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ON THE OPTIMAL RATES OF CONVERGENCE FOR
NONPARAMETRIC DECONVOLUTION PROBLEMS

By JrANQING FAN

University of North Carolina

Deconvolution problems arise in a variety of situations in statistics. An
interesting problem is to estimate the density f of a random variable X
based on n ii.d. observations from Y = X + ¢, where ¢ is a measurement
error with a known distribution. In this paper, the effect of errors in
variables of nonparametric deconvolution is examined. Insights are gained
by showing that the difficulty of deconvolution depends on the smoothness
of error distributions: the smoother, the harder. In fact, there are two types
of optimal rates of convergence according to whether the error distribution
is ordinary smooth or supersmooth. It is shown that optimal rates of
convergence can be achieved by deconvolution kernel density estimators.

1. Introduction. Suppose we have n i.i.d. observations Y;,...,Y, hav-
ing the same distribution as that of Y available to estimate the unknown
density f(x) of a random variable X, where

(1.1) Y=X+¢

with a measurement error £ of a known distribution. Assume furthermore
that the random variables X and ¢ are independent. We will discuss herein
how well the unknown density and its cumulative distribution function (cdf)
can be estimated nonparametrically under certain smoothness conditions.

The usual smoothness condition imposed on the unknown density f is that
f is in the set

(1.2) G = {F(2): | F () = F(x + 5)| < B5,

where m, B and 0 < @ < 1 are known constants. The functionals we want to
estimate are T(f) = f®(x) (I = 0, density function).

Such a model of measurements being contaminated with error exists in
many different fields and has been widely studied. Recent related works
include Carroll and Hall (1988), Devroye (1989), Fan (1989), Mendelsohn and
Rice (1982), Liu and Taylor (1989), Stefanski and Carroll (1990), Stefanski
(1990) and Zhang (1990). The applications of the model in a theoretical setting
and an applied setting are discussed by Carroll and Hall (1988) and the other
papers cited above. Most of the papers cited above address how to estimate the
unknown density and compute the rates of convergence for some specific error
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distributions. Yet, few results discuss the issue of how difficult the deconvolu-
tion is. It is of theoretical and practical interest to ask the following questions:
What are the best estimators? [in terms of the rates of convergence, according
to Stone’s (1983) definition]; What are the optimal rates of convergence? What
is the difficulty of the problem? Where does the difficulty come from? Attempt-
ing to answer these questions forms the core of the paper.

The insights of the nonparametric deconvolution are gained by our study.
The optimal rates of convergence can be characterized by two types of error
distributions: ordinary smooth and supersmooth distributions. We show that
the difficulty of deconvolution depends heavily on the smoothness of the
distribution of the error variable ¢, and on the smoothness of the object being
estimated: the smoother the error distribution is, the harder the deconvolution
will be. By the smoothness of the error distribution, 'we mean the order of the
characteristic function ¢,(¢) of the random variable ¢ as ¢ — «. We will call
the distribution of a random variable ¢ supersmooth of order B if its character-
istic function ¢,(¢) satisfies

(1.3) dltl” exp(=161*/y) <|$.(2)| < dyft|* exp(=1t|°/y) ast— =,

for some positive constants d,, d,, B,y and constants B, and B; (note that the
density of ¢ has all finite derivatives). We will call the distribution of a random
variable £ ordinary smooth of order B if its characteristic function ¢, (¢)
satisfies

(1.4) dolt|™® <|¢.(t)| < dltI™® ast > o,

for some positive constants d, d;, B. The examples of supersmooth distribu-
tions are normal, mixture normal, Cauchy, etc. The examples of ordinary
smooth distributions include gamma, double exponential and symmetric
gamma distributions.

Carroll and Hall (1988) give the optimal rates of estimating density at a
point when the error is normal. Zhang (1990) discusses the optimal rates of
convergence under the L,-norm and computes both upper bounds and lower
bounds on rates under his formulation. The results of both papers are very
interesting. However, the two papers do not show exactly why the lower
bounds on rates depend on the tail of ¢,, the characteristic function of the
error distribution and in particular do not find attainable lower bounds for
many interesting error distributions (e.g., gamma, double exponential, etc.).
The reason for this dependence is clearly stated in Section 3, and the optimal
rates of convergence are obtained for both types of error distributions. The
applications of the achievements can be found in Fan (1989), where global
rates of convergence under the weighted L ,-norm are devoted via introducing
a new technique, and Fan and Truong (1990) which addresses both optimal
local and global rates for error-in-variable nonparametric regression.

