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ABSTRACT

The ensemble Kalman filter is now an important component of ensemble forecasting. While

using the linear relationship between the observation and state variable makes it applicable

for large systems, relying on linearity introduces non-negligible bias since the true distri-

bution will never be Gaussian. We review the ensemble Kalman filter from a statistical

perspective and analyze the sources of its bias. We then propose a de-biasing method called

the nonlinear ensemble adjustment filter. This new filter transforms the forecast ensemble

in a statistically principled manner so that the updated ensemble has the desired mean and

variance which is calculated by importance sampling. We also show that the new filter is

easily localizable and hence potentially useful for large systems. The new filter is tested

through various experiments on Lorenz 63 system and Lorenz 96 system, showing promising

performance when compared with other Kalman filter and particle filter variants. The re-

sults show that the new filter is stable and accurate for very challenging situations such as

nonlinear, high dimensional system with sparse observations.
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1. Introduction

The ensemble Kalman filter (EnKF, (Evensen 1994, 2003, 2007)) has become a popular

tool for data assimilation because of its computational efficiency and flexibility (Houtekamer

and Mitchell 1998; Anderson 2001; Whitaker and Hamill 2002; Ott et al. 2004; Evensen 2003;

Mitchell and Houtekamer 2009).

Although many variants have been developed, the EnKF update approximates the prob-

ability distributions of the forecast state vector, the observation, and the updated state

vector by Gaussian distributions. Such a Gaussian approximation allows a linear update

which makes the EnKF applicable for many large-scale data assimilation problems. How-

ever, in reality such a Gaussian approximation and linear update will introduce systematic

bias because the true distributions can be significantly non-Gaussian and the relationship

between the observation and state might be nonlinear.

A filtering approach that is adaptive to nonlinearity and non-Gaussianity is the particle

filter (Gordon et al. 1993; van Leeuwen 2003). However, it is known that the ordinary

particle filter requires a prohibitively large ensemble size to avoid collapsing (Snyder et al.

2008). On the other hand, the particle filter suffers from sample impoverishment when the

forecast model is deterministic. Both the efficiency problem and sample impoverishment

problem can be alleviated by reducing the dimensionality. Therefore, a major challenge for

particle filters in geophysical systems is localization. The particle filter updates the forecast

ensemble directly from likelihood function and the covariance matrix is not used in the

update, therefore traditional covariance tapering techniques for the EnKF is not applicable

for the particle filter. The sliding window localization method used in Ott et al. (2004)
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seems feasible but the re-sampling/re-weighting step of ordinary particle filter breaks the

connection between overlapping local windows. van Leeuwen (2009) gives an introduction

of particle filter for data assimilation.

In this article we propose a new particle filtering method which enables localization. It

combines some of the advantages of both the EnKF and the particle filter. First, one can

view the EnKF as a linear regression of the state vector on the observation vector (Anderson

2003). The updated state is obtained by using the true observation as predictor in the fitted

linear model. Under nonlinear and non-Gaussian models, such a linear update is biased in

both location (the posterior expectation) and shape (the posterior higher order moments).

The bias in location is a direct consequence of using linear regression in a nonlinear model.

Our method uses importance sampling to estimate the conditional expectation of the state

given the observation which substantially reduces the bias in location. Unlike the particle

filter, which uses importance sampling to estimate the whole posterior distribution, the

new method uses importance sampling only to estimate the posterior mean. Although,

in principle, this process is still subject to collapse because of using importance sampling,

it lends itself more easily to localization because it does not involve any re-weighting or

re-sampling steps.

Xiong et al. (2006) and Nakano et al. (2007) also use importance sampling to update the

mean and covariance, and transform the forecast ensemble so that the updated ensemble has

asymptotically the desired mean and covariance. In particular, Xiong et al. (2006) proposes

a particle filter with Gaussian re-sampling (PFGR) which uses a deterministic transform on

the forecast ensemble, which is very similar to the ensemble square root filter. This method

depends on the particle filter to estimate the updated mean and covariance, which is hard
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if the dimensionality of state-space is moderately high. On the other hand, Nakano et al.

(2007) proposes a merging particle filter (MPF) which generates a multiple sample points

using importance sampling and re-sampling, and each updated particle are obtained by a

fixed linear combination of a group of sample points. This method gives good simulation

results but in order to avoid collapsing, the importance sampling and re-sampling step cannot

collapse in the first place, which is usually not the case in high dimension state spaces if the

dynamics is deterministic. We compare the performance of our method with both PFGR and

MPF in the Lorenz 63 system. In higher dimension systems with deterministic dynamics,

such as the Lorenz 96 system, both PFGR and MPF degenerates.

The rest of this article is organized as follows: In Section 2 we review the EnKF and

the particle filter. In Section 3 we examine the sources of bias in the EnKF and introduce

the NonLinear Ensemble Adjustment Filter (NLEAF). In Section 4 the NLEAF algorithm is

tested and compared with other methods in Lorenz 63 system and Lorenz 96 system. Some

final remarks are given in Section 5.

