ {1, · · · , T} such that I = ∪t∈T Gt.
Therefore, we write

I = ∪ŝ0i=1Vi,

where each Vi = Gt for some t ∈ T , and these Vi’s are listed in the order
they were tested. Denote N̂i = U (t−1) ∩ Gt and F̂i = Gt\N̂i. Let W(i) and
Q(i) be the vector W and matrix Q in (1.15). From basic algebra, the test
statistic can be rewritten as
(5.135)

T (d, F̂i, N̂i) = ‖u(i)‖2, u(i) ≡ Σ
−1/2
(i) [W F̂i

(i) −Q
F̂i,N̂i

(i) (QN̂i,N̂i

(i) )−1W N̂i

(i) ],

where Σ(i) = QF̂i,F̂i

(i) −QF̂i,N̂i

(i) [QN̂i,N̂i

(i) ]−1QN̂i,F̂i

(i) .
Third, define

W ∗(i) = (B̃V ps
i ,Vi)′(H̃V ps

i ,V ps
i )−1dV

ps
i ,

and u∗(i) as in (5.135) with W(i) replaced by W ∗(i). Let u be the |I|× 1 vector

by putting {u(i), 1 ≤ i ≤ ŝ0} together, and define u∗ similarly.
With these notations, to show the claim, it suffices to show there exist

positive constants C6, C7 such that with probability at least 1− o(1/p), for
any I C U∗p ,

(5.136) ‖u∗‖2 ≥ C6|I| log(p),

and

(5.137) ‖u∗‖2 ≤ C7‖dI
ps‖2.

Consider (5.136) first. Since each Vi passed the test, ‖u(i)‖2 ≥ t(F̂i, N̂i). If

t(F̂i, N̂i) is chosen from (1.31), t(F̂i, N̂i) ≥ 2q0 log(p) ≥ 2(q0/m)|F̂i| log(p);
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otherwise it is chosen from (1.36), then t(F̂i, N̂i) ≥ 2q̃|F̂i| log(p). In both
cases, there is a constant q > 0 such that

‖u(i)‖2 ≥ 2q|F̂i| log(p), 1 ≤ i ≤ ŝ0.

In addition, it is easy to see that ∪iF̂i is a partition of I. It follows that

(5.138) ‖u‖2 =

ŝ0∑
i=1

‖u(i)‖2 ≥ 2q|I| log(p).

At the same time, let Ap be the event {‖d‖∞ ≤ C0

√
log(p)}, where we

argue that when C0 is sufficiently large, P (Acp) = o(1/p). To see this, recall

that d = Bβ +H1/2z̃, where z̃ ∼ N(0, Ip). By the assumptions, ‖B‖∞ ≤ C,
‖β‖∞ ≤ C

√
log(p) and ‖H‖∞ ≤ C. Therefore, ‖d‖∞ ≤ C(

√
log(p)+‖z̃‖∞).

It is well-known that P (‖z̃‖∞ >
√

2a log(p)) = Lpp
−a for any a > 0. Hence,

when C0 is sufficiently large, P (Acp) = o(1/p).
We shall show that over the event Ap, by choosing δ0 a sufficiently small

constant,

(5.139) ‖u− u∗‖2 ≤ q|I| log(p)/2.

Once this is proved, combining (5.138) and (5.139), and applying the in-
equality (a+ b)2 ≤ 2(a2 + b2) for any a, b ∈ R, we have

2q|I| log(p) ≤ ‖u‖2 ≤ 2(‖u∗‖2 + ‖u− u∗‖2) ≤ 2‖u∗‖2 + q|I| log(p).

Hence, (5.136) holds with C6 = q/2.
What remains is to prove (5.139). It follows from G ∈ M∗p(γ, g, c0, A1)

and |Vi| ≤ m ≤ g that ‖(GVi,Vi)−1‖ ≤ c−1
0 . As a result, ‖Q−1

(i) ‖ ≤ C. Also,

Σ−1
(i) is a submatrix of Q−1

(i) ; and hence ‖Σ−1
(i) ‖ ≤ C. This implies

(5.140) ‖u(i) − u∗(i)‖ ≤ C‖W(i) −W ∗(i)‖, 1 ≤ i ≤ ŝ0.

SinceB enjoys a polynomial off-diagonal decay with rate α, ‖(B−B̃)V
ps
i ,Vi‖∞ ≤

Cδ
1−1/α
0 . Noting that |V ps

i | ≤ C, this implies ‖(B − B̃)V
ps
i ,Vi‖ ≤ Cδ

1−1/α
0 .

Similarly, we can derive ‖(H− H̃)V
ps
i ,V ps

i ‖ ≤ Cδ1−1/α
0 . These together imply

(5.141) ‖W(i) −W ∗(i)‖ ≤ Cδ
1−1/α
0 ‖dV

ps
i ‖ ≤ Cδ1−1/α

0 ‖d‖∞, 1 ≤ i ≤ ŝ0,

where in the last inequality we use the facts that |V ps
i | ≤ C and ‖dV

ps
i ‖∞ ≤

‖d‖∞. Combining (5.140) and (5.141), over the event Ap,

‖u(i) − u∗(i)‖
2 ≤ Cδ2(1−1/α)

0 log(p), 1 ≤ i ≤ ŝ0.
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Noting that α > 1, we can choose a sufficiently small δ0 such that Cδ
2(1−1/α)
0 ≤

q/2, and (5.139) follows by noting |ŝ0| ≤ |I|.
Next, consider (5.137). We write

u∗ = ΞΓΘ dI
ps
,

where the matrices Ξ, Γ and Θ are defined as follows: Ξ is a block-wise
diagonal matrix with the i-th block equals to Σ−1

(i) . Γ is a |I| × (
∑ŝ0

i=1 |Vi|)
matrix, with the (F̂i, Vi)-block is given by

ΓF̂i,Vi =
[
I, −QF̂i,N̂i

(i) (QN̂i,N̂i

(i) )−1
]
.

and 0 elsewhere. Θ is a (
∑ŝ0

i=1 |Vi|)× |Ips| matrix, with the (Vi, V
ps
i )-block

ΘVi,V
ps
i = (B̃V ps

i ,Vi)′(H̃V ps
i ,V ps

i )−1,

and 0 elsewhere.
Note that these matrices are random (they depend on U∗p and I). Below,

we show that for any realization of U∗p and any component I C U∗p ,

(5.142) ‖ΞΓΘ‖ ≤ C.

Once (5.142) is proved, (5.137) follows by letting C7 = C2.
We now show (5.142). Since ‖ΞΓΘ‖ ≤ ‖Ξ‖‖Γ‖‖Θ‖, it suffices to show

‖Ξ‖, ‖Γ‖, ‖Θ‖ ≤ C.

First, ‖Ξ‖ ≤ maxi ‖Q−1
(i) ‖ ≤ C. Second, the entries in Γ and Θ have a uniform

upper bound in magnitude, and each row and column of Γ has ≤ m non-zero
entries. So ‖Γ‖ ≤ C. Finally, each row of Θ has no more than 2m`ps entries;
as a result, to show ‖Θ‖ ≤ C, we only need to prove that each column of Θ
also has a bounded number of non-zero entries.

Towards this end, write for short B̃(i) = B̃V ps
i ,Vi and H̃(i) = H̃V ps

i ,V ps
i for

each 1 ≤ i ≤ ŝ0. By definition,

Θ(k, j) =
∑

j′∈V ps
i

B̃(i)(j
′, k)H̃−1

(i) (j′, j), k ∈ Vi, j ∈ V ps
i .

