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Abstract

This paper studies privacy preserving M-estimators using perturbed histograms.
The proposed approach allows the release of a wide class of M-estimators with
both differential privacy and statistical utility without knowing a priori the partic-
ular inference procedure. The performance of the proposed method is demonstrat-
ed through a careful study of the convergence rates. A practical algorithm is given
and applied on a real world data set containing both continuous and categorical
variables.

1 Introduction

Privacy-preserving data analysis has received increasing attention in recent years. Among various
notions of privacy, differential privacy [1, 2] provides mathematically rigorous privacy guarantee
and protects against essentially all kinds of identity attacks regardless of the auxiliary information
that may be available to the attackers. Differential privacy requires that the presence or absence of
any individual data record can never greatly change the outcome and hence the user can hardly learn
much about any individual data record from the output.

However, designing differentially private statistical inference procedures has been a challenging
problem. Differential privacy protects individual data by introducing uncertainty in the outcome,
which generally requires the output of any inference procedure to be random even for a fixed input
data set. This makes differentially private statistical analysis different from most traditional statis-
tical inference procedures, which are deterministic once the data set is given. Most existing works
[3, 4, 5] focus on the interactive data release where a particular statistical inference problem is cho-
sen a priori and the randomized output for that particular inference is released to the users. In reality
a data release that allows multiple inference procedures are often desired because real world statis-
tical analyses usually consist of a series of inferences such as exploratory analysis, model fitting,
and model selection, where the exact inference problem in a later stage is determined by results of
previous steps and cannot be determined in advance.

In this work we study M-estimators under a differentially private framework. The proposed method
uses perturbed histograms to provide a systematic way of releasing a class of M-estimators in a
non-interactive fashion. Such a non-interactive method uses randomization independent of any par-
ticular inference procedure, therefore it allows the users to apply different inference procedures on
the same synthetic data set without additional privacy compromise. The accuracy of these private
preserving estimates has also been studied and we prove that, under mild conditions on the contrast
functions of the M-estimators, the proposed differentially private M-estimators are consistent. As
a special case, this approach gives 1/

√
n-consistent estimates for quantiles, providing a simple and

efficient alternative solution to similar problems considered in [4, 5]. Our main condition requires
convexity and bounded partial derivatives of the contrast function. The convexity is used to en-
sure the existence and stability of the M-estimator whereas the bounded derivative controls the bias
caused by the perturbed histogram. In classical theory of M-estimators, a contrast function with
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bounded derivative implies robustness of the corresponding M-estimator. This is another evidence
of the natural connection between robustness and differential privacy [4].

We also describe an algorithm that is conceptually simple and computationally feasible. It is flex-
ible enough to accommodate continuous, ordinal, and categorical variables at the same time, as
demonstrated by its application on a Bay Area housing data.

1.1 Related Work

The perturbed histogram is first described under the context of differential privacy in [1]. The prob-
lem of non-interactive release has also been studied by [6], which targets at releasing the differen-
tially private distribution function or the density function in a non-parametric setting. Theoretically,
M-estimators could be indirectly obtained from the released density function. However, the more
direct perspective taken in this paper leads to an improved rate of convergence as well as an efficient
algorithm.

Several aspects of parameter estimation problems have been studied with differential privacy under
the interactive framework. In particular, [4] shows that many robust estimators can be made dif-
ferentially private and that general private estimators can be obtained from composition of robust
location and scale estimators. [5] shows that statistical estimators with generic asymptotic normality
can be made differentially private with the same asymptotic variance. Both works involve estimat-
ing the inter-quartile range in a differentially private manner, where the algorithm may output “No
Response” [4], or the data is assumed to have known upper and lower bounds [5]. In a slightly
different context, [3] considers penalized logistic regression as a special case of empirical risk mini-
mization, where the penalized logistic regression coefficients are estimated with differential privacy
by minimizing a perturbed objective function. Their method uses a different form of perturbation
and is still interactive. It connects with the present paper in the sense that the perturbation is finally
expressed in the objective function. Both papers assume convexity, which ensures that the shift in
the minimizer is small when the deviation in the objective function is small. We also note that the
method in [3] depends on a strictly convex penalty term which is typically used in high-dimensional
problems, while our method works for problems where no penalization is used.