2. Ensemble filters

Filtering algorithms for data assimilation usually work sequentially. There are two major

steps in each recursion. In the forecasting step, a forecast (prior) ensemble is obtained by

applying the forecast model to each update (posterior) ensemble member that is produced

at previous time. In the update step, the forecast ensemble is modified to incorporate the

information provided by the new observation. We focus on the update step assuming that

the forecast can be done in a standard way.
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Formally, suppose the uncertainty of the forecast ensemble can be represented by a ran-

dom variable x with probability density function pf(·), where the subindex “f” stands for

“forecast”. Assume that the observation y is given by

y = h(x) + ε,

where the observation mechanism h(·) may be nonlinear and ε is the observation noise with

probability density function g(·) which could be non-Gaussian. The likelihood function of x

given y is then g(y−h(x)). The optimal way to update the state distribution is Bayes rule,

in which the optimal updated probability density function of the state variable is then:

pa(x) =
pf(x)g(y − h(x))∫

pf(x′)g(y − h(x′))dx′
,

where the subindex “a” stands for “analysis” (update).

However, a closed form solution is available only for a few special cases such as when h is

linear and pf(·), g(·) are Gaussian (the Kalman filter), or when x is discrete (hidden Markov

models). In ensemble filtering, pf and pa are approximated by a discrete set (ensemble) of

sample points (particles), and the ensemble is propagated by the forecast model and updated

according to the observation at each time. We recall two typical ensemble filtering methods,

the particle filter and the EnKF.

a. The particle filter

Gordon et al. (1993) proposes the particle filter, using the importance sampling technique

followed by a re-sampling step. Given the forecast ensemble {x1
f , . . . ,x

n
f } as a random sample

from pf , and the observation yo, a simple particle filter algorithm works as follows:
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PF1. Evaluate the likelihood for each forecast ensemble member: wj = g(yo − h(xj
f )) for

j = 1, . . . , n.

PF2. For j = 1, . . . , n, sample the updated ensemble member xj
a independently from {xj

f}n
j=1

with weights proportional to (w1, . . . , wn).

Re-weighting the particles according to their likelihoods is called importance sampling which

dates back at least to Hammersley and Handscomb (1965). The particle filter is statistically

consistent in the sense that when the ensemble size goes to infinity, the updated ensemble

will be exactly a random sample from pa (Künsch 2005). However, in high dimensional

situations, the ordinary particle filter requires a very large ensemble size to search the whole

state space and the ensemble tends to collapse in a few steps. Snyder et al. (2008) give a

quantitative estimation of the rate of collapse on a very simple Gaussian model.

Another potential problem of the particle filter is the issue of degeneracy or sample

impoverishment. When re-sampling is used, there will be inevitably a loss of diversity

of distinct ensemble members during the update. If the dynamics is deterministic, the

updated sample will soon have few distinct ensemble members. A remedy to this problem is

perturbing the updated ensemble members with small random noises, which is known as the

regularized particle filter (Musso et al. 2001). However, the perturbation introduces another

source of noise, which may impact the performance negatively even in low dimensional

problems.

However, due to its natural advantage in dealing with nonlinear non-Gaussian problems,

the particle filter is still a promising tool for data assimilation. Many re-sampling methods

have been proposed to improve the efficiency of particle filters. Examples include, but not
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limited to, Xiong et al. (2006) and Nakano et al. (2007). Of course, finding a good proposal

density in the re-sampling step is key. The extent to which this is possible in very high

dimensional geophysical systems remains to be analyzed but see Chorin and Tu (2009); van

Leeuwen (2010)

b. The ensemble Kalman filter

A widely used approach in data assimilation is the EnKF (Evensen 1994; Burgers et al.

1998). Instead of the particle filter which tries to capture the whole posterior distribution,

the EnKF approximates the prior and posterior distributions by Gaussians and updates only

the first two moments of the state variable. Assuming a linear observation:

y = Hx + ε,

with Gaussian noise ε ∼ Norm(0,R). Given the forecast ensemble {x1
f , . . . ,x

n
f } and true

observation yo, the EnKF update with perturbed observation works as follows:

En1. Compute the forecast sample covariance matrix: Pf = n−1
∑n

j=1(x
j
f − x̄f)(x

j
f − x̄f)

T ,

where x̄f = n−1
∑n

j=1 xj
f is the forecast ensemble mean, and the superscript T means

matrix transpose.

En2. Estimate the linear regression coefficient of x on y: K = PfH
T (HPfH

T + R)−1. This

is usually done by multiplying the sample covariance between the forecast ensemble

and background observations and the inverse of the sample variance of background

observations.

En3. Generate background observations: yj = Hxj
f + εj, with εj ∼ Norm(0,R).
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En4. Update sample points: xj
a = xj

f + K(yo − yj).

It is also known that using perturbed observations will introduce some sampling bias espe-

cially for small ensembles. A remedy is use some systematic sampling scheme to make sure

the εj’s have zero mean, covariance R, and zero correlation with xj’s. Covariance inflation

is also used to mitigate the bias in the forecast ensemble which is generated by a biased

analysis ensemble. There has been a vast literature on different variants and applications of

the EnKF. Please see Evensen (2003) for a nice review and Mitchell and Houtekamer (2009)

for more recent developments.