First, given the chosen δ0, each row or column of B̃ and H̃ has ≤ L0 non-zero
entries, where L0 is a constant integer. Therefore, for each j′, the number
of k such that B̃(j′, k) 6= 0 is upper bounded by L0. Second, we define a
graph G = G(δ0) where there is an edge between nodes j and j′ if and only if
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H̃(j, j′) 6= 0. For each 1 ≤ i ≤ ŝ0, let Gi be the restriction of G to the nodes
in V ps

i . We see that H̃(i) is block-diagonal with each block corresponding

to a component of Gi, and so is (H̃(i))
−1. This means (H̃(i))

−1(j′, j) can be
non-zero only when j and j′ belong to the same component of Gi. Since
|V ps
i | ≤ 2m`ps for all i, necessarily, there exits a path in G of length ≤ 2m`ps

that connects j and j′. Third, since G is L0-sparse, for each j, the number
of j′ that is connected to j with a path of length ≤ 2m`ps is upper bounded
by L2m`ps

0 . In summary, for each fixed j, there are no more than L0 ·L2m`ps
0

nodes k such that Θ(k, j) 6= 0, i.e., each column of Θ has ≤ L2m`ps+1
0 nonzero

entries and the claim follows. �

5.9. Proof of Lemma 2.3. Fix I and recall that J = {j : D(i, j) 6=
0, for some i ∈ I}. In this lemma, Ipe is as in Definition 1.6, but J pe
is redefined as J pe = {j : D(i, j) 6= 0, for some i ∈ Ipe}. Denote M =
|J pe|− |Ipe| and write GJ

pe,J pe
= G1 for short. Let F be the mapping from

J pe to {1, · · · , |J pe|} that maps each j ∈ J pe to its order in J pe. Denote
I1 = F(I). By these notations, the claim reduces to: for any |J pe| × M
matrix U whose columns contain an orthonormal basis of Null(Ipe,J pe),∥∥[U(U ′G−1

1 U)−1U ′]I1,I1
∥∥ = o(1).

It suffices to show

(5.143)
∥∥[U(U ′G−1

1 U)−1U ′]I1,I1
∥∥ ≤ C(`pe)−γ ,

where γ > 0 is the same as in M∗p(γ, g, c0, A1). In fact, once this is proved,
the claim follows by noting that `pe = (log(p))ν →∞.

We now show (5.143). By elementary algebra,

(5.144)
∥∥[U(U ′G−1

1 U)−1U ′]I1,I1
∥∥ ≤ ∥∥(U ′G−1

1 U)−1
∥∥∥∥(UU ′)I1,I1

∥∥ .
Consider

∥∥(U ′G−1
1 U)−1

∥∥ first. Since U ′U is an identity matrix, we have
‖(U ′G−1

1 U)−1‖ = [λmin(U ′G−1
1 U)]−1 ≤ [λmin(G−1

1 )]−1 = ‖G1‖. Addition-

ally, the assumptionG ∈M∗p(γ, g, c0, A1) implies that ‖G1‖ ≤ A1
∑|J pe|

j=1 j−γ ≤
C|J pe|1−γ . Last, when |I| ≤ l0, 2`pe + 1 ≤ |J pe| ≤ (2`pe + 1)l0. Combining
the above yields

(5.145)
∥∥(U ′G−1

1 U)−1
∥∥ ≤ C(`pe)1−γ .

Next, consider
∥∥(UU ′)I1,I1

∥∥. Note that ‖(UU ′)I1,I1‖ ≤ |I1|·maxi,i′∈I1 |(UU ′)(i, i′)|,
where maxi,i′∈I1 |U ′U(i, i′)| ≤M ·maxi∈I1,1≤j≤M |U(i, j)|2. Here |I1| = |I| ≤
l0 and M ≤ h|I| ≤ hl0. It follows that

(5.146)
∥∥(UU ′)I1,I1

∥∥ ≤ C max
i∈I1,1≤j≤M

|U(i, j)|2.
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The following lemma is proved in Appendix A.

Lemma 5.11. Under the conditioins of Lemma 2.3, for any IEG+ such
that |I| ≤ l0, and any matrix U whose columns form an orthonormal basis
of Null(Ipe,J pe),

max
i∈F(I),1≤j≤|J pe|−|Ipe|

|U(i, j)|2 ≤ C(`pe)−1.

Using Lemma 5.11, it follows from (5.146) that

(5.147)
∥∥(UU ′)I1,I1

∥∥ ≤ C(`pe)−1.

Inserting (5.145) and (5.147) into (5.144), we obtain (5.143). �

5.10. Proof of Lemma 2.4. Write for short

M1 =

p∑
j=1

∑
I:j∈IEG+,|I|≤l0

P
(
ICU∗p , Ap∩Ecp,I

)
, M2 =

p∑
k=1

P
(
βk 6= 0, k /∈ U∗p

)
.

With these notations, the claim reduces to M1 ≤ Lp ·M2.
The key is to prove

(a) for each I E G+, over the event {I C U∗p , Ap ∩ Ecp,I}, it always holds
that (S(β) ∩ E(Ipe)) \U∗p 6= ∅;

(b) for each k, there are no more than Lp different I such that I E G+,
|I| ≤ l0 and k ∈ E(Ipe).

Once (a) and (b) are proved, the claim follows easily. To see the point, we
note that

P
(
(S(β) ∩ E(Ipe))\U∗p 6= ∅

)
≤

∑
k∈E(Ipe)

P
(
βk 6= 0, k /∈ U∗p

)
.

Combining this with (a), we have

M1 ≤
p∑
j=1

∑
I:j∈IEG+,|I|≤l0

∑
k∈E(Ipe)

P
(
βk 6= 0, k /∈ U∗p

)
.

By re-organizing the summation, the right hand side is equal to

p∑
k=1

∑
I:IEG+,|I|≤l0,k∈E(Ipe)

|I| · P
(
βk 6= 0, k /∈ U∗p

)
,



70 T. KE, J. JIN AND J. FAN

which ≤ Lp ·M2 by (b), and the claim follows.
We now show (a) and (b). Consider (a) first. Fix I E G+. Suppose (a)

does not hold, i.e., the following event{
I C U∗p , (S(β) ∩ E(Ipe))\U∗p = ∅, Ap ∩ Ecp,I

}
is non-empty. View U∗p as a subgraph of G+. Applying Lemma 5.2 to V = U∗p ,
we find that I C U∗p implies (U∗p\I) ∩ E(Ipe) = ∅. Therefore, the following
event

(5.148)
{

(U∗p\I) ∩ E(Ipe) = ∅, (S(β) ∩ E(Ipe))\U∗p = ∅, Ap ∩ Ecp,I
}

is non-empty. Note that I ⊂ E(Ipe). From basic set operations, (U∗p\I) ∩
E(Ipe) = ∅ and (S(β) ∩ E(Ipe))\U∗p = ∅ together imply(

S(β) ∩ E(Ipe)
)
⊂ I.

By definition, this belongs to the event Ep,I . Hence, the event in (5.148) is
empty, which is a contradiction.

Consider (b) next. Fix k and denote K the collection of I satisfying the
conditions in (b). Let V =

{
1 ≤ i ≤ p : k ∈ E({i}pe)

}
. Since E(Ipe) =

∪i∈IE({i}pe), we observe that

K = ∪i∈VKi, where Ki ≡
{
I : I E G+, |I| ≤ l0, i ∈ I

}
.

