Abstract

This tutorial gives an introduction to the R package TDA, which provides some tools for Topological Data Analysis. The salient topological features of data can be quantified with persistent homology. The R package TDA provide an R interface for the efficient algorithms of the C++ libraries GUDHI, Dionysus, and PHAT. Specifically, The R package TDA includes functions for computing the persistent homology of the Rips complex, alpha complex, and alpha shape complex, and a function for the persistent homology of sublevel sets (or superlevel sets) of arbitrary functions evaluated over a grid of points. The R package TDA also provides a function for computing the confidence band that determines the significance of the features in the resulting persistence diagrams.

Keywords: Topological Data Analysis, Persistent Homology.

1. Introduction

R(http://cran.r-project.org/) is a programming language for statistical computing and graphics.

R has several good properties: R has many packages for statistical computing. Also, R is easy to make (interactive) plots. R is a script language, and it is easy to use. But, R is slow. C or C++ stands on the opposite end: C or C++ also has many packages(or libraries). But, C or C++ is difficult to make plots. C or C++ is a compiler language, and is difficult to use. But, C or C++ is fast. In short, R has short development time but long execution time, and C or C++ has long development time but short execution time.

Several libraries are developed for Topological Data Analysis: for example, GUDHI(https://project.inria.fr/gudhi/software/), Dionysus(http://www.mrzv.org/software/dionysus/), and PHAT(https://code.google.com/p/phat/). They are all written in C++, since Topological Data Analysis is computationally heavy and R is not fast enough.

R package TDA(http://cran.r-project.org/web/packages/TDA/index.html) bridges between C++ libraries(GUDHI, Dionysus, PHAT) and R. TDA package provides an R interface for the efficient algorithms of the C++ libraries GUDHI, Dionysus and PHAT. So by using TDA package, short development time and short execution time can be both achieved.

R package TDA provides tools for Topological Data Analysis. You can compute several different things with TDA package: you can compute common distance functions and density estimators, the persistent homology of the Rips filtration, the persistent homology of sublevel sets of a function over a grid, the confidence band for the persistence diagram, and the cluster density trees for density clustering.

2. Installation

First, you should download R. R of version at least 3.1.0 is required:
http://cran.r-project.org/bin/windows/base/ (for Windows)
http://cran.r-project.org/bin/macosx/ (for (Mac) OS X)

R is part of many Linux distributions, so you should check with your Linux package management system.

You can use whatever IDE that you would like to use (Rstudio, Eclipse, Emacs, Vim...). R itself also provides basic GUI or CUI. I personally use Rstudio:

http://www.rstudio.com/products/rstudio/download/

For Windows and Mac, you can install R package TDA as in the following code (or pushing ’Install R packages’ button if you use Rstudio).

```r
# installing R package TDA
if (!require(package = "TDA")) {
  install.packages(pkgs = "TDA")
}

## Loading required package: TDA
```

If you are using Linux, you should install R package TDA from the source. To do this, you need to install two libraries in advance: gmp (https://gmplib.org/) and mpfr (http://www.mpfr.org/). Installation of these packages may differ by your Linux distributions. Once those libraries are installed, you need to install four R packages: parallel, FNN, igraph, and scales. parallel is included when you install R, so you need to install FNN, igraph, and scales by yourself. You can install them by following code (or pushing 'Install R packages' button if you use Rstudio).

```r
# installing required packages
if (!require(package = "FNN")) {
  install.packages(pkgs = "FNN")
}

## Loading required package: FNN

if (!require(package = "igraph")) {
  install.packages(pkgs = "igraph")
}

## Loading required package: igraph
```

```r
## Attaching package: 'igraph'
## The following object is masked from 'package:FNN':
## knn
## The following objects are masked from 'package:stats':
## decompose, spectrum
## The following object is masked from 'package:base':
## union
```
if (!require(package = "scales")) {
 install.packages(pkgs = "scales")
}

Loading required package: scales

Then you can install the R package TDA as in Windows or Mac:

installing R package TDA
if (!require(package = "TDA")) {
 install.packages(pkgs = "TDA")
}

Once installation is done, R package TDA should be loaded as in the following code, before using the package functions:

library(package = "TDA")

3. Sample on manifolds, Distance Functions, and Density Estimators

3.1. Uniform Sample on manifolds

A set of n points $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ has been sampled from some distribution P.

- n sample from the uniform distribution on the circle in \mathbb{R}^2 with radius r.

uniform sample on the circle
circleSample <- circleUnif(n = 20, r = 1)
plot(circleSample, xlab = "", ylab = "", pch = 20)
3.2. Density Estimators

We compute density estimators over a grid of points. Suppose a set of points $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ has been sampled from some distribution P. The following code generates a sample of 400 points from the unit circle and constructs a grid of points over which we will evaluate the functions.

```r
# uniform sample on the circle, and grid of points
X <- circleUnif(n = 400, r = 1)
limit <- c(-1.7, 1.7)
by <- 0.05
margin <- seq(from = limit[1], to = limit[2], by = by)
Grid <- expand.grid(margin, margin)
```