Another closely related ensemble filter also updates the first two moments of the forecast

ensemble but in a deterministic manner, known as the Kalman square root filter (Anderson

2001; Bishop et al. 2001; Whitaker and Hamill 2002). There have been many works on the

comparison between the perturbed observation filter and the square root filter (Lawson and

Hansen 2004; Lei et al. 2010). Although deterministic filters have no sampling error and

some are equivalent to the Kalman filter under Gaussian linear models, the bias caused by

the nonlinearity and non-Gaussianity still remains even when the ensemble size is large.

One key feature of the EnKF is that it updates each particle directly, without re-weighting

or re-sampling, which makes it applicable to large-scale problems. In the next section we

introduce another filter with the same property but with reduced bias under nonlinear,

non-Gaussian models.
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3. A New Nonlinear Non-Gaussian Ensemble Filter

a. Why does the ensemble Kalman filter work?

An explanation of the EnKF (with perturbed observation) is based on the simple fact: if

x and y are jointly Gaussian, then the posterior distribution of x given y depends on y only

through the mean. That is, for any y, let µa(y) be the posterior mean of x given y, then the

posterior distribution of x given y is Norm(µa(y),Pa), where Pa does not depend on y. By

the construction of background observation yj, (xj
f ,y

j) is jointly Gaussian. Therefore, recall

that µf is the forecast ensemble mean, xj
f−µa(y

j) = (I−KH)(xj
f−µf)+Kεj is a random draw

from Norm(0,Pa) and xj
a = xj

f −µa(y
j)+µa(y

o) is a random draw from Norm(µa(y
o),Pa),

the true posterior distribution. On the other hand, the joint Gaussianity also implies that

µa(y) is a linear function of y with linear coefficient K as given in (En2). Thus the update

can be written as xj
a = xj

f + K(yo − yj). Note that by definition we have yj = Hxj + εj.

As a result, the update formula can be written as xj
a = xj

f + K ((yo − εj)−Hxj), which is

exactly the same as the “observation perturbation” used in equation (13) of Burgers et al.

(1998). In the present paper we use the background observation yj for the convenience of a

unified argument for both Gaussian linear and non-Gaussian, nonlinear models.

In a non-Gaussian nonlinear model, the EnKF will be biased for two reasons. First,

K(yo − yj) 6= µa(y
o) − µa(y

j) since µa(y), the conditional expectation of x given y, is no

longer linear in y. Second, the re-centered conditional random variables xj
f −µa(y

j)+µa(y
o)

will not have the correct variance and higher moments. The first source of bias will result in

a larger distance between the true state and the updated ensemble mean whereas the second

source of bias will affect the shape of the updated ensemble, which might be problematic as
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the bias is propagated by the dynamics.

b. The NLEAF algorithm with first order correction

We now introduce the nonlinear ensemble adjustment filter (NLEAF) as a de-biasing

alternative to the EnKF. It requires no assumptions on the prior distribution of x and works

for a general observation function h(·) and observation noise distribution g(·). The basic idea

is to estimate µa(y) using importance sampling, instead of linear fitting as in the EnKF. Let

pf(·) and pa(·) be the forecast (prior) and updated (posterior given y) densities, respectively.

Then we have, for any y,

pa(x) =
pf(x)g(y − h(x))∫

pf(x′)g(y − h(x′))dx′
(1)

⇒µa(y) =

∫
xpf(x)g(y − h(x))dx∫
pf(x)g(y − h(x))dx

.

The importance sampling estimator of the conditional expectation is given by

µ̂a(y) =

∑n
j=1 xj

f g(y − h(xj
f ))∑n

j=1 g(y−h(xj
f ))

. (2)

Given the forecast ensemble {x1
f , . . . ,x

n
f } and observation yo, the NLEAF update works as

follows

NL1. Generate background observations yj = h(xj
f ) + εj, with εj independently sampled

from probability density function g(·).

NL2. Estimate the conditional expectation µ̂a(y) using (2) for y equals the true observation

yo and all yj, j = 1, . . . , n.

NL3. Update sample: xj
a = xj

f + µ̂a(y
o)− µ̂a(y

j).
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This algorithm improves the EnKF by using importance sampling in estimating the

conditional expectations. It is known that under mild conditions the importance sampling

estimator µ̂a(y) converges to µa(y) as the ensemble size tends to infinity (Künsch 2005).

Therefore xj
a is centered approximately at µa(y

o), since xj
f is centered approximately at

µa(y
j) conditioning on yj. As a result, the first source of bias in the EnKF is reduced.

On the other hand, it also keeps the simplicity of the EnKF, avoiding the re-weighting

and re-sampling steps used by the particle filter. This is particularly useful for localization

techniques that depend on local state vectors, for example, the sliding-window localization

used by Ott et al. (2004). When applying to overlapping local state vectors, the absence of re-

sampling and re-weighting can keep the spatial smoothness across overlapping local vectors.

