
Statistical Models of the Brain

36-759 (CMU), MATH 3375 (Pitt) Fall, 2019

Schedule: WF 1:30-2:50 Instructors: Brent Doiron and Rob Kass
CNBC Classroom, MI 130 bdoiron@pitt.edu
First class: Aug 28 kass@stat.cmu.edu

Course Website: Hosted by Canvas

In 2016 the two of us decided to merge the version of Statistical Models
of the Brain, taught previously by Rob Kass, with Computational Neuro-
science, taught previously by Brent Doiron. Our primary motivation was to
create a course for a broad range of CNBC graduate students that would
represent computational neuroscience more accurately than did either of the
two predecessors. We also felt that such a course could do double-duty as
the first semester of a two-semester sequence for the much smaller group
of computationally-oriented CNBC students. Our experiences subsequently
have suggested some modifications of the course, but we are generally happy
with the conception.

Working together on this, one thing we came to appreciate involves the term
statistical: as we will explain, the two of us use the word in similar ways but
with different emphases. Statistical ideas have been part of neurophysiol-
ogy since the first probabilistic descriptions of spike trains, and the quantal
hypothesis of neurotransmitter release, more than 50 years ago; they have
been part of experimental psychology even longer. Throughout the field
of statistics, models incorporating random “noise” components are used as
an effective vehicle for data analysis. In neuroscience, however, the models
also help form a conceptual framework for understanding neural function. In
broad stroke, this course will examine several of the most important methods
and claims that have come from applying statistical thinking and modeling
to the brain. However, some of the topics use tools typically taught in statis-
tics courses, while other topics use tools taught in math courses. Topics
will involve modeling of neural activity in the sense of neurophysiology, neu-
roimaging, and human behavior; students will be exposed to some of each.
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Even at an intuitive level, we are unable to provide a comprehensive view
of computational neuroscience; the field is too broad. Instead, we hope that
by studying a series of examples students will come away with a sense of the
way that computational methods contribute to contemporary understanding
of neuroscience.

Course Structure and Logistics

Within the course we will provide rapid overviews of these mathematical
and statistical methods, as “background” lectures. The material in these
background lectures will be covered very quickly and, because we are keenly
aware that many biologically-oriented students will be unable to thoroughly
understand the methods, we will not require such students to make explicit
use of the details.

Students must identify themselves as either computational (for instance, if
they are getting their Ph.D. in computer science, math, statistics, machine
learning, neural computation, or engineering) or non-computational, and we
will have some different expectations and requirements for these two groups.
We expect computational students to know, or study, all of the background
methods in full detail, aiming at mastery; on the other hand, to do well on as-
signments, non-computational students need only grasp the main intuitions.

In addition to the lectures, and class discussions, the course will involve (i)
readings, (ii) student commentary (often, asking questions) on readings, (iii)
assigned short-answer questions (SAQs) on readings, (iv) for computational
students only, a mid-term homework assignment, and (v) a set of presenta-
tions by groups of students. There is no exam. Grades will be based pri-
marily on student commentary (which requires thoughtful engagement with
the readings) and short-answer questions (which will be aimed at pulling
out the biggest points from the readings and lectures). Specifically, 75% of
the grade for non-computational students will be based on commentary and
short-answer questions, with the remaining 25% based on the project; 55%
of the grade for computational students will be based on commentary and
short-answer questions, 20% on the homework, and the remaining 25% based
on the project. Please note: all deadlines must be met: students will be pe-
nalized (possibly severely) for failing to hand assignments in on time, or for
failing to propose their project on time (see below). The TA for the course
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is Shenghao Wu shenghaw@andrew.cmu.edu.

The course is heavy on readings. We hope that students will spend the time
it takes to digest each assigned article thoroughly. However, knowing that
time is limited, we require only that students (a) post a cogent comment or
question on the discussion board and (b) answer the SAQs.

A few details:

• The course will be run through the CMU hosting of 36-759 on Canvas,
see https://canvas.cmu.edu. All registered students should already
have access to this course, including those registered in Pitt MATH
3375.

• Comments on readings must be posted on the appropriate discussion
forum no later than 10am on the assigned day of class. Stu-
dents will have access to commentary by others only after they post
themselves. The instructors will read these posts prior to class, and
use them to guide the lecture overview.