2 Preliminaries

2.1 Definition of Privacy

A database is modeled as a set of data pointsD = {x1, . . . , xn} ∈ Xn, whereX is the data universe.
In most cases each data entry xi represents the microdata of an individual. We use the Hamming
distance to measure the proximity between two databases of the same size. Suppose |D| = |D′|, the
Hamming distance is H(D,D′) = |D\D′| = |D′\D|. The objective of data privacy is to release
useful information from the data set while protecting information about any individual data entry.

Definition 1 (Differential Privacy [1]). A randomized function T (D) gives α-differential privacy if
for all pairs of databases (D,D′) with H(D,D′) = 1 and all measurable subsets E of the image of
T : ∣∣∣∣log

P (T ∈ E|D)

P (T ∈ E|D′)

∣∣∣∣ ≤ α. (1)

In the rest of this paper we assume that, n, the size of database, is public.

2.2 The Perturbed Histogram

In most statistical problems, a database D consists of n independent copies of a random variable
X with density f(x). For simplicity, we assume X = [0, 1]d. As we will see in Section 3.2,
our method can be extended to non-compact X for some important examples. Suppose [0, 1]d is
partitioned into cubic cells with equal bandwidth hn such that kn = h−1

n is an integer. Denote each
cell as Br =

⊗d
j=1[(rj − 1)hn, rjhn),1 for all r = (r1, ..., rd) ∈ {1, ..., kn}d. The histogram

1To make sure that Br’s do form a partition of [0, 1]d, the interval should be [(kn−1)hn, 1] when rj = kn.
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density estimator is then
f̂hist(x) = h−dn

∑
r

nr
n
1(x ∈ Br), (2)

where nr :=
∑n
i=1 1(Xi ∈ Br) is the number of data points in Br.

Clearly the density estimator described above depends on the data only through the histogram counts
(nr, r ∈ {1, . . . , kn}d). If we can find a differentially private version of (nr, r ∈ {1, . . . , kn}d),
then the corresponding density estimator f̂ will also be differentially private by a simple change-of-
measure argument. We consider the following perturbed histogram as described in [1]:

n̂r = nr + zr,∀ r ∈ {1, . . . , kn}d, (3)

where zr’s are independent with density α exp(−α|z|/2)/4. We have
Lemma 2 ([1]). (n̂r, r ∈ {1, . . . , kn}d) satisfies α-differential privacy.

We call (n̂r, r ∈ {1, . . . , kn}d) the Perturbed Histogram. Substituting nr by n̂r in (2), we obtain a
differentially private version of f̂hist:

f̂PH(x) = h−dn
∑
r

n̂r
n
1(x ∈ Br) . (4)

In general f̂PH given by (4) is not a valid density function, since it can take negative values and may
not integrate to 1. To avoid these undesirable properties, [6] uses ñr = (n̂r ∨ 0) instead of n̂r and
ñ =

∑
r ñr instead of n so that the resulting density estimator is non-negative and integrates to 1.

2.3 M-estimators

Given a random variable X with density f(x), the parameter of interest is defined as: θ∗ =
arg minΘM(θ), where M(θ) =

∫
m(x, θ)f(x)dx, Θ ⊆ Rp, and m(x, θ) is the contrast func-

tion. Assuming Xi
iid∼ f , the corresponding M-estimator is usually obtained by minimizing the

empirical average of contrast function:

θ̂ = arg min
θ∈Θ

Mn(θ), where Mn(θ) = n−1
∑
i=1

m(Xi, θ). (5)

M-estimators cover many important statistical inference procedures such as sample quantiles, max-
imum likelihood estimators (MLE), and least square estimators. Most M-estimators are 1/

√
n-

consistent and asymptotically normal. For more details about the theory and application of M-
estimators, see [7].

3 Differentially private M-estimators

Combining equations (4) and (5) gives a differentially private objective function:

Mn,PH(θ) =

∫
[0,1]d

f̂PH(x)m(x, θ)dx. (6)

We wish to use the minimizer of Mn,PH as a differentially private estimate of θ∗. Consider the
following set of conditions on the contrast function m(x, θ).