Note that by Lemma 5.1 and 5.2, G∗ is Kp-sparse and G+ is K+
p -sparse,

where both Kp and K+
p are Lp terms. First, we bound |V |: By definition,

k ∈ E({i}pe) if and only if there exits a node k′ ∈ {i}pe such that k′ and k
are connected by a length-1 path in G∗. Since G∗ is Kp-sparse, given k, the
number of such k′ is bounded by Kp. In addition, for each k′, there are no
more than (2`pe+1) nodes i such that k′ ∈ {i}pe. Hence, |V | ≤ (2`pe+1)Kp.
Second, we bound maxi∈V |Ki|: For each node i ∈ V , there are no more than
C(eK+

p )l0 connected subgraph of G+ that contain i and have a size ≤ l0
[14], i.e., |Ki| ≤ C(eK+

p )l0 . Combining the two parts, |K| ≤ Kp(2`
pe + 1) ·

C(eK+
p )l0 , which is an Lp term. �

5.11. Proof of Lemma 2.5. Let V1 = S(β)∩E(Ipe) and V2 = S(β)\E(Ipe).
We have (Bβ)I

pe
= BI

pe,V1βV1 + ζ, where ζ = BI
pe,V2βV2 . Note that over

the event Ep,I , V1 ⊂ I. It follows that BI
pe,V1βV1 = BI

pe,IβI . Combining
these, to show the claim, it is sufficient to show

(5.149) ‖ζ‖ ≤ C(`pe)1/2[log(p)]−(1−1/α)τp.
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Recall the matrix B∗∗ defined in Section 5.1. Since B∗∗(i, j) = 0 for j ∈ V2,
we have ‖BIpe,V2‖∞ ≤ ‖B − B∗∗‖∞, where by Lemma 5.1, ‖B − B∗∗‖∞ ≤
C[log(p)]−(1−1/α). Moreover, ‖β‖∞ ≤ aτp. Consequently,

(5.150) ‖ζ‖∞ ≤ ‖B −B∗∗‖∞‖βV2‖∞ ≤ C[log(p)]−(1−1/α)τp.

At the same time, note that |Ipe| ≤ l0(2`pe + 1) ≤ C`pe. It follows from
the Cauchy-Schwartz inequality that ‖ζ‖ ≤

√
|Ipe|‖ζ‖∞ ≤ C(`pe)1/2‖ζ‖∞.

Combining this with (5.150) gives the claim. �

5.12. Proof of Lemma 2.6. Fix (j, V0, V1, I) and write for short ρj(V0, V1) =
ρj(V0, V1; I) and ρ∗j = ρ∗j (ϑ, r,G). The goal is to show ρj(V0, V1) ≥ ρ∗j +o(1).
We show this for the case V0 6= V1 and the case V0 = V1 separately.

Consider the first case. By definition, ρ∗j ≤ ρ(V0, V1), where ρ(V0, V1) is as
in (1.26). Therefore, it suffices to show

(5.151) ρj(V0, V1) = ρ(V0, V1) + o(1).

Introduce the function

f(x) = max{|V0|, |V1|}ϑ+
1

4

[(√
x−

∣∣|V0| − |V1|
∣∣ϑ/√x)

+

]2
, x > 0.

Then ρj(V0, V1) = f($jr) and ρ(V0, V1) = f($∗r), where $j = $j(V0, V1; I)
and $∗ = $∗(V0, V1), defined in (2.59) and (1.25) respectively. Since f(x)
is an increasing function and |f(x) − f(y)| ≤ |x − y|/4 for all x, y > 0, to
show (5.151), it suffices to show

(5.152) $j ≥ $∗ + o(1).

Now, we show (5.152). Introduce the quantity $ = minj∈(V0∪V1)$j . Write

B1 = BI
ps,I , H1 = HI

ps,Ips and Q1 = B′1H
−1
1 B1. Given any C > 0, define

Θ(C) as the collection of vectors ξ ∈ R|I| such that for all i, either ξ
(k)
i = 0

or |ξ(k)
i | ≥ 1, and that Supp(ξ(k)) = Vk, ‖ξ(k)‖∞ ≤ C, for k = 0, 1. Denote

Θ = Θ(∞). By these notations and the definitions of $j and $∗, we have

$ = min
(ξ(0),ξ(1)): ξ(k)∈Θ,k=0,1;sgn(ξ(0))6=sgn(ξ(1))

(ξ(1) − ξ(0))′Q1(ξ(1) − ξ(0)),

$∗ = min
(ξ(0),ξ(1)): ξ(k)∈Θ(a),k=0,1;sgn(ξ(0))6=sgn(ξ(1))

(ξ(1) − ξ(0))′GI,I(ξ(1) − ξ(0)).

First, since a > a∗g(G), in the expression of $∗, Θ(a) can be replaced by
Θ(C) for any C ≥ a. Second, since λmin(Q1) ≥ C, from basic properties of
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the quadratic programming, there exists a constant a0 > 0 such that for any

(ξ
(0)
∗ , ξ

(1)
∗ ), a minimizer in the expression of $, max{‖ξ(0)

∗ ‖∞, ‖ξ(1)
∗ ‖∞} ≤ a0.

Therefore, in the expression of $, Θ can be replaced by Θ(C) for any C ≥ a0.
Now, let a1 = max{a0, a} and we can unify the constraints in two expressions
to that ξ(k) ∈ Θ(a1), for k = 0, 1, and sgn(ξ(0)) 6= sgn(ξ(1)). It follows that

(5.153) |$ −$∗| ≤ max
ξ∈R|I|:‖ξ‖∞≤2a1

∣∣ξ′(GI,I −Q1)ξ
∣∣ ≤ C‖GI,I −Q1‖.

Note that Q1 is the Fisher Information Matrix associated with model d1 ∼
N(B1β

I , H1), by Lemma 1.2 and Lemma 2.3, ‖GI,I −Q1‖ = o(1). Plugging
this into (5.153) gives |$ − $∗| = o(1). Hence, $j ≥ $ ≥ $∗ + o(1) and
(5.152) follows.

Next, consider the case V0 = V1. Pick an arbitrary minimizer in the defini-

tion of $j , denoted as (ξ
(0)
∗ , ξ

(1)
∗ ), and define F = {k : sgn(ξ

(0)
∗k ) 6= sgn(ξ

(1)
∗k )}

and N = V0\F . It is seen that j ∈ F . By Lemma 5.3, ρ∗j ≤ ψ(F,N), where
ψ(F,N) is defined in (1.33). Hence, it suffices to show

(5.154) ρj(V0, V1) ≥ ψ(F,N) + o(1).

On one hand, when |V0| = |V1|, the function f introduced above is equal to
|V0|ϑ+ x/4 and hence

ρj(V0, V1) = f($jr) = |V0|ϑ+$jr/4.

On the other hand, using the expression of ψ(F,N) in (1.33) and noting
that |F | ≥ 1,

ψ(F,N) ≤ (|F |+ |N |)ϑ+ ωr/4 = |V0|ϑ+ ωr/4,

where ω = ω(F,N) is defined in (1.34). Therefore, to show (5.154), it suffices
to show

(5.155) $j ≥ ω + o(1).

Now, we show (5.155). From the definition (1.34) and basic algebra, we
can write

ω = min
ξ∈R|I|: ξi=0,i/∈V0;|ξi|≥1,i∈F

ξ′GI,Iξ.

Denote ξ∗ = ξ
(1)
∗ −ξ(0)

∗ . By our construction, $j = ξ′∗Q1ξ∗, ξ∗i = 0 for i /∈ V0,
and |ξ∗i| ≥ 2 for i ∈ F . As a result,

(5.156) ξ′∗G
I,Iξ∗ ≥ ω.
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At the same time, we have seen in the derivation of (5.153) that there exists

a constant a0 > 0 such that ‖ξ(0)
∗ ‖∞, ‖ξ(1)

∗ ‖∞ ≤ a0 and ‖GI,I −Q1‖ = o(1).
Therefore, ‖ξ∗‖2 ≤ 2a0|I| ≤ C and

(5.157) |$j − ξ′∗GI,Iξ∗| ≡ |ξ′∗Q1ξ∗ − ξ′∗GI,Iξ∗| ≤ C‖GI,I −Q1‖ = o(1).

Combining (5.156) and (5.157) gives (5.155). �

APPENDIX A: SUPPLEMENTARY PROOFS

In this section, we prove Lemma 5.5, 5.7, 5.8 and 5.11.

A.1. Proof of Lemma 5.5. Write κp = maxlog(p)≤j≤p−log(p)G
−1(j, j)

and a0 = 1
2π

∫ π
−π f

−1(ω)dω. The assertion of Lemma 5.5 is

lim
p→∞

κp = a0.

To show this, denote κp = minlog(p)≤j≤p−log(p)G
−1(j, j), and κp = trace(G−1)/p.

Since log(p)� p and all diagonals of G−1 are bounded from above, it follows
from definitions that

(A.158) κp + o(1) ≤ κp ≤ κp + o(1).