As a result, one would expect the NLEAF algorithm to be applicable for high-dimensional

problems with a better accuracy than the EnKF. Before demonstrating its performance in

Section 4, we state two important extensions of the NLEAF.

c. Higher order corrections

The NLEAF update described above only adjusts the posterior mean. In fact the same

idea can be applied to get higher order corrections. For example, an NLEAF with second

order correction uses importance sampling to estimate the posterior covariance of x given y,

denoted as Pa(y). Theoretically we have

Pa(y) =

∫
(x− µa(y))(x− µa(y))T pa(x)dx,

11



where pa(x) is defined as in Eq. (1). Then the importance sampling estimator for Pa(y) is

P̂a(y) =

∑n
j=1(x

j
f − µ̂a(y))(xj

f − µ̂a(y))T g(y − h(xj
f ))∑n

j=1 g(y − h(xj
f ))

, (3)

where µ̂a(y) is obtained using (2). The update with second order correction is

xj
a = µ̂a(y

o) + P̂a(y
o)1/2P̂a(y

j)−1/2
(
xj

f − µ̂a(y
j)

)
.

To understand this algorithm, note that when the ensemble size is large, µ̂a(y) ≈ µa(y) and

P̂a(y) ≈ Pa(y) for all y, then xj
f − µa(y

j) has mean zero and covariance Pa(y
j). Therefore

the updated ensemble member xj
a has approximately mean µa(y

o) and covariance Pa(y
o).

As shown in numerical experiments, this higher order correction does improve the accuracy.

It even outperforms the particle filter in some settings with deterministic dynamics. As a

trade-off, it requires a larger ensemble size and is computationally more intensive than the

first order NLEAF because of the covariance matrix estimation and inversion. We also note

this is actually a stochastic version of the Gaussian re-sampling particle filter proposed by

Xiong et al. (2006).

d. NLEAF with unknown likelihood function

Another useful extension of the NLEAF is to use nonlinear regression methods to estimate

µa(y). In some practical problems, the relationship between the observation y given the

state vector x might be complicated so that the density function of y given x is not available

in analytic form, for example, when y is generated by a black-box function. One practical

example is satellite radiance. Satellite radiance is related to temperature, humidity and other

trace variables depending on the wavelength. But no simple direct analytical relationship
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is known between the state and the observation. In this case, all we have is the forecast

ensemble paired with the background observations: {(xj
f ,y

j)}n
j=1. One may use regression

methods to estimate the conditional moments of x given y. For example, the EnKF uses

a linear regression to estimate µa(y). One can also use more general methods, such as

polynomial regression, to handle nonlinearity. More specifically, one may estimate µa(y)

as a function of y by minimizing over all quadratic functions m(·) under the square loss

∑n
j=1 ||m(yj) − xj

f ||22. This is could be a promising method for nonlinear data assimilation

problems that lacks knowledge of observation generating mechanism.

4. Numerical experiments

a. The Lorenz 63 system

The Lorenz 63 system is a three dimensional model determined by an ordinary differential

equation system

dzτ (1)/dτ = −σzτ (1) + σzτ (2), (4)

dzτ (2)/dτ = −zτ (1)zτ (3) + ρzτ (1)− zτ (2), (5)

dzτ (3)/dτ = zτ (1)zτ (2)− βzτ (3), (6)

where zτ is the three-dimensional state vector describing a simplified flow of heated fluid

with τ being the continuous time index and parameters are set as β = 8/3, ρ = 28 and

σ = 10.

In simulation the system is discretized using the fourth order Runge-Kutta method. Let
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xt = z∆t, for all integers t, with ∆ being the step size. A larger value of ∆ indicates a more

non-linear relationship between xt and xt+1. A hidden true orbit {x∗t , t ≥ 0} and observation

yo
t = x∗t + εt are generated with starting point x∗0 randomly chosen from the attractor and

independent observation noise εt with mean 0 and covariance θ2I. At the starting time, the

initial ensemble {xj
0}n

j=1 is obtained by perturbing x∗0 with random noise. At each time t ≥ 1,

filtering methods are applied and the updated ensemble average is used as the best single

estimate of x∗t . The major evaluation criterion is the root mean squared error (RMSE):

||x̄t,a−x∗t ||2/
√

d, where || · ||2 is the Euclidean norm, d = 3 is the dimensionality of the state

space, and x̄t,a is the updated ensemble mean at time t. For a measurement of the sample

spread (sharpness) we look at [trace(P̂t,a)/d]1/2 in comparison with the RMSE, where P̂t,a

is the sample covariance matrix of the updated ensemble at time t. In addition, we use

the percentage of x∗t (3) being covered by the range between 0.025 and 0.975 quantiles (the

sample 95% confidence interval) of the updated ensemble as a measurement of how well the

updated ensemble covers the true state.