(A1) g(x, θ) := ∂
∂θm(x, θ) exists and |g(x, θ)| ≤ C1 on [0, 1]d ×Θ.

(A2) g(x, θ) is Lipschitz in x and θ: ||g(x1, θ) − g(x2, θ)||2 ≤ C2||x1 − x2||2, for all θ; and
||g(x, θ1)− g(x, θ2)||2 ≤ C2||θ1 − θ2||2, for all x.

(A3) m(x, θ) is convex in θ for all x and M(θ) is twice continuously differentiable with
M ′′(θ∗) :=

∫
f(x) ∂∂θg(x, θ∗)dx positive definite.

Condition (A1) requires a bounded derivative of the contrast function, which is closely related to
the robustness of the corresponding M-estimator [8]. It indicates that any small changes in the
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underlying distribution cannot change the outcome by too much, which is also required implicitly
by the definition of differential privacy. Condition (A2) has two parts. The Lipschitz condition on
x is used to bound the bias caused by histogram approximation, while the Lipschitz condition on θ
is used to establish a uniform upper bound of the sampling error in M ′n(θ) = n−1

∑
i g(xi, θ) as

well as a uniform upper bound on the error caused by the additive Laplacian noises. Condition (A3)
requires some curvature in the objective function in a neighborhood of the true parameter, which
ensures that the minimizer is stable under small perturbations.

The following theorem is our first main result:

Theorem 3. Under conditions (A1)-(A3), if hn � (
√

log n/n)2/(d+2), then there exists a local
minimizer, θ̂∗PH , of Mn,PH , such that

|θ̂∗PH − θ∗| = OP
(
n−1/2 ∨ (

√
log n/n)2/(d+2)

)
. (7)

A proof of Theorem 3 is given in the supplementary material. At a high level, by assumption (A3) it
suffices to show (Lemma 9) that supθ∈Θ0

|M ′n,priv(θ)−M ′(θ)| = OP (1/
√
n∨(
√

log n/n)2/(2+d)),
for some compact neighborhood Θ0 of θ∗.

The approximation error of M ′n,PH(θ) can be decomposed into three parts:∫
(f̂PH(x)− f(x))g(x, θ)dx =n−1

∑
r

zrh
−d
∫
Br

g(x, θ)dx

+n−1
∑
r

(
nrh

−d
n

∫
Br

g(x, θ)dx−
n∑

i:Xi∈Br

g(Xi, θ)

)
+n−1

∑
i

g(Xi, θ)− Eg(X, θ) . (8)

The three terms on the right hand side of (8) correspond to the effect of Laplace noises added for
privacy, the bias caused by using histogram, and the sampling error, respectively. As in the general
theory of histogram estimators, the approximation error depends on the choice of bandwidth hn.
Generally speaking, if the bandwidth is small, then the histogram bias term will be small. However,
a smaller bandwidth leads to a larger number of cells and hence more Laplacian noises. As a result,
there is a trade-off between the histogram bias and Laplacian noises in the choice of bandwidth. The
bandwidth given in Theorem 3 balances these two parts. We also comment on practical choices of
hn in Section 4.

We prove Theorem 3 by investigating the convergence rate of each term in the right hand side of
(8). First (Lemma 10) by empirical process theory [9, 10] we have, under conditions A(1) and A(2),
the sampling error term in (8) is of order OP (1/

√
n), uniformly on Θ0. Second, using Lipschitz

property of g, the histogram bias term in (8) is of order O(hn). Therefore it suffices to show that
supθ∈Θ0

∣∣∑
r n
−1zrh

−d ∫
Br
m(x, θ)dx

∣∣ = OP
(
(
√

log n/n)h
−d/2
n

)
, which can be established us-

ing a concentration inequality due to Talagrand [11] (see also [12, Equation 1.3]), together with a
δ-net argument (Lemma 11) enabled by the Lipschitz property of g in θ.