At the same time, the conditions of Lemma 1.5 ensure that f∗(ω) is contin-
uously differentiable on [−π, π]. By [26],

lim
p→∞

κp = a0.

Therefore, liminfp→∞κp ≥ limp→∞ κp = a0, and all we need to show is
limsupp→∞κp ≤ a0.

Towards this end, write G = Gp to emphasize on its dependence of p.
For any positive definite p × p matrix A and a subset V ⊂ {1, · · · , p}, if
we let B1 be the inverse of AV,V and B2 the (V, V )-block of A−1, then by
elementary algebra, B2 − B1 is positive semi-definite. Now, for any (i, j)
such that log(p) < j < p − log(p) and 1 ≤ i ≤ blog(p)c, let V = {j −
i + 1, · · · , j − i + blog(p)c} (bxc denotes the largest integer k such that
k ≤ x). Applying the above argument to the set V and matrix A = Gp, we
have [(Gp)

V,V ]−1(i, i) ≤ G−1
p (j, j). At the same time, the Toeplitz structure

yields (Gp)
V,V = Gblog(p)c. As a result, G−1

blog(p)c(i, i) ≤ G−1
p (j, j). Since this

holds for all i and j, we have

κblog(p)c ≤ κp.

Combining this with the first inequality of (A.158), κblog(p)c ≤ κp + o(1). It
follows that limsupp→∞κp ≤ limp→∞ κp and the claim follows.

We remark that additionally limp→∞ κp = a0, whose proof is similar so
we omit. �
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A.2. Proof of Lemma 5.7. Fix log(p) ≤ j ≤ p − log(p). Denote the
collection of pairs of sets

Cj =
{

(F,N) : min(F ∪N) = j, F ∩N = ∅, F 6= ∅
}
,

and its sub-collection

C∗j =
{

(F,N) ∈ Cj : F ∈ Rp, (F ∪N) ∈ Rp, |F | ≤ 3 and |N | ≤ 2
}
,

where we recall that Rp is the collection of sets that are formed by consec-
utive nodes. The claim now reduces to

min
(F,N)∈C∗j

ψ(F,N) = min
(F,N)∈Cj

ψ(F,N) + o(1).

Noting that C∗j ⊂ Cj , it suffices to show for any (F,N) ∈ Cj , there exists
(F ′, N ′) such that

(A.159) ψ(F ′, N ′) ≤ ψ(F,N) + o(1) and (F ′, N ′) ∈ C∗j .

To show (A.159), we introduce the notation (F ′, N ′) � (F,N) to indicate

ψ(F ′, N ′) ≤ ψ(F,N), |F ′| ≤ |F |, and |N ′| ≤ |N |.

Using these notations, we claim:

(a) For any (F,N) ∈ Cj , there exists (F ′, N ′) ∈ Cj such that ψ(F ′, N ′) ≤
ψ(F,N) + o(1) and |F ′| ≤ 3.

(b) For any (F,N) ∈ Cj , there exists (F ′, N ′) ∈ Cj such that (F ′, N ′) �
(F,N) and (F ′ ∪N ′) ∈ Rp.

(c) For any (F,N) ∈ Cj satisfying (F ∪N) ∈ Rp, there exists (F ′, N ′) ∈ Cj
such that (F ′, N ′) � (F,N), (F ′ ∪N ′) ∈ Rp and F ′ ∈ Rp.

(d) For any (F,N) ∈ Cj satisfying (F ∪N) ∈ Rp and F ∈ Rp, there exists
(F ′, N ′) ∈ Cj such that (F ′, N ′) � (F,N), (F ′ ∪ N ′) ∈ Rp, F ′ ∈ Rp
and |N ′| ≤ 2.

Now, for any (F,N) ∈ Cj , we construct (F ′, N ′) as follows: First, by (a),
there exists (F1, N1) such that ψ(F1, N1) ≤ ψ(F,N) + o(1), and |F1| ≤ 3.
Second, by (b) and (c), there exists (F2, N2) such that (F2, N2) � (F1, N1),
F2 ∈ Rp and (F2 ∪ N2) ∈ Rp. Finally, by (d), there exists (F3, N3) such
that (F3, N3) � (F2, N2), (F3 ∪ N3) ∈ Rp, F3 ∈ Rp and |N3| ≤ 2. Let
(F ′, N ′) = (F3, N3).

By the construction, (F ′ ∪N ′) ∈ Rp, F ′ ∈ Rp and

ψ(F ′, N ′) = ψ(F3, N3) ≤ ψ(F2, N2) ≤ ψ(F1, N1) ≤ ψ(F,N) + o(1).
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Moreover, |F ′| = |F3| ≤ |F2| ≤ |F1| ≤ 3, and |N ′| = |N3| ≤ 2. So (F ′, N ′)
satisfies (A.159).

All remains is to verify the claims (a)-(d). We need the following results,
which follow from basic algebra and we omit the proof: First, recall the
definition of ω(F,N) in (1.34). For any fixed (F,N), let I = F ∪ N and
R = (GI,I)−1. Then

(A.160) ω(F,N) = min
ξ∈R|F |:|ξi|≥1

ξ′(RF,F )−1ξ.

Second, when (F ∪N) ∈ Rp,

(A.161) R =
1

j
ηη′ + Σ

(k)
∗ , k = |F ∪N |,

where η = (1, 0, · · · , 0)′ and Σ
(k)
∗ is as in (5.110).

Now, we show (a). The case |F | ≤ 3 is trivial, so without loss of generality
we assume |F | ≥ 4. Take

F ′ = {j + 1, j + 2}, N ′ = {j}.

We check that (F ′, N ′) satisfies the requirement in (a). It is obvious that
(F ′, N ′) ∈ Cj and |F ′| ≤ 3. We only need to check ψ(F ′, N ′) ≤ ψ(F,N) +
o(1). On one hand, direct calculations yield ω(F ′, N ′) = (j + 1)/(j + 2) =
1 + o(1), and

ψ(F ′, N ′) ≤ 2ϑ+ r/4 + o(1).

On the other hand, by (A.160), ω(F,N) ≥ |F | · [λmax(R)]−1 ≥ |F | ·λmin(G).
Noting that G−1 = H, we have ‖G−1‖ ≤ ‖H‖∞ ≤ 4. So λmin(G) ≥ 1/4.
Therefore, ω(F,N) ≥ 1. It follows that

ψ(F,N) ≥ |F |ϑ/2 + ω(F,N)r/4 ≥ 2ϑ+ r/4.

Combining the two parts, we have ψ(F ′, N ′) ≤ ψ(F,N) + o(1).
Next, we verify (b). We construct (F ′, N ′) by constructing a sequence of

(F (t), N (t)) recursively: Initially, set F (1) = F and N (1) = N . On round
t, write F (t) ∪ N (t) = {j1, · · · , jk}, where the nodes are arranged in the
acceding order and k = |F (t) ∪ N (t)|. Let l0 be the largest index such that
jl = j1 + l−1 for all l ≤ l0. If l0 = k, then the process terminates. Otherwise,
let L = jl0+1 − j1 − l0 and update

F (t+1) =
{
jl−L·1{l > l0} : jl ∈ F (t)

}
, N (t+1) =

{
jl−L·1{l > l0} : jl ∈ N (t)

}
.

By the construction, it is not hard to see that l0 strictly increases as
t increases, and k remains unchanged. So the process terminates in finite
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rounds. Let T be the number of rounds when the process terminates, we
construct (F ′, N ′) by

F ′ = F (T ), N ′ = N (T ).

Now, we justify that (F ′, N ′) satisfies the requirement in (b). First, it is
seen that min(F (t) ∪ N (t)) = j on every round t. So min(F ∪ N) = j and
(F,N) ∈ Cj . Second, on round T , l0 = k, which implies (F ′ ∪ N ′) ∈ Rp.
Third, |F (t)| and |N (t)| keep unchanged as t increases, so |F ′| = |F | and
|N ′| = |N |. Finally, it remains to check ψ(F ′, N ′) ≤ ψ(F,N). It suffices to
show

(A.162) ψ(F (t+1), N (t+1)) ≤ ψ(F (t), N (t)), for t = 1, · · · , T − 1.