We will use kernel density estimators to estimate the unknown density f, as
well as its derivatives. A similar construction is used by Stefanski and Carroll
(1990) and Zhang (1990). For a nice kernel function K(x), let ¢x(2) be its
Fourier transform with ¢x(0) = 1. Then the kernel density estimator is
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defined by
ba(t )
b, (t)

for suitable choice of a bandwidth %, and a kernel function K, where ¢ ,(¢) is
the empirical characteristic function defined by

15) [0 =5 / “exp( —itx) (—it) by (th,) =~

o 12

We will rewrite f@(x) by £,(x). Note that f (’)(x) is real and can be rewritten
into kernel form [see (2.2) below].

The paper is organized as follows. In Section 2, we will exhibit the rates of
deconvolution kernel density estimators, which are optimal in terms of rates of
convergence. In Section 3, we will state the results on lower bounds and give
their heuristic arguments. Relevant issues are discussed in Section 4. Results
are proved in Section 5.

2. Kernel density estimators. We will start with the kernel density
estimator (1.5). Let K(¢) be the Fourier inversion of ¢(¢) defined by

1 ,+o
(2.1) K(x) = é}"f_w exp( —itx) by () dt.

Then (1.5) can be rewritten as a kernel type of estimator:

N 121 -Y;
(2.2) fal20) = — 21 -}—L—_gn( xoh j)
J= n

if the function ¢/¢.(¢/h,) is integrable, where

(2.3) g.(2) = 3 j " exp( —itx) ¢"z’t‘/(h))dt

To compute the mean square error of a kernel density estimator, we first
compute the bias of the estimator and see what kind of kernel we should use.
For x, € (—x, ), under the assumptions below, we have

A 1 + o0
Ef,(x0) — f(x0) = on . exp( —itx) o (th,) dx(t) dt — f(xo)

(2.4)
—f(xo).

1 K x

= R — —
f (x) hn hn 0
The last expression does not depend on the error distribution. Thus the kernel
function K should be imposed to satisfy the conditions of a kernel in the
ordinary density estimation [see Prakasa Rao (1983)]. We state them on its
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Fourier domain:

(A1) ¢(2) is a symmetric function, having m + 2 bounded integrable deriva-
tives on (— o, + o),
(A2) ¢x(®) =1+ 0(t|™) as ¢t > 0.

In addition, to develop upper bounds, we assume that
(A3) ¢,(¢) # 0 for any ¢.
For the case that the distribution of error & is no smoother than super-
smooth (exponential decay), we have the following rates of convergence.
THEOREM 1. Under assumptions (A1) to (A3) and

(E1) ¢x() =0 for |t| > 1,
(E2) |¢, ()|t ™Po exp(t|®/y) = d, (as t > =) for some positive constants
B,v,d,, and a constant B,

by choosing the bandwidth h, = (4/v)/P(log n)~'/#, we have

(2.5) fesg}lp E(f,fl)(xo) - f(l)(xo))2 _ O((log n)—2(m+a—1)/,3)’

m,a,B

where fn(xo) is defined by (1.5).

For the case of geometric decay of ¢, (ordinary smooth), we have the
following result.
THEOREM 2. Under assumptions (A1) to (A3) and

(G1) |9, (8P| = d, as t — =, for some positive constant d.,
(G2) [*Zpr®)tP+dt < o and [*Z|¢(B)tB+? dt < o,

by choosing the bandwidth h, = dn~Y@m*¢*BD+D fior some d > 0, we have

A 2
sup E(FO(x,) - fO(x = O(n~Xm+a-b/m+a+P+1]y
28) rei (£32(%0) (x0)) = O( )

l=0,...,m—1.
Define an estimator of the cdf F(x,) of the random variable X by

(2.7) Fu(zo) = [ fut)at,

where £,(¢) is the kernel density estimator given by (1.5), and M,(— «) is a
sequence of constants.

THEOREM 3. Under assumptions (E1), (E2) and (A3) of Theorem 1, sup-
pose that ¢x(t) is a symmetric function, having m + 8 bounded integrable
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derivatives on (—», + ), and ¢x(t) =1 + o(t|™*"), as t - 0. Then by choos-
ing the same bandwidth as for Theorem 1 and M, = n'/3, we have

sup Ef(Fn(xo) - F(“o))z _ 0((logn)—2(m+a+1)/[3)’

fec;n,a,B

where

;n,a,B = {fE {m,a,B: F(—n) < D(log n)—(m+2)/ﬁ}.

ExampLE. Suppose that we have n i.i.d. observations from the convolution
model (1.1). We want to estimate the /th derivative T(f) = f(x,) under the
constraint that f € ¢, , 5. Write £ = m + a. By applying the results of the
upper bounds in this section and the lower bounds developed in the next
section, without any extra calculation, we have the following results.