3.1 Algorithm based on perturbed histogram

In practice, exact integration of f̂PH(x)m(x, θ) over each cellBr may be computationally expensive
and approximations must be adopted to make the implementation feasible. Note that f̂PH(x) is
piecewise constant. The integration can be simplified by using a piecewise constant approximation
of m(x, θ). Formally, we introduce the following algorithm:

Algorithm 1 (M-estimator using perturbed histogram)

Input: D = {X1, · · · , Xn}, m(·, ·), α, hn.
1. Construct perturbed histogram with bandwidth hn and privacy parameter α as in (3).
2. LetMn,PH(θ) = n−1

∑
r n̂rm(ar, θ), where ar ∈ [0, 1]d is the center ofBr, with ar(j) =

(rj − 0.5)hn for all 1 ≤ j ≤ d.
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3. Output θ̂PH = arg minMn,PH(θ).

Comparing to θ̂∗n,PH obtained by minimizing the exact integral, the only term in (8) impacted by
using g(ar, θ) instead of h−dn

∫
Br
g(x, θ)dx is the histogram bias term. However, note that∣∣∣∣g(ar, θ)− h−dn

∫
Br

g(x, θ)dx

∣∣∣∣ = O(hn) .

As a result, the convergence rate of θ̂n,PH remains the same:
Theorem 4 (Statistical Utility of Algorithm 1). Under Assumptions (A1-A3), if Mn,PH(θ) is giv-
en by Algorithm 1 with hn � (

√
log n/n)2/(2+d) then there exists a local minimizer, θ̂PH , of

Mn,PH(θ), such that

|θ̂PH − θ∗| = OP (1/
√
n ∨ (

√
log n/n)2/(2+d)). (9)

Example (Logistic regression) We give a concrete example that satisfies (A1)-(A3). Let D =
{(Xi, Yi) ∈ [0, 1] × {0, 1} : 1 ≤ i ≤ n}, where the conditional distribution of Yi given
Xi is Bernoulli with parameter exp(βXi)/[1 + exp(βXi)]. The maximum likelihood estima-
tor for β is βMLE = arg min

∑
i[−βYiXi + log(1 + exp(βXi))]. Here the contrast function

m(x, y;β) = −βxy + log(1 + exp(βx)) and it is easy to check that (A1)-(A3) hold. In this
example X is continuous and Y is binary, so it is only necessary to discretize X when constructing
the histogram. To be specific, suppose [0, 1] is partitioned into equal-sized cells (Br, 1 ≤ r ≤ kn)
as in the ordinary univariate histogram. The joint histogram for (X,Y ) is constructed by counting
the number of data points in each of the product cellsBr,j := Br×{j} for j = 0, 1. See Subsection
4.1 for more details on constructing histograms when there are categorical variables.

Note that Theorems 3 and 4 do not guarantee the uniqueness or even existence of a global minimizer
for the perturbed objective function Mn,PH(θ). This is because sometimes with small probability
some perturbed histogram count n̂r can be negative hence the corresponding objective function
Mn,PH may not be convex. In our simulation and real data experience, this is usually not a real
problem since a similar argument as in Theorem 3 shows that, with high probability, the second
derivative M ′′n,PH is uniformly close to M ′′ in any compact subset of Θ. To completely avoid this
issue, one can use thresholding after perturbation as described in the following algorithm.

Algorithm 1′ (Perturbed histogram with nonnegative counts)

Input: D = {X1, · · · , Xn}, m(·, ·), α, hn.
1 Construct perturbed histogram with bandwidth hn and privacy parameter α as in (3).

2 Let M̃n,PH(θ) = n−1
∑

r ñrm(ar, θ), where ñr = max(n̂r, 0).

3 Output θ̃PH = arg min M̃n,PH(θ).

Although the thresholding guarantees that the zero points ofM ′n,PH(θ) is indeed a global minimizer
by convexity of Mn,PH(θ), it increases the approximation error introduced by the Laplacian noises
because now these noises no longer cancel with each other nicely in the first term of the right hand
side of equation (8). We have the following utility result for Algorithm 1′:

Theorem 5. Under Assumptions (A1-A3) and hn � (log n/n)1/(1+d), the estimator given by Algo-
rithm 1′ satisfies

|θ̃PH − θ∗| = OP ((log n/n)1/(1+d)).