Let I = F (t) ∪ N (t) and I1 = F (t+1) ∪ N (t+1). We observe that GI1,I1 =
GI,I−Lηη′, where η = (0′l0 , 1

′
k−l0)′. So GI,I−GI1,I1 is positive semi-definite.

It follows form (A.160) that ω(F (t+1), N (t+1)) ≤ ω(F (t), N (t)), and hence
(A.162) holds by recalling that |F (t+1)| = |F (t)| and |N (t+1)| = |N (t)|.

Third, we prove (c). By assumptions, (F ∪N) ∈ Rp, so that we can write
F ∪ N = {j, j + 1, · · · , j + k}, where k + 1 = |F ∪ N |. The case F ∈ Rp
is trivial. In the case F /∈ Rp, we construct (F ′, N ′) as follows: Let i0 be
the smallest index such that i0 /∈ F and both F1 = F ∩ {i : i < i0} and
F2 = F\F1 are not empty. We note that such i0 exists because F /∈ Rp. Let

F ′ = F1 = {i ∈ F : i < i0}, N ′ = {i ∈ N : i ≤ i0}.

To check that (F ′, N ′) satisfies the requirement in (c), first note that
min(F ′∪N ′) = j and hence (F ′, N ′) ∈ Cj . Second, it is easy to see that |F ′| ≤
|F | and |N ′| ≤ |N |. Third, from the definition of i0, F ′ ∈ Rp. Additionally,
since i0 ∈ N , we have F ′ ∪ N ′ = {j, j + 1, · · · , i0} ∈ Rp. Last, we check
ψ(F ′, N ′) ≤ ψ(F,N): Since |F ′| ≤ |F | and |N ′| ≤ |N |, it suffices to show

(A.163) ω(F ′, N ′) ≤ ω(F,N).

Write I = F ∪N and denote R = (GI,I)−1. From (A.161), R is tri-diagonal.
So RF,F is block-diagonal in the partition F = F1 ∪ F2. Using (A.160), it is
easy to see

ω(F1, I\F1) ≤ ω(F, I\F ) ≡ ω(F,N).

At the same time, notice that both I and I ′ = F ′ ∪ N ′ have the form
{j, j + 1, · · · ,m} with m ≥ max(F1) + 1. Applying (A.160) and (A.161), by
direct calculations,

ω(F1, I\F1) = ω(F1, I ′\F1) ≡ ω(F ′, N ′).



COVARIANCE ASSISTED SCREENING 77

Combining the two parts gives (A.163).
Finally, we justify (d). By assumptions, (F ∪ N) ∈ Rp and F ∈ Rp, so

that we write F ∪N = {j, j+ 1, · · · , k}, and F = {j0, j0 + 1, · · · , k0}, where
j0 ≥ j and k0 ≤ k. The case |N | ≤ 2 is trivial. In the case |N | > 2, let
m0 = |F | and we construct (F ′, N ′) as follows:

F ′ = F, N ′ = {k0 + 1}, when j0 = j;
F ′ = {j + 1, j + 2, · · · , j +m0}, N ′ = {j, j +m0 + 1}, when j0 > j, k0 < k;
F ′ = {j + 1, j + 2, · · · , j +m0}, N ′ = {j}, when j0 > j, k0 = k.

Now, we show that (F ′, N ′) satisfies the requirement in (d). First, by the
construction, (F ′, N ′) ∈ Cj , (F ′∪N ′) ∈ Rp and F ′ ∈ Rp. Second, |F ′| = |F |,
|N ′| ≤ 2 < |N |. Third, we check ψ(F ′, N ′) ≤ ψ(F,N). Applying (A.160) and
(A.161), direct calculations yield ω(F ′, N ′) = ω(F,N). This, together with
|F ′| ≤ |F | and |N ′| ≤ |N |, proves ψ(F ′, N ′) ≤ ψ(F,N). �

A.3. Proof of Lemma 5.8. Recalling the definition of C∗j in the proof
of Lemma 5.7, the claim reduces to

min
(F,N)∈C∗j

ψ(F,N) = min
(F,N)∈C∗1

ψ(∞)(F,N) + o(1), log(p) ≤ j ≤ p− log(p).

We argue that on both sides, the minimum is not attained on (F,N) such
that |N | = 0 and |F | = 1. In this case, on the left hand side, F = {j} and
N = ∅. By direct calculations, ω(F,N) = j ≥ log(p), and hence ψ(F,N) can
not be the minimum. Similarly, on the right hand side, ω(∞)(F,N) =∞ by
definition, and the same conclusion follows. Therefore, the claim is equivalent
to

min
(F,N)∈C∗j :|F |+|N |>1

ψ(F,N) = min
(F,N)∈C∗1 :|F |+|N |>1

ψ(∞)(F,N) + o(1).

Fix log(p) ≤ j ≤ p− log(p). Define a one-to-one mapping from C∗j to C∗1 ,
where given any (F,N) ∈ C∗j , it is mapped to (F1, N1) such that

F1 = {i− j + 1 : i ∈ F}, N1 = {i− j + 1 : i ∈ N}.

To show the claim, it suffices to show when |F |+ |N | > 1,

ψ(F,N) = ψ(∞)(F1, N1) + o(1).

Since |F1| = |F | and |N1| = |N |, it is sufficient to show

(A.164) ω(F,N) = ω(∞)(F1, N1) + o(1).
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Now, we show (A.164). Consider the case N 6= ∅ first. Suppose |I| = k
and write I = F∪N = {j, · · · , j+k−1}, where 1 < k ≤ 5. Let R = (GI,I)−1

and R∗ = (Σ
(k)
∗ )F1,F1 , where Σ

(k)
∗ is defined in (5.110). We note that when

N 6= ∅, R∗ is invertible. Using (A.160) and the definition of ω(∞),

(A.165) |ω(F,N)− ω(∞)(F1, N1)| ≤ max
ξ∈Rk:|ξi|≤2a

∣∣ξ′[(RF,F )−1 −R−1
∗ ]ξ

∣∣.
Since I ∈ Rp, we apply (A.161) and obtain

RF,F =
1

j
(ηF1)(ηF1)′ + (Σ

(k)
∗ )F1,F1 ,

where η = (1, 0, · · · , 0)′ ∈ Rk. By matrix inverse formula,

(A.166) ξ′[(RF,F )−1 −R−1
∗ ]ξ = −[j + (ηF1)′R−1

∗ ηF1 ]−1(ξ′R−1
∗ ηF1)2.

Combining (A.165) and (A.166),

|ω(F,N)− ω(∞)(F1, N1)| ≤ j−1 max
ξ∈Rk:|ξi|≤2a

|ξ′R−1
∗ ηF1 |2 ≤ j−1 · C‖R−1

∗ ‖2.

Since N1 6= ∅ and k is finite, λmin(R∗) ≥ C > 0 and hence ‖R−1
∗ ‖ ≤ C.

Noting that j ≥ log(p), (A.164) follows directly.
Next, consider the case N = ∅. Suppose |F | = k and write F = {j, · · · , j+

k− 1}, where 1 < k ≤ 3. We observe that GF,F = j11′ + Ω
(k)
∗ , where Ω

(k)
∗ is

defined in (5.111). By definition

ω(F,N) = min
ξ∈Rk:|ξi|≥1

ξ′GF,F ξ = min
ξ∈Rk:|ξi|≥1

[
j(1′ξ)2 + ξ′Ω

(k)
∗ ξ
]
.

On one hand, if we let ξ∗ be one minimizer in the definition of ω(∞)(F1, N1),
then 1′ξ∗ = 0. As a result,

(A.167) ω(F,N) ≤ j(1′ξ∗)2 + (ξ∗)′Ω
(k)
∗ ξ∗ = (ξ∗)′Ω

(k)
∗ ξ∗ ≡ ω(∞)(F1, N1).