Comments are meant to demonstrate engagement with the material,
and will be graded on a 0/1/2 basis, with 1 signifying a minimal re-
sponse. Comments may consist entirely of questions identifying points
not yet clear to the student. In our experience there is a lot of variation
in length, but typically a few sentences will suffice. Here are 4 examples
of student comments on one of the readings1:

– The building, computer, brain analogy is very instructive. It’s
interesting to see the shift in perspective where before the trend
was to think of the brain as like a computer whereas now the trend
is to make a computer operate like the brain. The explanation of
three shortcuts made the concept of the cognitive architecture easy
to grasp. The modular break up of ACT-R was very informative.
The results shown in Figure 1.6 are impressive. I didn’t quite
catch what figure 1.7 is trying to show. [SCORE: 2]

– Anderson presents a rather attractive metaphor for how he sees it
best to approach understanding the brain, one that could be well

1Previously we scored 0/1, with 1 for writing anything; the scores here are retrospective,
for illustration.
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summed up as, “the whole is greater than merely the sum of its
parts.” That idea that you can’t simply deconstruct ad infinitum
in one direction and work your way back to the other side seems
deeply sobering.

Taken to its logical conclusion though, I wonder whether if in
accepting what could be perceived as Anderson’s principal con-
clusions, one must also find it unsatisfying as it might be that the
best that can be achieved is a model of our cognitive architecture,
which can only be refined and improved, but that never quite gets
there. [SCORE: 2]

– I thought the Anderson chapter was really interesting and easy
to read. The example in Figure 1.8 (using module behavior to
predict BOLD response) was particularly interesting and really
pulled together the concepts of ACT-R and how we can use it to
understand brain function. [SCORE: 2]

– Not convinced... too philosophical to be science [SCORE: 1]

• Each SAQ based on readings (and discussion of readings) will require
students to submit an answer of roughly 1 to 3 sentences in length.
These will be managed and self-graded, with random spot-checks, using
the Canvas quiz tool. The SAQs MUST be answered by each student
working independently, and they MUST be answered within a specified
48 hour window. Students will be notified when the window opens. The
instructors will, in addition, inform students of the learning objectives
most relevant to the SAQs prior to the relevant lecture. This will help
guide students in reading.

• Because much of the course will move very fast, students should try to
read ahead when possible.

• The instructors will post the lecture slides in the Slides module of
Canvas. Check for them the evening before class, but be aware that
there may be edits up until class time.

• Projects by students, working in teams of 3 students (with occasional
exceptions in size of team) will be handed in as narrated slides, in Pow-
erPoint. These voice-over recorded presentations must run between 10
and 15 minutes, in total. The subject of the project should be a sum-
mary of 1 or more papers. All students must attend the presentation
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sessions, which will be on December 11 and 13, and must send their
presentation to the TA by 5:00pm December 10. At the ses-
sion, the presentation will be played and the students will very briefly
answer questions. Students must have their project approved by the in-
structors no later than Friday October 25. To get approval, students
must submit a proposal by email message to the TA (no other docu-
ment is required) that includes (1) the team of 3 people who will do the
project (all team members must submit their own email); (2) the topic,
described in several sentences including reference to the paper or papers
that will be discussed; and (3) what work each student will be respon-
sible for—all students are responsible for the whole finished product,
but, for example, only 1 student typically will record the narration.

A key text for statistical tools is Analysis of Neural Data, Kass, Eden, and
Brown (KEB), published by Springer. Information about the book is at
http://www.stat.cmu.edu/~kass/KEB/index.html. NOTE: a pdf version
of the book is free for both CMU and Pitt students. Students who have weak
backgrounds in neurophysiology should find a basic source on neurons and
read it. (Such students will have some extra time during the beginning of
the semester to do this too, while we are covering basic statistical ideas.) We
recommend the first 5 chapters of Bear, Connors, and Paradiso Neuroscience:
Exploring the Brain, which assumes only high-school biology.
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Accommodations for Students with Disabilities

If you have a disability and have an accommodations letter from the Disabil-
ity Resources office, we encourage you to discuss your accommodations and
needs with one of the instructors as early in the semester as possible. We will
work with you to ensure that accommodations are provided as appropriate.
If you suspect that you may have a disability and would benefit from accom-
modations but are not yet registered with the Office of Disability Resources,
we encourage CMU students to contact them at access@andrew.cmu.edu.
Pitt students should contact Disability Resources and Services (DRS), 216
William Pitt Union, (412) 648-7890/(412) 383-7355 (TTY).