- The Gaussian Kernel Density Estimator (KDE), for each $y \in \mathbb{R}^d$, is defined as
 \[
 \hat{p}_n(y) = \frac{1}{n(\sqrt{2\pi}h)^d} \sum_{i=1}^{n} \exp \left(-\frac{\|y - x_i\|^2}{2h^2} \right),
 \]
 where h is a smoothing parameter.

```r
# kernel density estimator
h <- 0.3
KDE <- kde(X = X, Grid = Grid, h = h)
par(mfrow = c(1,2))
```
4. Persistent Homology

4.1. Persistent Homology Over a Grid

gridDiag function computes the persistent homology of sublevel (and superlevel) sets of the functions. The function gridDiag evaluates a given real valued function over a triangulated grid (in arbitrary dimension), constructs a filtration of simplices using the values of the function, and computes the persistent homology of the filtration. The user can choose to compute persistence diagrams using either the C++ library GUDHI (library = "GUDHI"), Dionysus (library = "Dionysus"), or PHAT (library = "PHAT").

The following code computes the persistent homology of the superlevel sets (sublevel = FALSE) of the kernel density estimator (FUN = kde, h = 0.3) using the point cloud stored in the matrix X from the previous example. The other inputs are the features of the grid over which the kde is evaluated (lim and by), and a logical variable that indicates whether a progress bar should be printed (printProgress).

```r
# persistent homology of a function over a grid
DiagGrid <- gridDiag(X = X, FUN = kde, lim = cbind(lim, lim), by = by,
                     sublevel = FALSE, library = "Dionysus", printProgress = FALSE, h = 0.3)
```

The function plot plots persistence diagram for objects of the class "diagram".
plotting persistence diagram

```r
par(mfrow = c(1,3))
plot(X, main = "Sample X", pch = 20)
persp(x = margin, y = margin,
     z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
     xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
     expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,
     main = "KDE")
plot(x = DiagGrid["diagram"], main = "KDE Diagram")
```

4.2. Rips Persistent Homology

The [Vietoris-Rips complex](https://en.wikipedia.org/wiki/Vietoris%2B%2BRips_complex) $R(X, \varepsilon)$ consists of simplices with vertices in $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d$ and diameter at most ε. In other words, a simplex σ is included in the complex if each pair of vertices in σ is at most ε apart. The sequence of Rips complexes obtained by gradually increasing the radius ε creates a filtration.

The `ripsDiag` function computes the persistence diagram of the Rips filtration built on top of a point cloud. The user can choose to compute the Rips filtration using either the C++ library [GUDHI](https://gudhi-project.org) or [Dionysus](https://github.com/udel/dionysus). Then for computing the persistence diagram from the Rips filtration, the user can use either the C++ library [GUDHI](https://gudhi-project.org), [Dionysus](https://github.com/udel/dionysus), or [PHAT](https://github.com/visscherma/PHAT).

The following code computes the persistent homology of the Rips filtration using the point cloud stored in the matrix `X` from the previous example, and the plot the data and the diagram.

```r
DiagRips <- ripsDiag(X = X, maxdimension = 1, maxscale = 0.5,
                      library = c("GUDHI", "Dionysus"), location = TRUE)

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagRips["diagram"], main = "Rips Diagram")
```
5. Statistical Inference on Persistent Homology

$(1 - \alpha)$ confidence band can be computed for a function using the bootstrap algorithm, which we briefly describe using the kernel density estimator:

1. Given a sample $X = \{x_1, \ldots, x_n\}$, compute the kernel density estimator \hat{p}_h;
2. Draw $X^* = \{x_1^*, \ldots, x_n^*\}$ from $X = \{x_1, \ldots, x_n\}$ (with replacement), and compute $\theta^* = \sqrt{n}\|\hat{p}_h(x) - \hat{p}_h(x)^*\|_\infty$, where \hat{p}_h^* is the density estimator computed using X^*;
3. Repeat the previous step B times to obtain $\theta_1^*, \ldots, \theta_B^*$;
4. Compute $q_\alpha = \inf \left\{ q : \frac{1}{B} \sum_{j=1}^B I(\theta_j^* \geq q) \leq \alpha \right\}$;
5. The $(1 - \alpha)$ confidence band for $E[\hat{p}_h]$ is $[\hat{p}_h - \frac{q_\alpha}{\sqrt{n}}, \hat{p}_h + \frac{q_\alpha}{\sqrt{n}}]$.

`bootstrapBand` computes $(1 - \alpha)$ bootstrap confidence band, with the option of parallelizing the algorithm (`parallel=TRUE`). The following code computes a 90% confidence band for $E[\hat{p}_h]$.

```
##########################################################################
# bootstrap confidence band for kde function
##########################################################################
bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 100,
                           parallel = FALSE, alpha = 0.1, h = h)
print(bandKDE["width"])
## 90%
## 0.06624879
```

Then such confidence band for $E[\hat{p}_h]$ can be used as the confidence band for the persistent homology.

```
##########################################################################
# bootstrap confidence band for persistent homology over a grid
##########################################################################
```
```
par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagGrid["diagram"], band = 2 * bandKDE["width"],
     main = "KDE Diagram")
```

Affiliation:
Firstname Lastname
Affiliation
Address, Country
E-mail: name@address
URL: http://link/to/webpage/