Proof. The proof follows essentially from that of Theorem 3, with a different choice of band-
width hn. The concentration inequality result no longer holds for

∑
r z̃rg(ar, θ) where z̃r =

max(zr,−nr), because z̃r’s are not independent. Instead, we consider a direct union bound:
supr |z̃r| ≤ supr |zr| = OP (log h−dn ) = OP (log n). Therefore the Laplacian noise term in right
hand side of (8) is bounded uniformly for all θ by OP (n−1h−dn log n). The histogram bias is still
O(hn) as we mentioned in the discussion of Algorithm 1. Therefore the convergence rate is opti-
mized by choosing hn � (log n/n)1/(1+d).
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3.2 Non-differentiable contrast functions

Now we consider the possibility of relaxing condition (A2). Allowing discontinuity in g(x, θ) is
motivated by a class of M-estimators whose contrast functions m(x, θ) are non-differentiable on
a set of zero measure. An important example is the quantile. For a random variable X ∈ R1

with cumulative distribution function F (·) and any given τ ∈ (0, 1), the τ -th quantile of X is
q(τ) := F−1(τ), which corresponds to an M-estimator withm(x, θ) = (1−τ)(x−θ)−+τ(x−θ)+

(see [13]). Quantiles provide important information about the distribution, including both location
(median) and scale (inter-quartile range). The robustness of sample quantiles also makes them good
candidates for differentially private data release. Differentially private quantile estimators are indeed
major building blocks for some existing privacy preserving statistical estimators [4, 5]. Our result
in this subsection shows that perturbed histograms can give simple, consistent, and differentially
private quantile estimators. The following set of conditions will suffice for this purpose and the
argument is largely the same as Theorem 4:

(B1) m(x, θ) is convex and Lipschitz in both x and θ.

(B2) M(θ) is twice differentiable at θ∗ with M ′′(θ∗) > 0.

(B3) Θ is compact and convex.

Corollary 6 (Statistical utility of Algorithm 1). Under conditions (B1-B3) and hn �
(
√

log n/n)2/(2+d), any minimizer θ̂PH of Mn,PH given by Algorithm 1 satisfies (9).

Proof. The argument is largely the same as the proof of Theorem 3. Here we consider the original
objective functions Mn,PH and M instead of their derivatives. By a similar decomposition as in eq.
(8), using the compactness of Θ, we have supΘ |Mn,PH−M | = OP (1/

√
n∨(
√

log n/n)−2/(2+d)).
Then the convergence of θ̂PH follows from the convexity of M .

Remark 7. Condition (B3) is the most restrictive one. It requires Θ to be bounded. This is because
the proof uses the fact that Mn(θ) and M(θ) are uniformly close for large n, which is usually true
for a bounded set of θ.
Remark 8. For quantiles the contrast function is piecewise linear, so for most cells in the histogram
there would be no approximation error if the data points are approximated by the cell center. The
M-estimators for quantiles actually enjoy faster convergence rates.

Extension to distributions supported on (−∞,∞). Recall that we assume X ∈ [0, 1]d. For quan-
tiles, we have d = 1 and the quantile estimators described above can be extended to any continuous
random variable whose density function is supported on (−∞,∞). Let {Zi, i = 1, . . . , n} be an in-
dependent sample from density fZ with fZ(z) > 0, ∀ z ∈ R1. Let τ ∈ (0, 1) and suppose we want
to estimate qZ(τ), the τ -th quantile of Z. To apply our method, define X = exp(Z)/(1 + exp(Z)).
Clearly the quantiles are preserved under this monotone transformation. Applying the perturbed
histogram quantile estimator on {Xi, i = 1, . . . , n} we obtain q̂X,PH(τ), the differentially pri-
vate τ -th qunatile of X , which is 1/

√
n-consistent by Corollary 6. As a result, the estimate

q̂Z,PH(τ) := log[q̂X,PH(τ)/(1− q̂X,PH(τ))] is a 1/
√
n-consistent estimator for qZ(τ).