Support for Health and Well-being

Take care of yourself. Do your best to maintain a healthy lifestyle this
semester by eating well, exercising, avoiding drugs and alcohol, getting enough
sleep and taking some time to relax. This will help you achieve your goals
and cope with stress. All of us benefit from support during times of strug-
gle. There are many helpful resources available on campus and an important
part of the college experience is learning how to ask for help. Asking for
support sooner rather than later is almost always helpful. If you or anyone
you know experiences any academic stress, difficult life events, or feelings
like anxiety or depression, we strongly encourage you to seek support. At
CMU, Counseling and Psychological Services (CaPS) is here to help: call
412-268-2922 and visit their website at http://www.cmu.edu/counseling/.
Consider reaching out to a friend, faculty or family member you trust for
help getting connected to the support that can help.
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Topics and Readings

Aug 28 RK2. Overview: Class structure, including readings, questions, com-
ments, and homework.

Required reading: Kass, Eden, Brown (KEB), Chapter 1, and Section
1 (Introduction) in Kass, R.E., ..., Doiron, B., and 23 others (2018)
Computational neuroscience: Mathematical and statistical perspec-
tives, Ann. Rev. Statist. Appl., 5: 183-214.

Aug 30 RK. Background: log transformations; random variables and random
vectors.

Required, with comment, for non-computational students: KEB Chap-
ter 2; Secs 3.1-3.2; Secs 4.1-4.2.
(Note serious typo on p. 84: Following “In the discrete case we have”
the quantity P (X(1) = x) should be P (Y (1) = y).)

Sep 4 RK. Background: Important probability distributions and the way they
model variation in data; least-squares linear regression and the linear
algebra concept of a basis.

Required, with comment, for non-computational students: KEB Secs
4.3.1; 5.1-5.3; 5.4.1-5.4.3; 12.5 through 12.5.1; appendices A.7 and A.9;
12.5.3 through equation (12.57) on p. 342.

Background offline: Matlab and R

Sep 6 BD. Background: Primer on differential equations; introduction to nu-
merical methods with MATLAB.

Required, with comment for non-computational students (recommended
for all): Chapter 7 - Moler (2004) Ordinary differential equations; Nu-
merical Computing with MATLAB.

https://www.mathworks.com/moler/odes.pdf

Sep 11 RK. Background: Bayes’ Theorem and the optimality of Bayes clas-
sifiers; the Law of Large Numbers and the Central Limit Theorem;
statistical estimation.

2BD and RK refer to which instructor will present the lecture. In the case of BD+RK
both Brent and Rob will present.
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Required, with comment for non-computational students (recommended
for all): KEB Secs 4.3.3-4.3.4, through p. 101; 6.1; 6.2.1; 6.3.1; 7.1-7.2;
7.3.9.

Sep 13 RK+BD. Random walk models of integrate-and-fire neurons; effects of
noise: balanced excitation and inhibition.

Required background reading: KEB Sec 5.4.6 and Chapter 19 through
19.2.1.

Required, with comment: Shadlen, M.N. and Newsome, W.T. (1998)
The variable discharge of cortical neurons: implications for connectiv-
ity, computation, and information coding. J. Neurosci., 18: 3870–3896.
Required up to Section 2, p. 3877, and concluding remarks

Required, with comment: Stein, R.B., Gossen, E.R., and Jones, K.E.
(2005) Neuronal variability: noise or part of the signal? Nat. Rev.
Neuro., 6:389-397. Required through Figure 2, p. 391.

Sep 18 RK. Population vectors.

All of the following are required, but the comment may be on any or
all:

KEB, Sec 12.5.4 (especially Example 12.6).

Section 1 (Introduction, pp. 2021-2022) of Orellana, J., Rodu, J., and
Kass, R.E. (2017) Population vectors can provide near optimal integra-
tion of information, Neural Comput., 29: 2021-2029.

Georgopoulos, A.P., Lurito, J.T., Petrides, M., Schwartz, A.B., and
Massey, J.T. (1989) Mental rotations of the neuronal population vector,
Science, 243: 234–236.

Black, M.J. and Donoghue, J.P. (2007) Probabilistically modeling and
decoding neural population activity in motor cortex, in G. Dornhege,
J. del R. Millan, T. Hinterberger, D. McFarland, K.-R. Muller (eds.),
Toward Brain-Computer Interfacing, MIT Press, pp. 147–159.