Optimal rates Error distribution Optimal rates Error distribution

O((log n)=*~-b72) ¢ ~ N(0,1) O(n~*-b/2k+A+1) ¢ ~ Gamma(B)

Same as above 0.7N(1,1) + 0.3N(—1,1) | Same as above & ~ symmetric Gamma(8)
B # 2j + 1(j integer)

Oog n)~*~Y) ¢ ~ Cauchy(0,1) O(n~k—D/Q@k+4j+5)) ¢ ~ symmetric Gamma(B)
B = 2j + 1(j integer)

Specifically, if ¢ is double exponential (corresponding to a symmetric gamma
distribution with B = 1), the optimal rate is O(n~®*~/2k+5) Note that the
error distributions in the left column are supersmooth, while those in the right
column are ordinary smooth. For estimating a cdf in the supersmooth cases,
the optimal rates of convergence are listed above by plugging ! = —1. For
estimating a cdf in the ordinary smooth case, the lower rates are listed above
by applying { = —1, but the lower rates are too small to be attainable (see
Remark 3 for further discussion).

3. Lower bounds. In this section, we will find lower bounds for estimat-
ing densities and their cdf’s. To begin with, suppose the functional of interest
is T(f) = f(x,), density at a point. We will give a heuristic argument to show
why the results of lower bounds should depend on the tail of ¢,, the smooth-
ness condition of the error distribution. Rigorous proof will be given in Section
5, which involves more mathematical details and more careful constructions.

We will assume without loss of generality that x, = 0 by relocating x, to
the origin. To derive a lower bound for estimating T'(f) = f(0), we take a pair
fo € .0 B> fn € €n, o B, for which

(3.1) falx) = fo(x) + 8, H(x/8,),

where & = m + a, H(0) # 0, [*=H(x) dx = 0 and the mth derivative of H(x)
satisfies Lipschitz’s condition of order a. Then by suitable choice of the tail of
H and f,, the function f, will be a density in ¢, , 5 for small §,. 3, is
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chosen such that the y2-distance
+ 2 . C
(32) | (fry=fra) frd dx < —,

for some constant ¢ > 0, where fy, and fy, are the density functions of the
Y-variable under (1.1) with X distributed as f,, and f,, respectively. Then it is
proved by Ibragimov, Nemirovskii and Khas’minskii (1986) and Donoho and
Liu (1987, 1991a, b) that a lower bound of estimating T'(f) is for any estima-
tor T,,

(3.3) ) ft;p”Pf{ITn - T(f)| >IT(fo) - T(£,)1/2} > ds,
and, consequently,
. d '
(3.4) sup  E(T, - T(f)) > FIT(fo) = T(£)I,
feémmB

for some positive constant d; > 0. In other words, the order of

(3.5) |T(fo) — T(fo)| =85 H(0)]

provides a lower bound for estimating T'( ). Thus we have to find §, as large
as possible such that (3.2) holds, or equivalently by (8.1) with changes of
variables x' = x/8, and y' = y/8§,, such that

+of 4 2 c
@6 ot [ ([ THE -y aR ) g ax < <

where F, is the distribution function of the random variable ¢, and g, = fy, =
fo* F..

Suppose we can prove that as §, — 0,
+oof 4o 2 1
[l RG - ) d6,9)| 830, o
(3.7) e
+of 4o 2
<of 7| THG -y are)| @,

where C is a constant independent of n. Then by Parseval’s identity, to make
(3.6) hold, we have to choose 3, such that

2
ok+1 [T (T _ £
(3.8) 52 [_m f_m H(x - y) dF,(3,)| dx < —,
or equivalently such that
1 + C
T s2k+1 2 .
(39) SO [ en(0)e(t/8,) [ dt < —,

whére ¢y is the Fourier transformation of H. Thus the resulting §, will
depend on the tail of ¢, only, and consequently the lower bound (3.5) will
depend on the tail of ¢..
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Although x? distance is used for this paper, other distances are also possible
[see Donoho and Liu (1987, 19914, b)].

For the case that the error distribution is smoother than supersmooth, we
have the following lower bound. .

THEOREM 4. Suppose that the tail of ¢, satisfies

|6.(2) | 117" exp(1t1° /) < d; (ast - »)
with B,y > 0, d, > 0 and B, a constant,

and P{le — x| < |x]*?} = O(|x|"“®*?) (as x > +) for some 0 <ay<1, a>
1 + a,. Then no estimator can estimate T(f) = f(x,) with the constraint
f€ €, .,p faster than O((log n)~(m+te=0/B) in the sense that for any

estimator f‘n,

(3.10) sup Ef(f'n _ T(f))z S d(logn)—Z(m+a—l)/I3,

fe m,a, B

for some d > 0 (d is also independent of Tn).