1) Simulation set-up

Here we look at two different observation error distributions. First we consider Gaus-

sian observation noise which has been used widely in previous studies. In this case, each

coordinate of εt is independent Gaussian with mean 0 and variance θ2 to the corresponding

coordinate of state variable. On the other hand, in order to study a non-Gaussian observation

noise we let εt have independent coordinates with a common double exponential distribu-

tion. A double exponential density (also known as the Laplace distribution) with mean 0

14



and variance 2b2 is p(z) = (2b)−1 exp (−|z|/b). The EnKF variants use the noise variance

2b2 in the update and pretend the noise is still Gaussian, which would be biased because the

true noise is non-Gaussian. The NLEAF update uses the true double exponential density as

the likelihood.

The system is run for T = 2000 steps and at each time filtering methods are applied

with an ensemble of size n = 400. The observation interval The number of steps is chosen

to be 2000 throughout our presentation because the result is relatively easy and quick to

reproduce. For both the Lorenz 63 system and the Lorenz 96 system (see below), we have

done simulations with the number of time steps increased to 50000 and the results are the

same. The system is propagated using a fourth order Runge-Kutta method with single step

size 0.01. We studied two different lengths of observation intervals (denoted ∆), 0.02 and

0.05. The observations are obtained by perturbing the true state by a Gaussian (or double

exponential) noise with variance θ2. Three values of θ are tested: 0.5, 1, and 2.

The methods in comparison are: the EnKF with perturbed observation (EnKF), NLEAF

with first order correction (NLEAF1), and NLEAF with second order correction (NLEAF2),

particle filter (PF), particle filter with Gaussian re-sampling (Xiong et al. 2006, PFGR), and

merging particle filter (Nakano et al. 2007, MPF). PFGR, and MPF uses inflation

xj
a + (1 + δ)(xj

a − x̄a) (7)

with δ = 0.01 to avoid sample degeneracy because of the deterministic nature of these

algorithms. The PF uses a slightly different inflation method which replaces the jth updated

ensemble member xj
a by xj

a +2δCov(xa)
1/2ξj, where Cov(xa) =< xj

ax
jT
a > − < xj

a >< xj
a >T

is the posterior covariance matrix of the state vector state covariance δ is a positive number
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that controls the amount of perturbation (it essentially plays the role of the covariance

inflation coefficient in (7)). ξj is independent Gaussian noise with unit variance.

Remark 1. The EnKF used in all of the simulations is the standard single ensemble EnKF,

which typically needs inflation in non-linear, high-dimensional applications. More sophisti-

cated EnKF variants (Mitchell and Houtekamer (2009), for example) are also in use and can

produce stable updated ensembles without using covariance inflation.

2) Results

The simulation results are summarized in Tables 1 and 2. The first number in each cell

is the average RMSE over 2000 steps, the number in the parenthesis is the average sample

spread measured as the square root of trace of the empirical covariance matrix scaled by

1/
√

3 to match the RMSE. The number below them is the percentage of x∗t (3) being covered

by the sample 95% confidence interval.

A good filtering method should produce 1) a small average RMSE and 2) an ensemble

spread that well represents the ensemble mean error (Sacher and Bartello 2008). If the

spread is too small, the updated ensemble is not likely to cover the true state; and if the

spread is too large, the updated ensemble would be too non-informative. In other words,

the true state should look like a random sample from the updated ensemble. Therefore, the

sample confidence interval coverage of the true state would be a good indicator of the filter

performance. Based on our experiment (see also Figures 1-6 in Sacher and Bartello (2008)),

it is usually good to have the updated variance slightly larger than the RMSE.

As we see from the tables, the NLEAF gives unparalleled performance except for ∆ = 0.05

16



and θ = 2, which is the hardest case with a very nonlinear dynamics and large observation

noise. Even in this case, it loses only slightly to the particle filter in the RMSE but still

provides tighter sample spreads with a reasonable confidence interval coverage.

The EnKF gives large RMSE’s and negatively biased empirical confidence interval cov-

erage due to its bias under nonlinearity and non-Gaussianity. As for the particle filter, in

Section 2a we point out that it has the issue of sample impoverishment in deterministic

systems. In our implementation, small random perturbations are added to the updated en-

semble members to overcome this difficulty, increasing both the uncertainty of the update

ensemble and the sample confidence interval coverage.

It is interesting to compare the performance between the PF and NLEAF1. When

∆ = 0.05, NLEAF1 gives slightly larger RMSE. Conversely, the NLEAF1 performs better

than the PF when ∆ is smaller. This is because when the step size is small there is less bias

in the higher order moments so it does not lose much information by ignoring the higher

order moments.

We observe that the NLEAF2 tends to produce a tight update ensemble which might

fail to cover the true state. In practice one can mitigate this issue by inflating the updated

ensemble covariance as in (7) for some small positive constant δ.

b. The Lorenz 96 system

The Lorenz 96 system (Lorenz 1996) is another common testbed for data assimilation

algorithms (Bengtsson et al. 2003; Ott et al. 2004; Anderson 2007). The state vector has 40
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coordinates evolving according to the following ordinary differential equations:

dzτ (i)/dτ =
[
zτ (i + 1)− zτ (i− 2)

]
zτ (i− 1)− zτ (i) + 8, for i = 1, . . . , 40, (8)

where zτ (0) = zτ (40), zτ (−1) = zτ (39) and zτ (41) = zτ (1). This system mimics the evolu-

tion of some meteorological quantity at 40 equally spaced grid points along a latitude circle.