4 Practical Aspects

4.1 Complexity and Flexibility

From now on we will drop the logarithm terms to simplify presentation. Suppose hn � n−2/(2+d).
Then the perturbed histogram (n̂r : r ∈ {1, . . . , h−1

n }d) can be constructed in O(n2d/(2+d))
time by specifying the corresponding cell for each data point. Once the histogram is construct-
ed, following Algorithm 1, we can view it as a set of h−dn = O(n2d/(2+d)) weighted data points{
ar, r ∈ {1, . . . , h−1

n }d
}

associated with weights {n̂r}, where each data point ar is the center of
cell Br as defined in Step 2 of Algorithm 1. For M-estimators that allow a close form solution in
terms of the minimum sufficient statistics, such as least square regression, Mn,PH(θ) (and hence
θ̂PH ) can be calculated in O(n2d/(2+d)) time. For general M-estimators that require an iterative op-
timization, such as logistic regression, the Hessian and gradients can be calculated in O(n2d/(2+d))
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time in each iteration. Such a weighted sample representation can be easily implemented using
standard data structures in common statistical programming packages such as R and Matlab.

Another attractive property of the proposed approach is its flexibility to accommodate different
data types. As seen in the logistic regression example in Subsection 3.1, it is straightforward to
construct multivariate histograms when some variables are categorical and some are continuous. In
such cases it suffices to discretize the continuous variables. To be specific, let (X1, . . . , Xd1) ∈
[0, 1]d1 be a d1-dimensional continuous variable and (Y 1, . . . , Y d2) ∈

∏d2
j=1{1, . . . , kj} be a set

of d2 discrete variables where Y j takes value in {1, . . . , kj}. For any bandwidth h, let {Br, r ∈
{1, . . . , h−1}d1} be the corresponding set of histogram cells in [0, 1]d1 . Then the joint histogram for
(X,Y ) is constructed with cells{

Br,y, r ∈ {1, . . . , h−1}d1 ,y ∈
d2⊗
j=1

{1, . . . , kj}
}
.

Because only the continuous variables have histogram approximation error, the theoretical results
developed in Section 3 are applicable with sample size n and dimensionality d1.

4.2 Improvement by enhanced thresholding

In applications such as regression, the multivariate distribution often concentrates on a subset (usu-
ally a lower dimensional manifold) of [0, 1]d. Therefore many non-zero cells are artificially created
by additive noises. To alleviate this problem, we threshold the histogram with an enhanced cut-off
value: ñr = n̂r1(n̂r ≥ A log n/α), where A > 0 is a tuning parameter. This is based on the
intuition that the maximal noise will be O(log n/α). As shown in the following data example, such
a simple thresholding step remarkably improves the accuracy.

4.3 Application to housing price data

As an illustration, we apply our method to a housing price data consisting of 348,189 houses sold in
San Francisco Bay Area between 2003 and 2006. For each house, the data contains the price, size,
year of transaction, and county in which the house is located. The inference problem of interest is
to study the relationship between housing price and other variables [14]. In our case, we want to
build a simple linear regression model to predict the housing price using the other variables while
protecting each individual transaction record with differential privacy.

The data set has two continuous variables (price and size), one ordinal variable (year of sale) with 4
levels, and one categorical variable (county) with 9 levels. The preprocessing filters out data points
with price outside of the range $105 ∼ $9×105 or with size larger than 3000 sqft. We also combine
small counties that are geologically close and have similar housing prices. After the preprocessing,
there are 250,070 data points and the county variable has 6 levels after the combination.

For each (year, county) combination, a perturbed histogram is constructed over the two continuous
variables with privacy parameter α and K levels in each continuous dimension. Then there are
4 × 6 ×K2 cells, each having a perturbed histogram count. Using the weighted sample represen-
tation described in Subsection 4.1, the perturbed data can be viewed as a data set with 24K2 data
points weighted by the perturbed histogram counts. A differentially private regression coefficient is
obtained by applying a weighted least square regression on this data set. To assess the performance,
the privacy preserving regression coefficients are compared with those given by the non-private or-
dinary least square (OLS) estimates. In particular, we look at the coordinate-wise relative deviance
from OLS coefficients: ε = |θ̂priv/θ̂OLS − 1|. To account for the randomness of additive noises,
we repeat 100 times and report the root mean square error: ε̄ = (

∑100
1 ε2

i /100)1/2, where εi is the
relative error obtained in the ith repetition. The results are summarized in Table 1.