The technical condition “P{le — x| < |x|*} = O(x|”®~*?)” is used to en-
sure that the tail of convolution function decays at the speed of (see Lemma
5.2)

+ o
[ TH(x - y) dFE.(y) = O(Is"¢™),  lal > e,
Note that the condition holds, if the density f, (exists for all supersmooth
distributions) of the random variable ¢ satisfies f.(y) = O(ly|™®) (as |y| = »)
for some a > 1. This condition can be replaced by the function |¢7(¢)| bounded
[which is similar to assumption (G3) below]. However, the condition on bound-
edness of |¢"| excludes Cauchy distributions. Hence the condition “P{le — x| <
lx]%?} = O(|lx|~ %)’ is stated in Theorem 4.

For the case that the error distribution is smoother than ordinary smooth,
we have the lower bounds as follows.

THEOREM 5. Suppose that the tail of ¢, satisfies

(G3) |t P ¢pYNt) < d; as t = o, for j =0,1,2, where d; is a positive con-
stant.

Then no estimator can estimate T(f) = f®(x,), under the constraint that
f€ €, o 5 faster than O(n=(m+e~b/@m+2«+264D) in the sense that for any

estimator T',,

(3.ﬂ) sup Ef(Tn - T( f))2 > dn~2Am+e-D/@m+2a+26+1)

fe m,a,B

for some d > 0, where $YX(¢t) is the jth derivative of ¢,.
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Thus we have found both lower and upper bounds for the ordinary smooth
cases and the supersmooth cases. In practice, those conditions are easy to
check. The cases of error distributions satisfying Theorems 2 and 5 include
gamma distribution, double exponential distribution, etc., and the cases of
error distributions satisfying Theorems 1 and 4 are normal, Cauchy, mixture
normal, and many other distributions. Now, we state some lower bounds for
estimating the cumulative distribution functions.

THEOREM 6. Under the conditions of Theorem 4, no estimator can estimate
the cdf of the random variable X at a point under the constraint (1.2) faster
than O((log n)~(™*2+D/B) in the sense of (3.10), and under the assumptions of
Theorem 5, no estimator can estimate the cdf of the random variable X under
the constraint (1.2) faster than O(p~(m*ta+l/@m*22+28+1)) 4n the sense of
(3.11).

The optimal rates of convergence are investigated by Zhang (1990) for
normal and Cauchy errors with [ = 0 or —1, m = 2, @ = 0, and by Carroll and
Hall (1988) for normal error with [ = @ = 0. Our results for the supersmooth
case are more general and compatible with theirs. While for the ordinary
smooth cases, the lower bound is better, we can obtain the optimal rates, while
they cannot.

4. Discussion.

REMARK 1. We have shown that the supersmooth error is much harder to
deconvolve than the ordinary smooth error, and the higher the order of the
smoothness is, the harder the deconvolution will be for both ordinary smooth
and supersmooth cases. If we want to estimate T'(f) = L{a; fVx,) in €, , 5,
then the kernel density estimator T'(f,) = Lia; /¥(x,), a;, # 0, achieves the
optimal rate O((log n)~™**=0/F) or O(n~(m*e=D/IAm+a+P+1]) depending on
the rate of the tail of ¢,. As the optimal rates of convergence are extremely
slow, practically it should be very cautious to deconvolve with supersmooth
errors; while it is possible to use the deconvolution techniques for the ordinary
smooth cases (e.g., double exponential error).

REMARK 2: For estimating the cdf of the random variable X, we imposed
an extra condition that the unknown cdf satisfies

(4.1) F(-n) < D(logn) ™*?/® for some D > 0,

which seems to be uncheckable, as a referee pointed out. However, the
condition (4.1) does not really restrict our class of unknown density to a much
smaller class. If we want to estimate the probability functional T'(f) =
J2f(x) dx, the conclusions of Theorems 3 and 6 still hold without the extra
condition (4.1). We only use such a condition to establish the upper bound, not
the lower bound. Under this extra condition, we can show that estimating a cdf
is easier than estimating a density in the supersmooth cases, and the result is
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heuristically the same as estimating “— 1 derivative” of the unknown density.
Without this condition, we are not able to identify exactly the optimal rate for
estimating a cdf by the proposed procedure.

REMARK 3. For the ordinary smooth case, we give a lower bound of
estimating a cdf, which is of order O(n~(m+a+1D/@m+22+28+1)) Fxhibiting the
corresponding kernel-type of estimator, we can show that an attainable rate of
estimating a cdf is O(n~(m*te+D/Am+a+f+D) ypnder some assumptions on the
derivatives of ¢ (¢). We conjecture that the latter rate is the best attainable
one [B = 0 corresponding to O(n~'/2)]. The reason is that in the current
situation, we conjecture that a pair of densities cannot capture the difficulty of
the full problem for estimating a cdf [i.e., modulus bound (4.2) below is too
small]. To construct an attainable lower bound, one might need to test two
highly composite hypotheses as Stone (1982).