On the other hand, we can show

(A.168) ω(F,N) ≥ ω(∞)(F1, N1)− 1/(j + 1).

Combing (A.167) and (A.168), and noting that j ≥ log(p), we obtain (A.164).
It remains to show (A.168). When k = 2, by direct calculations, ω(F,N) =

ω(∞)(F,N) = 1. When k > 2, write ξ = (ξ1, ξ2, ξ̃
′)′ for any ξ ∈ Rk, and
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introduce the function g(x) =
∑k−2

i=1 (xi + xi+1 + · · ·+ xk−2)2, for x ∈ Rk−2.
We observe that

(A.169) ξ′Ω
(k)
∗ ξ = (1′ξ − ξ1)2 + g(ξ̃).

Let gmin = minx∈Rk−2:|xi|≥1 g(x). We claim that there exists q ∈ Rk such
that

1′q = 0, q′Ω
(k)
∗ q = 1 + gmin, and |qi| ≥ 1, for 1 ≤ i ≤ k.

To see this, note that under the constraints |xi| ≥ 1, g(x) is obviously
minimized at x∗ = (· · · ,−1, 1,−1, 1). Observing that 1′(x∗) is either 0 or
1, we let q = (1,−1, (x∗)′)′ when 1′(x∗) = 0, and let q = (1,−2, (x∗)′)′

when 1′(x∗) = 1. Using (A.169), it is easy to check that q satisfies the above
requirements. It follows that

(A.170) ω(∞)(F1, N1) = min
ξ∈Rk:|ξi|≥1,1′ξ=0

ξ′Ω
(k)
∗ ξ ≤ q′Ω(k)

∗ q = 1 + gmin.

At the same time, since GF,F = j11′+ Ω
(k)
∗ , we can write from (A.169) that

(A.171) ξ′GF,F ξ = j(1′ξ)2 + (1′ξ − ξ1)2 + g(ξ̃).

Note that miny{jy2 + (y − c)2} = c2 j/(j + 1), for any c ∈ R. So

j(1′ξ)2 + (1′ξ − ξ1)2 ≥ |ξ1|2j/(j + 1).

Plugging this into (A.171), we find that

(A.172) ω(F,N) = min
ξ∈Rk:|ξi|≥1

ξ′GF,F ξ ≥ j/(j + 1) + gmin.

Combining (A.170) and (A.172) gives (A.168). �

A.4. Proof of Lemma 5.11. To show the claim, we first introduce
a key lemma: Fix a linear filter Dh,η, for any dimension k > h, let D̃(k)

be the (k − h) × k matrix, where for each 1 ≤ i ≤ k − h, D̃(k)(i, i) = 1,
D̃(k)(i, i + 1) = η1, · · · , D̃(k)(i, i + h) = ηh, and D̃(k)(i, j) = 0 for other j.
Define the null space of Dh,η in dimension k, Nullk(η), as the collection of
all vectors ξ ∈ Rk that satisfies D̃(k)ξ = 0. The following lemma is proved
below.
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Lemma A.1. For a given η, if RCA holds, then for sufficiently large n
and any k ≥ n, there exists an orthonormal basis of Nullk(η), denoted as
ξ(1), · · · , ξ(h), such that

max
1≤i≤k−n,1≤j≤h

|ξ(j)
i |

2 ≤ Cηn−1,

where Cη > 0 is a constant that only depends on η.

Second, we state some observations. Fix IEG+. Partition Ipe uniquely as
Ipe = ∪Tt=1Vt, so that Vt = {it, it+ 1, · · · , jt−1, jt} is formed by consecutive
nodes and jt < it+1 for all t. Denote M = |J pe| − |Ipe|. It is easy to
see that T ≤ M and M ≤ h|I| ≤ l0h, so both M and T are finite. Let
Ṽt = {1 ≤ j ≤ p : D(i, j) 6= 0 for some i ∈ Vt} and define Null(Vt, Ṽt) in
the same way as Null(Ipe,J pe). Recall that F is the mapping from nodes
in J pe to their orders in J pe. Similarly, define the mapping Ft from Ṽt to
{1, · · · , |Ṽt|} that maps each j ∈ Ṽt to its order in Ṽt. Denote It = Ft(I∩Vt).
We observe that:

(O1) Ṽt ∩ Ṽt′ 6= ∅ only when |t− t′| ≤ 1; and |Ṽt ∩ Ṽt+1| ≤ h− 1, for all t.
(O2) Null(Vt, Ṽt) = Null|Ṽt|(η) for all t, where Nullk(η) is as in Lemma

A.1.
(O3) J pe = ∪Tt=1Ṽt; and |Ṽt| ≥ |Vt| ≥ 2`pe + 1, for all t.
(O4) Any node i ∈ It satisfies that 1 ≤ i < |Ṽt| − `pe, for all t.

(O5) For any ξ ∈ R|J pe|, ξ ∈ Null(Ipe,J pe) if and only if ξF(Ṽt) ∈ Null(Vt, Ṽt)
for all t, where ξF(Ṽt) is the subvector of ξ formed by elements in F(Ṽt).

Due to (O2) and Lemma A.1, for each t, there exists an orthonormal basis
ξ(t,1), · · · , ξ(t,h) for Null(Vt, Ṽt) such that

(A.173) max
1≤i≤|Ṽt|−n,1≤j≤h

|ξ(t,j)
i |2 ≤ Cηn−1, for any 1 ≤ n < |Ṽt|.

Let Ut be the matrix formed by the last h rows of [ξ(t,1), · · · , ξ(t,h)]. From
the explicit form of the basis in the proof of Lemma A.1, we further observe:

(O6) c′ ≤ λmin(UtU
′
t) ≤ λmax(UtU

′
t) ≤ 1 − c, where 0 < c, c′ < 1 and

c+ c′ < 1.
(O7) For each 1 ≤ h0 ≤ h, the submatrix of Ut formed by its last h0 rows

has a rank h0.

Now, we show the claim by constructing a matrix W , whose columns form
an orthonormal baisis for Null(Ipe,J pe), and it satisfies

(A.174) max
1≤i≤|J pe|−n,1≤j≤M

|W (i, j)|2 ≤ Cn−1, for any 1 ≤ n < |J pe|.
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In fact, once such W is constructed, any U whose columns form an orthon-
romal baisis for Null(Ipe,J pe) can be written as

U = WR,

where R has the dimension M ×M and R′R is an identity matrix. By basic
algebra, for any m×n matrix A and n×p matrix B, max1≤j≤p |(AB)(i, j)|2 ≤
n‖B′B‖ ·max1≤k≤n |A(i, k)|2 for each 1 ≤ i ≤ m. Applying this to W and
R, and noting that ‖R′R‖ = 1 and that M is finite, we obtain

(A.175) max
i∈F(I),1≤j≤M

|U(i, j)|2 ≤ C max
i∈F(I),1≤j≤M

|W (i, j)|2.

At the same time, for any i ∈ I, there exists a unique t such that i ∈ I ∩Vt.
In addition, from (O4), Ft(i) < |Ṽt| − `pe. By the construction, this implies
F(i) < |J pe| − `pe. Combining this to (A.174), we find that

(A.176) max
i∈F(I),1≤j≤M

|W (i, j)|2 ≤ C(`pe)−1.

The claim then follows from (A.175) and (A.176).
To constructW , the key is to recursively construct matricesWT ,WT−1, · · · ,W1.