Sep 20 RK. Information theory in human discrimination.

Background: KEB Section 4.3.2, comments about entropy and channel
capacity, pp. 95-97, including Example 4.5.

Required, with comment: Miller, G.A. (1956) The magical number
seven, plus or minus two, Psychol. Rev., 63: 343-355.
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Sep 25 BD. Electrical circuit model of a neuron. Passive synaptic dynamics
and phenomenological models of spiking: integrate-and-fire dynamics.

Required, with comment: Ermentrout and Terman (2010) Mathemati-
cal Foundations of Neuroscience, Springer. Secs 1.1-1.5 (an electronic
version of this book is freely available to all Pitt and CMU students).

Sep 27 BD. The Hodgkin-Huxley model of action potential generation.

Required, with comment: Ermentrout and Terman (2010) Mathematical
Foundations of Neuroscience, Springer. Secs 1.7-1.10.

Oct 2 BD. Background: Dynamical systems and qualitative analysis of non-
linear systems.

Required, with comment: Strogatz (1994) Nonlinear Dynamics and
Chaos, Westview Press, Secs 5.0-5.2; 6.0-6.5

https://westviewpress.com/books/nonlinear-dynamics-and-chaos/

Oct 4 BD. Firing-rate models: The inhibitory stabilized cortical network.

Required, with comment: Ozeki, Finn, Schaffer, Miller, Ferster (2009)
Inhibitory stabilization of the cortical network underlies visual sur-
round suppression. Neuron, 578-592.

Oct 9 RK. Background: Maximum likelihood; statistical tests.

Required, with comment for non-computational students (recommended
for all): KEB, Secs 8.1-8.2; 8.3.1-8.3.3; 8.4.3 (Example 5.5 and Figure
8.9); Chapter 10 up to the beginning of Sec 10.1.1 (p. 249); Secs 10.4.1;
10.4.3-10.4.4, especially Figure 10.3.

Oct 11 RK. Background: Regression and generalized regression.

Required, with comment, for non-computational students (recommended
for all): KEB Secs 12.5.4-12.5.5; 12.5.8; Chapter 14 through 14.1 (can
skip 14.1.2, 14.1.5); 15.2 through 15.2.4.

SAQ1 Available October 13, due October 15

Oct 16 RK. Firing rate and neural coding; spike trains as point processes.

Required, with comment for non-computational students: KEB Exam-
ple 14.5, pp. 410-411; Chapter 19 through 19.2.2.
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Required, with comment for computational students: KEB Example
14.5, pp. 410-411; Chapter 19.

Recommended for computational students: Chen, Y., Xin, Q., Ventura,
V., and Kass, R.E. (2018) Stability of point process spiking neuron
models, J. Comput. Neurosci., published online (see especially Figure
8c).

NOTE Project proposals must be approved before October 25.

Oct 18 RK. Information theory in neural coding.

Required background reading: KEB, Example 4.6.

Required (background for Jacobs et al.): Nirenberg, S., Carcieri, S.M.,
Jacobs, A.L. and Latham, P.E. (2001) Retinal ganglion cells act largely
as independent encoders, Nature, 411: 698–701.

Required, with comment: Jacobs, A.L., Fridman, G., Douglas, R.M.,
Alam, N.M., Latham, P.E., Prusky, G.T., and Nirenberg, S. (2009)
Ruling out and ruling in neural codes, Proc. Nat. Acad. Sci., 106:
5936–5941.

Optional reading: Rieke, F., Warland, D., de Ruyter van Steveninck,
R., Bialek, W. (1997) Spikes: Exploring the Neural Code, MIT Press.
Read pages 101–113, 148–156.

HOMEWORK For computational students: handed out October 21, due October 28.

Oct 23 RK. Optimal observers in perception and action; neural implementa-
tion of Bayesian inference.

Required background reading for everyone, with comment optional: Chap-
ter 16 through equation (16.18) on p. 449.

Required for everyone, with comment: Körding, K.P. and Wolpert,
D.M. (2004) Bayesian integration in sensorimotor learning, Nature, 427:
244–247.

Required for everyone, with comment optional: Salinas, E. (2006) Noisy
neurons can certainly compute, Nature Neurosci., 9: 1349–1350.