REMARK 4. The optimal rates of convergence above are addressed in terms
of mean squared errors, which are slightly different from the definition of
Stone (1980), who defines them in terms of convergence in probablity. How-
ever, the results continue to hold under Stone’s definition. To see this, note
that the upper bound is obtained in the mean square error, which implies the
convergence in probability. On the other hand, from (3.3), one can obtain a
similar lower bound in terms of convergence in probability.

5. Proofs.

ProoF oF THEOREM 1. According to our remark in Section 2, the function
K(¢t) satisfies the conditions of a kernel function in the ordinary density
estimation. Thus we can apply the result of the ordinary kernel density
estimation to (2.4) [see Prakasa Rao (1983), pages 46 and 47], and it follows
that

sup lEf,f’)(xo) —f(l)(x0)|
fegm,a,B

= 'sup < Chk-L

fe{m,a,B

+oo 1
f f(l)(xo _y)h—K(hL) dy — f(l)(xo)

— 00

for some constant C, where k = m + a. Now the variance of f,"(x,) is

ar( f,fl)(xo)) —zt) exp(—it(xg — Y)))———— ¢K((}:)") dt
+1 |¢K( )| ’
D a;s"h—[f ]
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By assumption (E2), when Mh, < |t| < 1 (for large but fixed M),

d
|9:(t/h)| 2 5> (/)" exp(~hz? /7).

Moreover, by (A3),
|, (t/h,)| = IIlnin |¢.(¢)| >0 when |t| < Mh,,.
tl<M

Thus, by (5.1),

var( f,fl)(xo) exp(2h,‘,"/y)) =o(n~1/3)

)< Gmyrnnara O

by choosing the bandwidth &, = (4/y)"/A(log n)~'/#, where a = 2 if B, > 0,
and a = 2 — B, if B, < 0. The conclusion follows. O

Proor oF THEOREM 2. By choosing the bandwidth as given by Theorem 2
and by the calculation of Theorem 1, we have

sup lEf‘-’Sl)(xo) - f(l)(xo)l - O(hlrc‘—l) = O(n~(k=D/@k+26+1))
fe-gm,a,B

where & = m + a. Now, we need only to compute the variance of the estima-
tor. Let

1 v (=) pe (D)
g.(x) = Ef_m exp(—ztx)mdt.
Then
N 1.~ 1 X9 —Y;
flsl)(xo) = ; Zl hln+]_gnl( hn J)
and
o 1 x,— Y.
(5.2) . Var( f,sl)(xo)) < nh2+21Eg’%l( Oh ! ).

Let fy(y) be the density of Y = X + . Then it is proved by Bickel and Ritov
(1988) that sup; ., __f(x) < C, for some positive constant C. By Parseval’s
identity, we have
xo - Yl +
Egr?l( h ) = hn/_mgfl(y) fY(xO_ hny) dy

n

Ch, (+= |bg(t)t!]
< f S
2m Jw |$,(t/h,)|

By the similar argument to Theorem 1, the last term is of order O(h;2f+1),
Hence, by (5.2), we get the desired conclusion. O
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Proor orF THEOREM 3. Note that
A X, + 00 1 y
BR(s) = [ [ 1 - 9) K[ 2| v
+e 1 1/3
= [ _ 57 (F(xo = y) = F(=n'"> = y))K(y/h,) dy.

Now by a standard argument, we can show that

sup |EF,(x,) — F(x,)]

fec;n,a,B

< sup
fec;n,a,B

+ sup [ F(=n'® - h,y)|K(y)|dy

fecrln,a,B -

< O(hy*=*1) + O(F(—n'*[1 = h, 1)) + [ " |K(3)|dy

+oo 1
| F(xo = )5 K(3/hn) dy = F(xo)

= O((log n) ="/,

by using the fact that |K(y)l < Dly|™™2 for some D. On the other hand, the
variance of F,(x,) is

1 1 vo () T
Val‘(ﬁn(xo)) = (n /3 + |x0|) (277)2nhi [f—oo |¢5(It{/hn)| dt]

< 0|n'/3

—B

where a is the same as that in Theorem 1. The proof is complete. O

We need the following lemmas in order to prove Theorems 4 to 6.