The attractor has 13 positive local Lyapunov vectors. Similarly, the system is discretized

with step size ∆: xt = z∆t, for all integers t.

In such a high-dimensional problem, the particle filter often collapses in a single step with

all the weight concentrating on a single ensemble member. The EnKF also has difficulties

when the sample size n is as small as a few tens if no dimension reduction techniques are

used. Most dimension reduction techniques for the Lorenz 96 system are based on the fact

that two coordinates of xt have little dependence if they are far away in the physical space.

For example, the correlation between x(1) and x(2) might be significant, but x(1) and x(20)

would be nearly independent. As a result, the covariance tapering idea (Houtekamer and

Mitchell 1998; Gaspari and Cohn 2001) is applicable. A more straightforward method is

the sliding-window localization proposed by Ott et al. (2004) (see also Bengtsson et al.

(2003)), which uses local observations to update local state coordinates, and the whole

state vector is reconstructed by aggregating the local updates. Specifically, the state vector

x = (x(1), . . . ,x(40)) is broken down to overlapping local vectors x(Nj), j = 1, . . . , 40, with

Nj = (j− l, . . . , j, . . . , j + l), for some positive integer l and all numbers being mod 40. Then

each local vector x(Nj) is updated by the ensemble filter using local observations y(Nj)

(assuming y = x + ε). Therefore the each coordinate x(j) is updated simultaneously in

2l + 1 local vectors including x(Nj−l),x(Nj−l+1), . . . ,x(Nj+l). The final update for x(j) is
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then obtained by averaging its updates in local vectors x(Nj−k), x(Nj−k+1), . . ., x(Nj+k) for

some positive integer k ≤ l.

Our study of the Lorenz 96 system consists of two different settings corresponding to two

different levels of difficulty.

1) The hard case

(i) Simulation set-up

This setting has been considered by Bengtsson et al. (2003) as an early effort towards a

high-dimensional nonlinear non-Gaussian filter. In this case, the system is run using fourth

order Runge-Kutta method with single step size 0.05. We run the system and get 2000

observations with observation interval length ∆ = 0.4, which indicates a highly nonlinear

non-Gaussian forecast ensemble. A sample of size n = 400 is used and observation yt =

Hxt + εt, where H = (e1, e3, . . . , e39)
T with ei = (0, . . . , 1, . . . , 0)T being the unit vector

with all zero entries except the ith position, and εt ∼ Norm(0, I20/2). That is, only state

coordinates with odd indices are observed with independent Gaussian noise of variance 0.5.

Such a combination of incomplete observation, high nonlinearity, and high dimensionality

poses great challenge to filtering algorithms.

Here we compare the performance of four methods: 1) NLEAF1, (NLEAF with first

order correction); 2) NLEAF1q, (NLEAF using quadratic regression); 3) EnKF (the EnKF

with perturbed observation); 4) XEnsF, a nonlinear filter using Gaussian mixture approxi-

mations to the prior and posterior distributions Bengtsson et al. (2003). Both NLEAF1 and

NLEAF1q uses localization and averaging parameters (l, k) = (3, 1). The inflation follows
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equation (7) with rate δ is 0.045 for NLEAF1 and NLEAF1q, and 0.005 for the EnKF.

(ii) Results

The results are summarized in Table 3.

We only look at the mean, median and standard deviation of the 2000 RMSE’s since they

are the only available measurements of performance reported for the XEnsF Bengtsson et al.

(2003). Clearly the NLEAF1 gives the smallest and stablest RMSE on average. Note that

in this setting the observation is still linear with Gaussian noise, the NLEAF outperforms

other methods because of its adaptivity to nonlinearity. The performance of NLEAF1q is

also surprisingly good. As introduced in Section 3d, the NLEAF1q algorithm pretends that

the observation noise distribution is unknown and uses the forecast ensemble and background

observations to estimate a quadratic regression function of x on y. One might note that the

difference in the RMSE seems not too large compared to the standard deviation. The reason

is that the distribution of 2000 RMSE’s are non-Gaussian with very heavy right tail, which

can be seen from the difference between the mean and median.

It should be noted that in the result for XEnsF is quoted directly from Bengtsson et al.

(2003), therefore the methods compared here might be using different observation sequences.
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2) The easy case

(i) Simulation set-up

The easy case uses observation interval ∆ = 0.05, which makes the system much more

linear than in the hard case. The choice of ∆ = 0.05 can be thought of as nominally equiva-

lent to 6 hours in real-world time (Lorenz 1996). This setting allows a more comprehensive

comparison with existing methods since it has been studied extensively in the literature, see

Whitaker and Hamill (2002), Ott et al. (2004), Sakov and Oke (2008a,b) for examples. In

particular, we can study the effect of the sample size n on filter performance, which is an

important practical concern.

The system also runs to generate 2000 observations with a complete observation yt =

xt+εt and double exponential observation error ε since we are also interested in non-Gaussian

situations.