We test 2 values of α, the privacy parameter. Recall that a smaller value of α indicates a stronger
privacy guarantee. For each value of α we apply both the original Algorithm 1 and the enhanced
thresholding described in Subsection 4.2, with tuning parameterA = 1/2. For α = 1 the coefficients
given by the perturbed histogram are close to those given by OLS with most relative deviances
below 5%. When α = 0.1, which is a conservative choice because exp(0.1) ≈ 1.1, the perturbed
histogram still gives reasonably close estimates with average deviance below 10% for all parameters
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Table 1: Linear regression coefficients using the Bay Area housing data. The second column is
the regression coefficients given by ordinary least square method without any perturbation. We
compare estimate given by (1) perturbed histogram (PH, Algorithm 1) and (2) perturbed histogram
with enhanced thresholding (THLD) as described in Subsection 4.2. The reported number is the root
mean square relative error (in percentage) over 100 perturbations as described above. The histogram
with use K = 10 segments in each continuous dimension.

α = 0.1 α = 1
Variable OLS PH THLD PH THLD
Intercept 135141 10.6 7.7 7.2 4.4
Size 209 4.7 3.5 3.6 2.3
Year 56375 4.6 2.8 1.0 0.4
County2 -53765 8.0 7.8 1.5 0.7
County3 146593 4.2 2.5 0.8 0.3
County4 -27546 29.8 37.1 2.8 2.1
County5 45828 9.8 7.9 1.4 1.3
County6 -140738 7.1 3.3 1.0 0.4

except the county dummy variable “County4”. This variable has the smallest OLS coefficient among
all county dummy variables, so weight fluctuation in the histogram causes a relatively larger impact
on the relative deviance. Even though, the perturbed histogram still gives at least qualitatively
correct estimate. We also observe that the thresholded histogram gives more accurate estimate for
all coefficients except for County4 when α = 0.1.

The choice of K should depend on the sample size and dimensionality. Our theory suggests
K = O(n2/(2+d)) where d is the dimensionality of the histogram and hence equals the number
of continuous variables. In this data set n = 250, 070 and d = 2, which suggests K ≈ 500. This is
not a good choice since it produces 24 × 5002 = 6 × 106 cells. Let the number of cells be c(K).
In practice, it makes sense to choose K such that the average data counts in a cell, n/c(K), is much
larger than the maximum additive noise maxr |zr|, which is OP (log c(K)). For this data set, when
K = 10 we have n/c(K) ≈ 100 and log(c(K)) ≈ 7.78.

5 Further Discussions

We demonstrate how histograms can be used as a basic tool for statistical parameter estimation
under strong privacy constraints. The perturbed histogram adds to each histogram count a double-
exponential noise with constant parameter depending only on the privacy budget α. The histogram
approximation bias and the additive noise on the cell counts result in a bias-variance trade-off as
usually seen for histogram-based methods. Such an algorithm should work well for low-dimensional
problems. Solutions to higher dimensional problems are yet to be developed. One possibility is to
perturb the minimum sufficient statistics because the dimensionality of minimum sufficient statistics
is usually much smaller than the number of histogram cells. For example, in linear regression
analysis, it suffices to obtain the first and second moments of all variables in a privacy-preserving
way. However, perturbing minimum sufficient statistics would only work for a single estimator and
is only possible for interactive release. We are seeing another type of privacy-utility trade-off, where
the utility is not only about the rate of convergence, but also about the range of possible analyses
allowed by the data releasing mechanism.

The perturbed histogram is also related to “error in variable” inference problems. Suppose the
original data is just the histogram, then the perturbed version can be thought as the true histogram
counts contaminated by some measurement errors. In this paper we provide consistency results
for a class of inference problems in presence of such measurement errors. However, plugging in
the perturbed values does not necessarily give the best inference procedure and better alternatives
may be possible, see [15] for a hypothesis testing example in contingency tables. An important and
challenging question is how to find the optimal inference procedure in presence of such measurement
errors. A positive answer to this question will help establish a lower bound of approximation error
and better understand the power and limit of perturbed histograms.
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