LEMMA 5.1. Suppose that F is a cumulative distribution function. Then the
convolution density

+ oo

g(x) - | & ar(y)
- (14 (x~)?)

satisfies
go(x) = Dlx|™* asx > o,

for some D > 0, where C, is a constant such that C,(1 + x2)™" is a density
function (r > 0.5).
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LemMMA 5.2. Suppose P{le — x| < |x|*) = O(x|"“"*) (as |x| > ») for
some 0 < ag < land a > 1 + a,, and H(x) is bounded with H(x) = O(|x|”™°)
(as |x| = »). Then there exists a large M and a constant C such that when
|6x| > M, .

+o —a+ta
f H(x —y) dF,(8y) < C(8lx])*"™ forall 5 <1,
provided (m + 1)a, > a, where F, is the cdf of the random variable ¢.

Proor. Divide the real line into two parts:
I ={y:lx —y/8l < x|} and I, = {y:lx —y/8|> |x|*}.
Then, by simple algebra, when 8x is large enough,

| HG=y)dF(y) < [ + [ H(x - 5/8) dE()

< O((3lxl) =) + O(lx|7"%),

as having to be shown. O

Proor oF THEOREM 4. By relocating x, to the origin, without loss of
generality assume that x, = 0. Denote £ = m + a. Take a real function H(-)
satisfying the following conditions:

. H®(0) # 0;

. HY(x) is bounded continuous for each j;

. H(x) = O(x~™0) as |x| - =, for some given m such that (m, + 1)a, > a;

. [T2H(x)dx = 0;

. [2 H(x)dx + 0;

. ¢5(¢) = 0 when [¢| is outside [1, 2], where ¢ is the Fourier transformation
of H.

To see why such a function H(-) exists, we will take a nonnegative
symmetric function #(¢) which vanishes outside [1,2] when ¢ > 0 and has
continuous first m, bounded derivatives. Moreover, ¢(¢) satisfies

DO LN

(5.3) RO(0) # RO(1)
and i
2 sin ¢
/ — (1) dt # 0,

where h(x) is the Fourier inversion of ¢(¢) defined by

h(x) = %j;zcos(tx)d)(t) dt.

Such a ¢(-) exists because all functions satisfying the above conditions are
infinite dimensional. Let H(x) = h(x) — h(x + 1). Then its Fourier transfor-
mation ¢4(¢) = (1 — e *)@(¢), and H(x) satisfies conditions 1 to 6.
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Now take a pair of densities

fo

(1 +x?)

where r satisfies 0.5 < r < min[1,a — a, — 0.5]. By choosing r close to 0.5
and c close to 0, the densities f, and f, € €, , p, for all small §,,.

Denote g, = f,, * F.. Now the yx2-distance between the pair of densities in
the convolution space is given by (3.6). Note that by Parseval’s identity, we

have
toof o+ 2 1 +oo 2
/. (f _H(x-y) dFs(Sny)) de = —— [ “léu(t),(2/5,)] dt

(5.4) _

and f,=f,+cdkH(-/5,),

1
= — [ eu(®)o(t/8,)] dt
1

| = 0(8;*Prexp(—25,%/7)),
uniformly in small §,. Consequently, by Lemmas 5.1 and 5.2 and (5.4),

+ o + o 2
f_m (f _H(x—y) dFL(S,.y)) g5 4(8,x) dx

o 2
= + (f+ H(x-y) dFs(5ny)) £6(8,x) dx
|6, x|<M, [8,2x1>M,\" -
M,?r + o 4o 2
< (TG - R ds

— oo

Czlﬁnxl_z‘”z%

- dx
ls,xI>M, DI8,x|™*"

= 0(8, % M? exp(—25,"/v) + 8, 'M,*)

= o(exp(—¢,8,7)),
where M, = exp(6,?/y), e¢9=2(a —ay—r)—1 and & = min(d - r)/y,
£0/27v) > 0 (by the choice of r). Consequently, by (3.6),

+o0 _

(5.5) f_ (fy1— fyz)z( fr1) Ydx = 0(572;(m+a)+1 exp( _sls;ﬂ))’
Taking
(5.6) 5, =¢c/B(logn)” ",

we conclude that the right-hand side of (5.5) is of order o(1/n), and the order
of the lower bound is [see (3.4)]

| £:2(0) = £§2(0)| = O(3 ") = O((log n)~*~"7%).

The conclusion follows. O

ProOOF OF THEOREM 5. Use the same notation as in the proof of Theorem 5.
Take the same ¢(¢) except only the first two continuous derivatives are
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required in this case. Now take a pair of densities

fo=C(1+x%) " and f,=fo+csiH( /8,).