Denote mt = h − |Ṽt ∩ Ṽt+1|, with mT = h by convention; Mt =
∑T

s=tms

and Lt = | ∪Ts=t Ṽs|; in particular, M1 = |J pe| − |Ipe| = M and L1 = |J pe|.
Initially, construct the LT ×MT matrix

WT =
[
ξ(T,1), · · · , ξ(T,h)

]
,

where {ξ(T,j) : 1 ≤ j ≤ h} is the orthonormal basis in (A.173). Given Wt+1,

construct the Lt ×Mt matrix Wt as follows: Denote W̃t+1 the submatrix of
Wt+1 formed by its first |Ṽt ∩ Ṽt+1| (= h−mt) rows and write[

ξ(t,1), · · · , ξ(t,h)
]

=

[
At
Bt

]
,

where At has (|Ṽt|−h−mt) rows and Bt has (h−mt) rows. From (O7), the
rank of Bt is (h−mt). Hence, there exists an h×mt matrix Qt, such that
Q′tQt is an identity matrix and BtQt = 0. Now, construct

(A.177) Wt =

[
AtB

′
t(BtB

′
t)
−1W̃t+1 AtQt

Wt+1 0

]
.

Continue this process until we obtain W1 and let

W = W1(W ′1W1)−1/2.
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Below, we check that W satisfies the requirement. First, we show that the
columns of W form an orthonormal basis of Null(Ipe,J pe). Since W has
M = |J pe| − |Ipe| columns and its columns are orthonormal, it suffices to
show that all its columns belong to Null(Ipe,J pe). By (O5), we only need
to show that for each 1 ≤ t ≤ T , in the submatix of W formed by restricting
rows into F(Ṽt), all its columns belong to Null(Vt, Ṽt). By the construction,
only the first Mt columns of this submatrix are non-zero and they are equal
to [

AtB
′
t(BtB

′
t)
−1W̃t+1 AtQt

W̃t+1 0

]
=

[
At
Bt

] [
B′t(BtB

′
t)
−1W̃t, Qt

]
,

where in the equality we have used the facts that W̃t = BtB
′
t(BtB

′
t)
−1W̃t

and BtQt = 0. Combining this to the definition of At and Bt, we find that
each column of the above matrix is a linear combination of {ξ(t,1), · · · , ξ(t,h)}
and hence belongs to Null(Vt, Ṽt).

Second, we show that W satisfies (A.174). It suffices to show, for t =
T, · · · , 1,

(a) max1≤i≤Lt−n,1≤j≤Mt |Wt(i, j)|2 ≤ Cn−1, for any 1 ≤ n < Lt.
(b) λmin(W ′tWt) ≥ C > 0.

In fact, once (a) and (b) are proved, by taking t = 1 and noticing that
L1 = |J pe|, we have max1≤i≤|J pe|−n,1≤j≤M |W1(i, j)|2 ≤ Cn−1, for 1 ≤
n < |J pe|; and ‖(W ′1W1)−1‖ = [λmin(W ′1W1)]−1 ≤ C. Hence, by similar
arguments in (A.175), for each 1 ≤ i ≤ |J pe| − n, max1≤j≤M |W (i, j)|2 ≤
M‖(W ′1W1)−1‖ ·max1≤j≤M |W1(i, j)|2 ≤ Cn−1. This gives (A.174).

It remains to show (a) and (b). Note that for WT , by the construction
and (A.173), (a) and (b) hold trivially. We aim to show that if (a) and (b)
hold for Wt+1, then they also hold for Wt. For preparation, we argue that

(A.178) ‖AtB′t(BtB′t)−1W̃t+1‖2 ≤ C(`pe)−1 = o(1).

To see this, note that Lt+1 ≥ 2`pe + 1 from (O3); in particular, h −mt �
Lt+1−`pe. Hence, if (a) holds forWt+1, max1≤i≤h−mt,1≤j≤Mt+1 |Wt+1(i, j)|2 ≤
C(`pe)−1, i.e., |W̃t+1(i, j)| ≤ C(`pe)−1, for any (i, j). Since W̃t+1 has a finite

dimension, this yields ‖W̃t+1‖2 ≤ C(`pe)−1. Furthermore, from (O6) and
that BtB

′
t is a submatrix of UtU

′
t , λmin(BtB

′
t) ≥ c′ > 0. So ‖(BtB′t)−1‖ ≤ C.

In addition, ‖At‖, ‖Bt‖ ≤ 1. Combining the above gives (A.178).
Consider (a) first. By (A.177), (A.178) and the assumption on Wt+1, it

suffices to show

(A.179) max
1≤i≤|Ṽt|−n,1≤j≤mt

|AtQt(i, j)|2 ≤ Cn−1, for any 1 ≤ n < |Ṽt|.
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By similar arguments in (A.175) and the fact that ‖Q′tQt‖ = 1, the left hand
side is bounded by C max1≤i≤|Ṽt|−n,1≤j≤mt

|At(i, j)|2. Therefore, (A.179) fol-

lows from (A.173) and the definition of At.
Next, consider (b). Using (A.177) and (A.178), we can write

W ′tWt =

[
W ′t+1Wt+1 + ∆1 ∆2

∆′2 Q′tA
′
tAtQt

]
,

where ‖∆1‖ = o(1) and ‖∆2‖ = o(1). So it suffices to show λmin(W ′t1Wt+1) ≥
C and λmin(Q′tA

′
tAtQt) ≥ C. The former follows from the assumption on

Wt+1. To show the latter, note that Q′tQt is an identity matrix, and so
λmin(Q′tA

′
tAtQt) ≥ λmin(A′tAt). Also, since A′tAt + B′tBt is an identity ma-

trix, λmin(A′tAt) = 1−λmax(B′tBt). Additionally, λmax(B′tBt) = λmax(BtB
′
t),

where BtB
′
t is a submatrix of UtU

′
t , and by (O6), λmax(UtU

′
t) ≤ 1− c. Com-

bining the above yields λmin(Q′tA
′
tAtQt) ≥ c > 0. This proves (b). �

A.4.1. Proof of Lemma A.1. For each k ≥ h, we construct a k×h matrix
U whose columns form an orthonormal basis of Nullk(η) as follows: Recall
the characteristic polynomial ϕη(z) = 1 + η1z + · · · + ηhz

h. Let z1, · · · , zm
be m different roots of ϕη(z), each replicating h1, · · · , hm times respectively
(h1 + · · ·+ hm = h). For 1 ≤ j ≤ m and 1 ≤ s ≤ hj , when zi is a real root,
let

µ(j,s) =

(
ks−1 1

zk−1
j

, · · · , 3s−1 1

z2
j

, 2s−1 1

zj
, 1

)′
;

and when zj± = |zj |e±
√
−1θj , θj ∈ (0, π/2], are a pair of conjugate roots, let

µ(j+,s) =

(
ks−1 cos(k − 1)θj

|zj |k−1
, · · · , 3s−1 cos 2θj

|zj |2
, 2s−1 cos θj

|zj |
, 1

)′
,

µ(j−,s) =

(
ks−1 sin(k − 1)θj

|zj |k−1
, · · · , 3s−1 sin 2θj

|zj |2
, 2s−1 sin θj

|zj |
, 1

)′
.

It is seen that {µ(j,s), 1 ≤ j ≤ m, 1 ≤ s ≤ hj} are h vectors in Rk. Let
ξ(j,s) = µ(j,s)/‖µ(j,s)‖ for each (j, s), and construct the k × h matrix

R =
[
ξ(1,1), · · · , ξ(1,h1), · · · , ξ(m,1), · · · , ξ(m,hm)

]
.

Define
U = R(R′R)−1/2.

Now, we show that the vectors {µ(j,s), 1 ≤ j ≤ m, 1 ≤ s ≤ hj} are linearly
independent and span Nullk(η). Therefore, U is well defined and its columns
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form an orthonormal basis of Nullk(η). To see this, note that for any vector
η ∈ Rk, if we write η1 = f(k), · · · , ηk = f(1), then ξ ∈ Nullk(η) if and only
if f(i)’s satisfy the difference equation:

(A.180) f(i) + η1f(i− 1) + · · ·+ ηhf(i− h) = 0, h+ 1 ≤ i ≤ k.

It is well-known in theories of difference equations that (A.180) has h inde-
pendent base solutions:

fj,s(i) = is−1z−ij , 1 ≤ j ≤ m, 1 ≤ s ≤ hj .