We compare the NLEAF with first order correction (NLEAF1), the EnKF, and the local

ensemble transform Kalan filter (Ott et al. 2004, LETKF). The LETKF is among the best

performing ensemble filters in this setting with Gaussian observation noise. It uses the

sliding-window localization and performs well especially when the sample size is very small.

However, it is also reported that its performance can hardly be improved by a larger sample

size. Other particle filter based methods either have difficualty in localization Xiong et al.

(2006, PFGR) or diverge with limited ensemble size for deterministic dynamics Nakano et al.

(2007, MPF).

The LETKF uses localization parameter k = l = 3 for ensemble size 10 and 20, k = l = 4

for ensemble size 50, 100, and no localization for ensemble size 400 (in this case it is just
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the Ensemble Transform Kalman filter, ETKF, Bishop et al. (2001)). It uses inflation with

δ = 0.01 for all ensemble sizes. The EnKF uses Cohn-Gaspari covariance tapering with

c = 5, 10 for ensemble size 10 and 20, respectively, and no tapering is necessary for larger

ensemble sizes. The inflation rate δ = 0.06, 0.05, 0.05, 0.03, 0.01 for ensemble size 10, 20, 50,

100, 400, respectively. For NLEAF1 and NLEAF1q, the localization parameter is k = l = 3

for ensemble size 10, 20, and k = l = 4 for ensemble size 50, 100, 400; the inflation rate δ is

0.09 for n = 11, 0.05 for n = 20, and 0.01 for n ≥ 50. All the inflation is as described as in

(7).

(ii) Results

Results on the average RMSE is summarized in Figure 1 for a quick comparison. Some

further comparison on the sample spread and sample confidence interval coverage is included

in Table 4. In Table 4, the number in the parenthesis is the average sample spread measured

as the square root of trace of the empirical covariance matrix scaled by 1/
√

40 to match the

RMSE. The number below them is the percentage of x∗t (1) being covered by the sample 95%

confidence interval. The methods in comparison are: the LETKF, the NLEAF with first

order correction (NLEAF1), the first order NLEAF using quadratic regression (NLEAF1q),

and the EnKF. An N/A entry indicates that the filter diverges (the whole sample is far away

from the true orbit).

From Figure 1 and Table 4 we see that the NLEAF1 performs better than the LETKF

as long as the sample size exceeds 20, providing both accurate point estimate and confidence

interval for the true trajectory. In this setting the dynamics is pretty linear and NLEAF1
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outperforms the LETKF mainly because of the non-Gaussian observation noise. On the other

hand, the NLEAF1q does provide useful updates when the sample size is fairly large. This

could be practically helpful when the noise distribution is unknown or observation mechanism

has no analytical form. Moreover, one might also notice that the LETKF performs worse for

n = 400 than for smaller values of n. This could be due to its vulnerability to the presence of

outliers Lawson and Hansen (2004); Lei et al. (2010). That is, increasing the sample size also

increases the chance of having outliers, which has a significant impact on the performance

of Kalman square-root filters. The simulation results on the EnKF also supports our earlier

statement that it has difficulty when the sample size is only a few tens. For larger sample

sizes, it works better but the bias never goes away, as can be seen from the sample spread

and confidence interval coverage.

5. Further discussions

This article demonstrates how simple statistical ideas can help design better filtering

algorithms. The NLEAF algorithm inherits some key features of the EnKF by keeping

track of each particle, which makes it easily applicable in high-dimensional problems with

spatial structures such as the Lorenz 96 system. It also reflects the bias-variance trade-

off principle. The EnKF is computationally stable but biased for nonlinear non-Gaussian

problems, whereas the particle filter is consistent but unstable for moderate-scale problems.

The NLEAF is somewhere in the middle: it uses the particle filter only up to the first

and/or second moment, while avoiding re-weighting/re-sampling to maintain the stability.

We believe this would be the key philosophy to deal with complicated data with limited
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computational budget.

Although the NLEAF works nicely for the Lorenz models. It does not completely over-

come the collapse problem of the particle filter. Currently the implementation of NLEAF

depends on the localization of the state vector as well as the observation. One might expect

difficulties if the state vector is only sparsely observed. On the other hand, in our experi-

ments the largest local window is of size 9, which is still a small number for realistic models

such as a GCM. For higher dimensionality, the importance sampling is likely to collapse

even for the first moment. One potential remedy for this problem could be to assimilate

each observation sequentially, with the impact on each state coordinate adjusted according

to its distance or correlation between the observation (Anderson 2003, 2007).

The NLEAF algorithm originates from a regression perspective to the EnKF. Such a

perspective can be used in other ways to design new filtering methods. For example, in some

high-dimensional problems, the correlation between state coordinates might not depend only

on their physical distance and the covariance matrix of the state vector is sparse but not

banded. As a result, the sliding-window localization method described in Section 4b is no

longer valid. Then one can employ sparse regression methods to identify the set of “effective”

neighborhood for each state coordinate.

Another direction of future work is the development of a deterministic NLEAF. The

NLEAF udpate introduced here uses the background observations which involve random

perturbations. This resembles the EnKF with perturbed observation which is subject to

sampling error. It is possible to design a deterministic NLEAF update which computes

the posterior moments using importance sampling or nonlinear regression methods, then the

ensemble can be updated deterministically such that the posterior ensemble has the updated
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moments.