Let ¢4(¢) = (1 — e *)¢(t) be ‘the Fourier transformation of H(x), and
define

d? 5
gt = LOHO/5)

By assumption (G3) for 1 < ¢ < 2, we have (as §, — 0),
(5.7) 3;ﬂ|¢an(t)| <Cy/2,
for some C; > 0. Now, by the Fourier inversion forniula,
+ oo 1 + oo .
[ H(x =) dF(3,5) = o~ [ exp(—itx) () b(2/5,) dt

— 0

(5.8)

- e ¥ (t) dt.
27Tx2];sltls2 $5,()

Now, we are ready to compute the left-hand side of (3.6). By Parseval’s
identity, when §,, is small,

Lef ([ 7RG =5) dr6.0) 660 ds

<Cf ([ THG - RG]

=20, “bu(t)$.(2/8,) de

= 0(52),

where g, = f, * F, does not vanish, and hence C, = max, . _; ;g (%) is a
finite constant. By Lemma 5.1, (5.7) and (5.8), we have

L=[ (/TG - a6 i,

x|=1\7 —

<826 (2mx?) °ClgyY(8,x) dx

lx|=1
= 0(582°).
Consequently, the y2-distance of the pair of densities [see (3.6)] is of order

SO, + 1) = O(n7Y),
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by taking §, = n~1/[&m+®)+28+1] and the lower bound is of order [see (3.4)]
IT(f,) = T(fo)| = 87 |A®(1) — RO(0)]
=|h(l)’(1) _ h(l)(O)In—(m+a—l)/[2(m+a+ﬂ)+1]'

This completes the proof. O

Proor oF THEOREM 6. By translation, without loss of generality assume
that x, = 0. Take the same least favorable pairs as used in Theorems 4 and 5.
Then the lower bound is of order

|Fn(0) - Fo(O)l =g§mte /‘0 H(x/8,) dx" = 0(3’rln+a+1)’

where 8, is given by (5.6) for the first conclusion, and §, = n~/&m+a+p)+1]
for the second conclusion. O

Acknowledgments. This work is part of the author’s Ph.D. dissertation
at the University of California, Berkeley, written under the supervision of
Professors P. J. Bickel and D. L. Donoho, whose generous guidance and
suggestions are gratefully acknowledged and appreciated. The author would
also like to express his sincere thanks to an Associate Editor and the referees
for bringing to his attention the work of Zhang (1990) and for helpful
suggestions and comments that improved the results and presentation. The
author is in debt to Thomas Billings for a careful reading of the manuscript
and useful suggestions.

REFERENCES

BicKEL, P. J. and Ritov, Y. (1988). Estimating integrated squared density derivatives: Sharp best
order convergence estimates. Sankhyd Ser. A 50 381-393.

CarrorL, R. J. and Harii, P. (1988). Optimal rates of convergence for deconvolving a density.
J. Amer. Statist. Assoc. 83 1184-1186.

DonoHo, D. L. and Liu, R. C. (1987). Geometrizing rates of convergence, I. Technical Report 137a,
Dept. Statistics, Univ. California, Berkeley.

DoNoHO, D. L. and Liu, R. C. (1991a). Geometrizing rates of convergence, II. Ann. Statist. 19
633-6617.

DonoHO, D. L: and Liu, R. C. (1991b). Geometrizing rates of convergence, III. Ann. Statist. 19
668-701.

DEevroYE, P. L. (1989). Consistent deconvolution in density estimation. Canad. J. Statist. 17
235-239.

Fan, J. (1989). Adaptively local one-dimensional subproblems. Mimeo Series 2010, Inst. Statistics,
Univ. North Carolina, Chapel Hill.

Fan, J. and Truong, Y. K. (1990). Nonparametric regression with errors in variables. Mimeo
Series 2028, Inst. Statistics, Univ. North Carolina, Chapel Hill.

IBrRAGIMOV, I. A., NEMIROVSKII, A. S. and KHas’MINsKiI, R. Z. (1986). Some problems on nonpara-
metric estimation in Gaussian white noise. Theory Probab. Appl. 31 391-406.

LE CaM, L. (1973). Convergence of estimates under dimensionality restrictions. Ann. Statist. 1
38-53.

LE Cam, L. (1985). Asymptotic Methods in Statistical Decision Theory. Springer, New York.



1272 J. FAN

Ly, M. C. and TaviLor, R. L. (1989). A consistent nonparametric density estimator for the
deconvolution problem. Canad. J. Statist. 17 427-438.

MENDELSOHN, J. and Ricg, J. (1982). Deconvolution of microfluorometric histograms with B
splines. J. Amer. Statist. Assoc. 77 748-753.

Prakasa Rao, B. L. S. (1983). Nonparameétric Functional Estimation. Academic, New York.

STEFANSKI, L. A. (1990). Rates of convergence of some estimators in a class of deconvolution
problems. Statist. Probab. Lett. 9 229-235.

StTEFANSKI, L. A. and CARROLL, R. J. (1987). Conditional scores and optimal scores for generalized
linear measurement-error models. Biometrika 74 703-716.

