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1. Introduction

The intent of this primer is to provide a brief introduction to the formulation, numerical simulation, and analysis of
stochastic epidemic models for a newcomer to this field. A background in modeling with ordinary differential equations
(ODEs) is assumed. The ODE epidemic models serve as a framework for formulating analogous stochastic models and as a
source of comparisonwith the stochastic models. This primer is restricted to two types of stochastic settings, continuous-time
Markov chains (CTMCs) and stochastic differential equations (SDEs). Some well-known examples are used for illustration
such as an SIR epidemic model and a host-vector malaria model. For additional examples and information on stochastic
epidemic models and stochastic modeling in general, consult the textbooks and papers listed in the references, e.g., (E. Allen
2007; Allen 2008, 2010, 2015; E. Allen, Allen, Arciniega,& Greenwood, 2008; Andersson& Britton, 2000; Bailey, 1975; Britton,
2010; Daley& Gani, 1999; Durrett, 1999; Greenwood et al., 2009; Isham et al., 2005; Jagers, 1975; Karlin & Taylor, 1975, 1981).

Stochastic modeling of epidemics is important when the number of infectious individuals is small or when the variability
in transmission, recovery, births, deaths, or the environment impacts the epidemic outcome. The variability associated with
individual dynamics such as transmission, recovery, births or deaths is often referred to as demographic variability. The
variability associated with the environment such as conditions related to terrestrial or aquatic settings is referred to as
environmental variability. Environmental variability is especially important in modeling zoonotic infectious diseases, vector-
unications Co., Ltd.
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borne diseases, and waterborne diseases (e.g., Ebola, avian influenza, malaria, and cholera) (Altizer, Ostfeld, Johnston, Kutz, &
Harvell, 2013; Jutla et al., 2013; Wu, Lu, Zhou, Chen, & Xu, 2016). In this primer, the emphasis is on demographic variability.

In CTMCs and SDEs, the time variable is continuous, t2½0;∞Þ, but the state variables are either discrete (CTMC) or
continuous (SDEs). In the following sections, these two stochastic processes are formulated for the well-known SIR (Sus-
ceptible-Infectious-Recovered) epidemic model and the Ross malaria host-vector model. The Gillespie algorithm and the
Euler-Maruyama numerical method are described for the two types of stochastic processes. In addition, some analytical
methods from branching processes that are related to the CTMC models are used to approximate the probability of an
outbreak. In the last section, some stochastic methods for modeling environmental variability are presented.

2. SIR deterministic epidemic model

In the SIR deterministic model, SðtÞ, IðtÞ, and RðtÞ are the number of susceptible, infectious, and recovered individuals,
respectively. In the simplest model, there are no births and deaths, only infection and recovery:

dS
dt

¼ �bI
S
N

dI
dt

¼ bI
S
N
� gI

dR
dt

¼ gI;

(1)

where the total population size is constant, SðtÞ þ IðtÞ þ RðtÞ ¼ N. The disease-free equilibrium is S ¼ N and I ¼ R ¼ 0. The
basic reproduction numberR0 ¼ b=gwhich is equal to the ratio of the transmission rate b and the recovery rate g, determines
the epidemic outcome when Sð0ÞzN. If Ið0Þ>0 and R0Sð0Þ=N>1, then the number of infectious individuals increases, an
outbreak, and if R0Sð0Þ=N<1, the number of infectious individuals decrease. As RðtÞ ¼ N � SðtÞ � IðtÞ, system (1) can be
simplified to two equations for SðtÞ and IðtÞ:

The stochastic formulation of the CTMC and SDE models requires defining two random variables for S and I whose dy-
namics depend on the probabilities of the two events: infection and recovery. For simplicity, the same notation is used in the
stochastic and the deterministic formulations.