The implementation of all filtering algorithms involves some tuning parameters. In our

simulation some of the filtering methods use covariance inflation, including the particle filter,

MPF and PFGR in Lorenz 63 system and all methods in Lorenz 96 system1. The updated

sample spread is inflated slightly to adjust for underestimation of the forecast uncertainty.

Such an inflation will put less weight on the forecast sample and more weight on the observa-

tion during the Bayes inference. As a result, the amount of inflation is a tuning parameter.

In our experiments on the Lorenz 63 system, the EnKF and NLEAF require little inflation

due to the large sample size and the use of synthesized observations. However, the particle

filter always requires some substantial inflation/perturbation to avoid sample impoverish-

ment, which results in a larger RMSE. In high-dimensional problems such as the Lorenz 96

system, inflation is always used for all methods discussed in this article. In our experiment,

the inflation rate ranges from 0.5% (n = 400) to 6.5% (n = 10) for the NLEAF1 algorithm.

Other tuning parameters include the localization window size l and the aggregation window

size k. We tried different combinations of (k, l) and chose the one with best performance.

Choosing optimal tuning parameters is not the major concern of this article since our goal

is to illustrate the NLEAF algorithm. In practice these tuning parameters can be chosen by

a simple grid search under the constraints of available computation resources.

1Some of versions of EnKF may produce reliable updated ensembles without inflation, see Mitchell and

Houtekamer (2009) for example.
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Table 1. Simulation results for Lorenz 63 system with Gaussian observation error.

∆ = 0.02 ∆ = 0.05
θ = 1/2 1 2 1/2 1 2

EnKF .038 (.047) .075 (.103) .179 (.232) .059 (.074) .131 (.167) .330 (.412)
96.2 94.6 97.5 95.9 94.7 93.9

NLEAF1 .038 (.047) .074 (.101) .169 (.227) .056 (.071) .122 (.160) .295 (.364)
96.8 94.6 98.4 96.1 95.9 94.8

NLEAF2 .037 (.042) .073 (.085) .141 (.174) .049 (.059) .090 (.121) .220 (.262)
95.2 88.3 96.6 96.5 96.6 95.4

PF .053 (.076) .090 (.141) .185 (.272) .062 (.087) .109 (.164) .245 (.323)
98.8 98.4 99.2 97.9 99.1 96.7

PFGR .048 (.062) .080 (.124) .180 (.261) .056 (.073) .117 (.160) .279 (.341)
96.5 97.7 99.3 96.4 96.7 94.5

MPF .045 (.061) .090 (.127) .187 (.257) .056 (.076) .115 (.160) .281 (.349)
97.3 95.4 98.3 96.8 96.9 95.1
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Table 2. Simulation results for Lorenz 63 system with double exponential observation error.

∆ = 0.02 ∆ = 0.05
θ = 1/2 1 2 1/2 1 2

EnKF .058 (.069) .104 (.153) .278 (.393) .082 (.110) .196 (.267) .499 (.615)
93.2 99.0 97.8 94.7 96.8 93.5

NLEAF1 .042 (.054) .086 (.118) .215 (.275) .081 (.088) .162 (.197) .386 (.465)
94.7 95.4 96.0 90.2 94.4 95.2

NLEAF2 .035 (.046) .073 (.097) .182 (.202) .055 (.071) .121 (.149) .277 (.332)
97.0 95.5 94.1 94.9 95.4 92.9

PF .055 (.082) .095 (.155) .209 (.294) .069 (.097) .133 (.181) .282 (.373)
97.6 98.9 98.2 97.4 97.3 96.1

PFGR .050 (.068) .084 (.136) .233 (.279) .070 (.092) .155 (.192) .336 (.413)
96.0 98.8 94.3 95.8 94.9 94.1

MPF .047 (.066) .088 (.134) .216 (.287) .066 (.090) .144 (.185) .329 (.424)
96.4 97.7 96.2 96.8 95.7 96.1
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Table 3. Simulation results for Lorenz 96 system, hard case

NLEAF1 NLEAF1q EnKF XEnsF
mean 0.66 0.71 0.77 0.92
median 0.61 0.66 0.71 0.85
std 0.25 0.25 0.28 0.31
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Table 4. Simulation results for Lorenz 96 system, easy case

n 10 20 50 100 400
LETKF .30 (.23) .30 (.23) .29 (.23) .29 (.23) .30 (.33)

77.1 85.7 86.8 87.6 95.8
NLEAF1 .33 (.33) .28 (.30) .24 (.28) .23 (.24) .24 (.25)

85.2 92.7 93.9 94.2 95.0
NLEAF1q N/A N/A N/A N/A .39 (.37)

92.3
EnKF .45 (.49) .34(.48) .30 (.24) .27 (.22) .26 (.19)

92.2 98.3 81.6 85.6 80.5
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Fig. 1. Ensemble size against RMSE for Lorenz 96 system, easy case
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