By the construction, when zj is a real root, µ(j,s) = (fj,s(k), · · · , fj,s(1))′; and
when zj± are a pair of conjugate roots, µ(j+,s) and µ(j−,s) are the real and
imaginary parts of the vector (fj,s(k), · · · , fj,s(1))′. So the vectors {µ(j,s)}
are linearly independent and they span Nullk(η).

Next, we check that the columns of U satisfy the requirement in the claim,
i.e., there exists a constant Cη such that for any (n, k) satisfying k ≥ n ≥ h,

max
1≤i≤k−n,1≤j≤h

|U(i, j)|2 ≤ Cηn−1.

Since max1≤j≤h |U(i, j)| ≤ h‖(R′R)−1‖ · max1≤j≤h |R(i, j)|2, it suffices to
show that

(A.181) max
1≤i≤k−n,1≤j≤h

|R(i, j)|2 ≤ Cn−1,

and that for all k ≥ h,

(A.182) λmin(R′R) ≥ C > 0.

Consider (A.181) first. It is equivalent to show that

(A.183) max
1≤i≤k−n

|µ(j,s)
i |/‖µ(j,s)‖ ≤ Cn−1/2, 1 ≤ j ≤ m, 1 ≤ s ≤ hj .

In the case |zj | > 1, ‖µ(j,s)‖ ≤ C. In addition, |zj |i ≥ Cis−1/2 for sufficiently

large i, and hence max1≤i≤k−n |µ
(j,s)
i | ≤ maxi>nC(is−1i1/2−s) ≤ Cn−1/2.

So (A.183) holds. In the case |zj | = 1, it can be shown in analysis that
‖µ(j,s)‖ ≥ Cks−1/2, where C > 0 is a constant depending on θj but inde-

pendent of k. Also, max1≤i≤k−n |µ
(j,s)
i | ≤ maxn<i≤k Ci

s−1 ≤ Cks−1. Hence,

max1≤i≤k−n |µ
(j,s)
i |/‖µ(j,s)‖ ≤ Ck−1/2 ≤ Cn−1/2 and (A.183) holds.
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Next, consider (A.182). R′R is an h× h matrix. For convenience, we use
{(j, s) : 1 ≤ j ≤ m, 1 ≤ s ≤ hj} to index the entries in R′R. By construction,
all the diagonals of R′R are equal to 1, and the off-diagonals are equal to

(A.184) (R′R)(j,s),(j′,s′) =
〈µ(j,s), µ(j′,s′)〉
‖µ(j,s)‖‖µ(j′,s′)‖

, (j, s) 6= (j′, s′).

It is easy to see that as k → ∞, each entry of R′R has a finite limit.
Therefore, as k →∞, R′R approaches a fixed h× h matrix A element-wise.
In particular, λmin(R′R)→ λmin(A). Hence, to show (A.182), we only need
to prove that A is non-singular.

Write R = (R1, R2), where R1 is the submatrix formed by columns
corresponding to those roots |zj | > 1, and R2 the submatrix formed by
columns corresponding to those roots |zj | = 1. Note that when |zj | = 1 and
|zj′ | > 1, as k → ∞, |〈µ(j,s), µ(j′,s′)〉| ≤ C, ‖µ(j,s)‖ → ∞ and ‖µ(j′,s′)‖ ≥ C;
so (R′R)(j,s),(j′,s′) → 0. This means R′1R2 approaches the zero matrix as
k →∞. Consequently,

A = diag(A1, A2), where R′1R1 → A1 and R′2R2 → A2, as k →∞.
Therefore, it suffices to show that both A1 and A2 are non-singular.

Consider A1 first. Denote h0 =
∑

j hj1{|zj | > 1} so that R1 is a k × h0

matrix. Let R∗1 be the k × h0 matrix whose columns are {µ(j,s) : |zj | > 1},
M be the h0 × h0 submatrix formed by the last h0 rows of R∗ and Λ =
diag(‖µ(j,s)‖) is the h0×h0 diagonal matrix. Now, suppose A1 is singular, i.e.,
there exists a non-zero vector b such that b′A1b = 0. This implies ‖R1b‖ → 0
as k → ∞. Using the matrices defined above, we can write R1 = R∗1Λ; so
‖R∗1Λb‖ → 0. Since ‖MΛb‖ ≤ ‖R∗1Λb‖, it further implies ‖MΛb‖ → 0. First,
we observe that M is a fixed matrix independent of k. Second, note that
when |zj | > 1, ‖µ(j,s)‖ → cjs, as k → ∞, for some constant cjs > 0; as a
result, Λ → Λ∗ as k → ∞, where Λ∗ is a positive definite diagonal matrix.
Combining the two parts, ‖MΛb‖ → 0 implies ‖M(Λ∗b)‖ = 0, where Λ∗b
is a fixed non-zero vector. This means M is singular. Therefore, if we can
prove M is non-singular, then by contradiction, A1 is also non-singular.

Now, we show M is non-singular. Let M̃ be the matrix by re-arranging
the rows in M in the inverse order. It is easy to see that M is non-singular if
and only if M̃ is non-singular. For convenience, we use {1, · · · , h0}×{(j, s) :

|zj | > 1, 1 ≤ s ≤ hj} to index the entries in M̃ . It follows by the construction
that

M̃i,(j,s) = is−1z
−(i−1)
j , zj is a real, 1 ≤ i ≤ h0

M̃i,(j−,s) = is−1|zj |−(i−1) cos((i− 1)θj),

M̃i,(j−,s) = is−1|zj |−(i−1) sin((i− 1)θj),
zj± are conjugates, 1 ≤ i ≤ h0.
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Define an h0 × h0 matrix T by

Ti,(j,s) = is−1z
−(i−1)
j , 1 ≤ i ≤ h0.

Let V be the h0 × h0 confluent Vandermonde matrices generated by {z−1
j :

|zj | > 1}:

Vi,(j,s) =

{
0 1 ≤ i ≤ s− 1,
(i−1)!
(i−s)!z

−(i−s)
j s ≤ i ≤ h0.

First, it is seen that each column of T is a (complex) linear combination of

columns in M̃ . Second, we argue that each column of V is a linear combi-
nation of columns in T . To see this, note that Vi,(j,s) can be written in the

form Vi,(j,s) = gs−1(i)z
−(i−s)
j , where gs−1(x) = (x−1)(x−2) · · · (x−s+1) is

a polynomial of degree s−1. Let c0, · · · , cs−1 be the coefficients of this poly-

nomial. Then, for each i > s, Vi,(j,s) = z
−(i−s)
j

∑s−1
l=0 cli

l =
∑s

l=1 αlTi,(j,l),

where αl ≡ zs−1
j cl−1. The argument follows. Finally, it is well known that

det(V ) 6= 0. Combining these, we see that det(M̃) 6= 0. Therefore, M̃ is
non-singular.

Next, we show A2 is non-singular. Note that
∑k

i=1 i
s = ks+1

s+1 (1 + o(1)),∑k
i=1 i

s cos2((i−1)θ) = ks+1

2(s+1)(1+o(1)) and
∑k

i=1 i
s sin2((i−1)θ) = ks+1

2(s+1)(1+

o(1)), for θ 6= −π
2 , 0,

π
2 . Also,

∑k
i=1 i

s sin((i − 1)θ) = o(ks+1) for all θ, and∑k
i=1 i

s cos((i − 1)θ) = o(ks+1) for θ 6= 0. Using these arguments and basic
equalities in trigonometric functions, we have

(R′R)(j,s),(j′,s′) = o(1) +

{ √
(2s−1)(2s′−1)

s+s′−1 , j = j′,

0, elsewhere.

As a result, A2 is a block-diagonal matrix, where each block corresponds to
one zj on the unit circle and is equal to the matrix W (hj), where hj is the
replication number of zj and W (h)(s, s′) =

√
(2s− 1)(2s′ − 1)/(s+ s′ − 1),

for 1 ≤ s, s′ ≤ h. Since such W (h)’s are non-singular, A2 is non-singular.
�
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