Required for computational students, with comment optional: Ma, W.J.,
Beck, J.M., Latham, P.E., and Pouget, A. (2006) Bayesian inference
with probabilistic population codes, Nature Neurosci., 9: 1432–1438.
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Required for computational students, with comment optional: Orellana,
J., Rodu, J., and Kass, R.E. (2017) Population vectors can provide near
optimal integration of information, Neural Comput., 29: 2021-2029.

Oct 25 RK. Neural basis of decision making.

Required background reading: KEB, Section 11.1.5 and the discussion
of SDT in Section 10.4.4.

Required, only through the discussion of Figure 5, with comment: Gold
and Shadlen (2007) The neural basis of decision-making, Ann. Rev.
Neuroscience, 30: 535-574.

Oct 30 BD. Network models of working memory and decision-making.

Required, with comment: Machens, C.K., Romo, R. Brody, C.D. (2005)
Flexible control of mutual inhibition: a neural model of two-interval
discrimination Science, 307: 1121–1124.

Recommended: Polk, A., Litwin-Kumar, A. and Doiron, B. (2012) Cor-
related neural variability in persistent state networks PNAS, 109: 6295–
6300.

Nov 1 BD. The mechanics of neuronal variability.

Required, with comment: Doiron, B., Litwin-Kumar, A. Rosenbaum,
R. Ocker, G. and Josic, K. (2016) The mechanics of state dependent
neural correlations. Nature Neuroscience 19, 383-393.

SAQ2 Available Nov 3, due November 5

Nov 6 NO CLASS

Nov 8 BD. Synaptic plasticity.

Required, with comment: Abbott, LF and Nelson, SB. (2000) Synaptic
plasticity: taming the beast. Nature Neurosci. 3: 1178-1183.

Nov 13 BD. Network dynamics.

Required, with comment: Vogels, TP; Rajan, K; Abbott, LF. (2005)
Neural network dynamics. Ann. Rev. Neurosci. 28: 357–376.

Required, with comment: Potjans, TC; Diesmann, M. (2012) The cell-
type specific cortical microcircuit: relating structure and activity in a
full-scale spiking network model. Cerebral Cortex, 24:785–806.
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Nov 15 RK. Population-wide variability: spike count correlations; dimension-
ality reduction.

Required background reading: Example 6.1, p. 141.

Required, with comment: Averback, B.B., Latham, P.E., and Pouget,
A. (2006) Neural correlations, population coding, and computation,
Nature Reviews Neurosci., 7: 358-366.

Required, only through p. 1504, up to “Selecting a dimensionality reduc-
tion method,” with comment: Cunningham, J.P. and Yu, B.M. (2014)
Dimensionality reduction for large-scale neural recordings, Nat. Neu-
rosci., 17: 1500-1509.

Nov 20 RK. Cognition and optimality; ACT-R.

Required background reading: KEB, pp. 102-103, through Example 4.9.

Required, with comment: Anderson (2007) How Can the Human Mind
Occur in the Physical Universe?, Chapter 1.

Nov 22 RK. Reinforcement learning.

Required, with comment: Glimcher, P. (2011) Understanding dopamine
and reinforcement learning: The dopamine reeward prediction error
hypothesis, PNAS, 108: 15647–15654 (with corrections, pp. 17568–
17569).

Recommended: Y Niv (2009) Reinforcement learning in the brain J.
Math. Psychol., 53: 139–154.

Nov 27 and 29 NO CLASSES (Thanksgiving)

Dec 4 RK. Graphs and networks.

Required, with comment: Bassett, D.S., Zurn, P., and Gold, J.I. (2018)
On the nature and use of models in network neuroscience, Nature Re-
views Neurosci., 19:566-578. Required up until “Density of study in this
3D space,” p. 571.

Required, with comment: Bau, G.L., ..., Bassett, D.L., and Satterth-
waite, T.D. (2017) Modular segregation of structural brain networks
supports the development of executive function in youth, Current Biol.,
27: 1561-1572.
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Dec 6 RK. Deep learning.

Required, with comment: Kriegeskorte, N. (2015) Deep neural networks:
A new framework for modeling biological vision and brain information
processing, Ann. Rev. Vision Sci., 1:417-446.

Recommended: Yamins, et al. (2014) Performance-optimized hierarchi-
cal models predict neural responses in higher visual cortex, Proc. Nat.
Acad. Sci., 111: 8619-8624.

SAQ3 Available December 8, due December 10

Dec 11 and 13 BD+RK PRESENTATIONS
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