3. SIR continuous time Markov chain

3.1. Formulation

The discrete random variables for the SIR CTMC model satisfy

SðtÞ; IðtÞ2f0;1;2;…;Ng;

where t2½0;∞Þ. The lower case s and i denote the values of the discrete random variables from the set f0;1;2;…;Ng. The

transition probabilities associated with the stochastic process are defined for a small period of time Dt >0:

pðs;iÞ;ðsþk;iþjÞðDtÞ ¼ ℙððSðt þ DtÞ; Iðt þ DtÞÞ ¼ ðsþ k; iþ jÞjðSðtÞ; IðtÞÞ ¼ ðs; iÞÞ:
The transition probabilities depend on the time between events Dt but not on the specific time t, a time-homogeneous
process. In addition, given the current state of the process at time t, the future state of the process at time t þ Dt, for any
Dt >0, does not depend on times prior to t, known as the Markov property. For comparison purposes, the transition prob-
abilities are defined in terms of the rates in the SIR ODE model:

pðs;iÞ;ðsþk;iþjÞðDtÞ ¼

8>>>>>>>>>><>>>>>>>>>>:

bi
s
N
Dt þ oðDtÞ; ðk; jÞ ¼ ð�1;þ1Þ

giDt þ oðDtÞ; ðk; jÞ ¼ ð0;�1Þ

1�
�
bi

s
N
þ gi

�
Dt

þoðDtÞ; ðk; jÞ ¼ ð0;0Þ
oðDtÞ; otherwise:

(2)

Summarized in Table 1 are the changes, DSðtÞ ¼ Sðt þ DtÞ � SðtÞ and DIðtÞ ¼ Iðt þ DtÞ � IðtÞ, associated with the two events,
infection and recovery.

Given Sð0Þ ¼ N � i and Ið0Þ ¼ i>0, the epidemic ends at time t, when IðtÞ ¼ 0. The states ðS; IÞ, where I ¼ 0 are referred to
as absorbing states; the epidemic stops when an absorbing state is reached. The absorbing states are the states ðs; iÞwith i ¼ 0.



Table 1
SIR CTMC model assumptions.

Event Change ðDS;DIÞ Probability

Infection ð�1;þ1Þ bi sNDt þ oðDtÞ
Recovery ð0;�1Þ giDt þ oðDtÞ
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3.2. Kolmogorov differential equations

Differential equations for the transition probabilities can be derived from (2). These differential equations are often
referred to as the forward or the backward Kolmogorov differential equations. The forward equations, also referred to as the
“master equations”, are used to predict the future dynamics, whereas the backward equations are used to study the end of the
epidemic, such as estimating the probability of reaching an absorbing state.

Note that there are ðN þ 1ÞðN þ 2Þ=2 ordered pairs of states ðs; iÞ, e.g., ðs; iÞ2fðN;0Þ; ðN � 1;1Þ;…; ð0;0Þg, where sþ i � N.
The general form of the Kolmogorov differential equations can be expressed in a simple form, if the transition probabilities are
denoted as pa;bðtÞ, where a and b are two ordered pairs from the set of ðN þ 1ÞðN þ 2Þ=2 ordered pairs. The general form for
the forward Kolmogorov differential equations are

dpa;bðtÞ
dt

¼
X
ksa

pa;kðtÞqk;b � qa;apa;bðtÞ (3)

and the backward Kolmogorov differential equations are

dpa;bðtÞ
dt

¼
X
ksa

qa;kpk;bðtÞ � qa;apa;bðtÞ; (4)

where the values of qk;b, qa;a, and qa;k are defined from the transition rates in Equation (2).
In the forward equations, the transition rates depend on the future state b ¼ ðs; iÞ. If a is any state, for the process to be in

state b ¼ ðs; iÞ at time t þ Dt, one of the following events occurs: (1) the process transitions from a to ðsþ 1; i� 1Þ in time t and
an infection occurs with transition probability bðsþ 1Þði� 1ÞDt=N þ oðDtÞ, or (2) the process transitions from a to ðs; iþ 1Þ in
time t and a recovery occurs with transition probability gðiþ 1ÞDt þ oðDtÞ, or (3) the process transitions from a to ðs; iÞ in time
t and no change occurs with probability 1� ðbsi=N þ giÞDt þ oðDtÞ. That is,