STEFANSKI, L. A. and CARROLL, R. J. (1990). Deconvoluting kernel density estimators. Statistics 21
169-184.

SToNE, C. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist.
10 1040-1053.

StoNE, C. (1983). Optimal uniform rates of convergence for nonparametric estimators of a density
function or its derivatives. In Recent Advances in Statistics: Papers in Honor of
Herman Chernoff on His Sixtieth Birthday (M. H. Rezvi, J. S. Rustagi and D. Sieg-
mund, eds.) 393-406. Academic, New York.

WISE, G., TRAGANITIS, A. P. and THoMAS, J. B. (1977). The estimation of a probability density
function from measurements corrupted by Poisson noise. IEEE Trans. Inform. Theory
23 764-766.

ZHANG, C. H. (1990). Fourier methods for estimating mixing densities and distributions. Ann.
Statist. 18 806-830.

DEPARTMENT OF STATISTICS
UNIVERSITY OF NORTH CAROLINA
CHAPEL HiLL, NORTH CAROLINA 27514



	Article Contents
	p.1257
	p.1258
	p.1259
	p.1260
	p.1261
	p.1262
	p.1263
	p.1264
	p.1265
	p.1266
	p.1267
	p.1268
	p.1269
	p.1270
	p.1271
	p.1272

	Issue Table of Contents
	The Annals of Statistics, Vol. 19, No. 3 (Sep., 1991), pp. 1109-1680
	Front Matter
	Maximum Likelihood Type Estimation for Nearly Nonstationary Autoregressive Time Series [pp.1109-1128]
	Gaussian Likelihood Estimation for Nearly Nonstationary AR(1) Processes [pp.1129-1142]
	Estimation of the Parameters of Linear Time Series Models Subject to Nonlinear Restrictions [pp.1143-1154]
	Convergence of Moments of Least Squares Estimators for the Coefficients of an Autoregressive Process of Unknown Order [pp.1155-1162]
	The Variational Form of Certain Bayes Estimators [pp.1163-1190]
	Bayes Empirical Bayes Estimation for Natural Exponential Families with Quadratic Variance Functions [pp.1191-1224]
	Diameter and Volume Minimizing Confidence Sets in Bayes and Classical Problems [pp.1225-1243]
	Robust Bayesian Experimental Designs in Normal Linear Models [pp.1244-1256]
	On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems [pp.1257-1272]
	On the Estimation of Quadratic Functionals [pp.1273-1294]
	Edgeworth Expansion of a Function of Sample Means [pp.1295-1315]
	Efficient Estimation of Linear Functionals of a Probability Measure P with Known Marginal Distributions [pp.1316-1346]
	Approximation of Density Functions by Sequences of Exponential Families [pp.1347-1369]
	Large Sample Theory of a Modified Buckley-James Estimator for Regression Analysis with Censored Data [pp.1370-1402]
	Weak Convergence of Time-Sequential Censored Rank Statistics with Applications to Sequential Testing in Clinical Trials [pp.1403-1433]
	Conditional Rank Tests for Randomly Censored Data [pp.1434-1456]
	Almost Sure Asymptotic Representation for a Class of Functionals of the Kaplan-Meier Estimator [pp.1457-1470]
	The Asymptotic Behavior of Some Nonparametric Change-Point Estimators [pp.1471-1495]
	Some Bootstrap Tests of Symmetry for Univariate Continuous Distributions [pp.1496-1511]
	Spline Functions and Stochastic Filtering [pp.1512-1527]
	Some Stabilized Bandwidth Selectors for Nonparametric Regression [pp.1528-1546]
	On Tail Index Estimation Using Dependent Data [pp.1547-1569]
	A Geometric Approach to Detecting Influential Cases [pp.1570-1581]
	Trend-Free Block Designs for Varietal and Factorial Experiments [pp.1582-1596]
	On the Balanced Incomplete Block Design for Rankings [pp.1597-1613]
	Optimal Weights for Experimental Designs on Linearly Independent Support Points [pp.1614-1625]
	Inference for the Crossing Point of Two Continuous CDF's [pp.1626-1638]
	Generalizations of James-Stein Estimators Under Spherical Symmetry [pp.1639-1650]
	An E-Ancillarity Projection Property of Cox's Partial Score Function [pp.1651-1660]
	Short Communications
	The Singularities of Fitting Planes to Data [pp.1661-1666]
	Optimality of Some Two-Associate-Class Partially Balanced Incomplete-Block Designs [pp.1667-1671]
	Monotone Gain, First-Order Autocorrelation and Zero-Crossing Rate [pp.1672-1676]
	On the Monotonicity of a Certain Expectation [pp.1677-1680]

	Back Matter