pa;ðs;iÞðt þ DtÞ ¼ pa;ðsþ1;i�1ÞðtÞ
bðsþ 1Þði� 1Þ

N
Dt þ pa;ðs;iþ1ÞðtÞgðiþ 1ÞDt þ pa;ðs;iÞðtÞ½1� ðbsi=N þ giÞDt� þ oðDtÞ;
where all terms of orderDt are included in the last term oðDtÞ. Subtracting pa;ðs;iÞðtÞ from both sides, dividing byDt, and letting
Dt/0, leads to the forward Kolmogorov differential equations:

dpa;ðs;iÞðtÞ
dt

¼ pa;ðsþ1;i�1ÞðtÞ
b

N
ðsþ 1Þði� 1Þ þ pa;ðs;iþ1ÞðtÞgðiþ 1Þ � pa;ðs;iÞðtÞ

�
b

N
siþ gi

�
:

A similar derivation applies to the backward equations. However, the transition rates depend on the initial state a ¼ ðs; iÞ. A
transition occurs in time Dt, either infection, recovery or no change, and in the remaining time t, there is a transition to state b.
The backward equations (4) are

dpðs;iÞ;bðtÞ
dt

¼ bsi
N
pðs�1;iþ1Þ;bðtÞ þ gipðs;i�1Þ;bðtÞ �

�
b

N
siþ gi

�
pðs;iÞ;bðtÞ:

For a more thorough derivation of these equations, consult the references, e.g., (Allen, 2010; Karlin& Taylor, 1975; Ross, 2014).
If the ðN þ 1ÞðN þ 2Þ=2 ordered pairs ðs; iÞ are labeled in a specific order from k ¼ 1 to k ¼ ðN þ 1ÞðN þ 2Þ=2, then a matrix

of transition rates Q can be defined. Matrix Q has dimension ðN þ 1ÞðN þ 2Þ=2� ðN þ 1ÞðN þ 2Þ=2 and is known as the
infinitesimal generator matrix. Matrix Q is straightforward to define for a single random variable whose states are already
linearly ordered from 0 to N (e.g., (Allen, 2010; Karlin & Taylor, 1975, 1981; Ross, 2014)). But for a bivariate process with states
ðs; iÞ the form of matrix Q depends on how the set of ordered pairs are linearly ordered. In general, matrix Q has negative
diagonal entries and nonnegative off-diagonal entries. In addition, matrix Q has the property that the row sums are zero. It
follows from Equations (3) and (4) that the forward and the backward Kolmogorov differential equations can be written as
systems of matrix differential equations, dPðtÞ=dt ¼ PðtÞQ and dPðtÞ=dt ¼ QPðtÞ, respectively, where PðtÞ is the matrix of
transition probabilities. Matrix PðtÞ has diagonal entries pa;aðtÞ, where a is one of the linearly ordered states. The formal
solution of these equations is PðtÞ ¼ eQt , where Pð0Þ ¼ I is the identity matrix. Note that sometimes the transition
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probabilities are written in the reverse order, pðsþk;iþjÞ;ðs;iÞðtÞ ¼ ℙððSðtÞ; IðtÞÞ ¼ ðsþ k; iþ jÞjðSð0Þ; Ið0ÞÞ ¼ ðs; iÞÞ. In this case, the
transpose of these equations is applied with matrix QT instead of Q (Allen, 2008, 2010).

3.3. Branching process approximation

In this brief introduction, we study the stochastic behavior near the disease-free equilibrium to determine whether an
epidemic (major outbreak) occurs when a few infectious individuals are introduced into the population. The probability of no
major outbreak (a minor outbreak) for the CTMC model near the disease-free equilibrium is approximated by applying
branching process theory and techniques from probability generating functions (pgfs). Most important is the fact that when I
hits zero, it stays in state zero. The state I has reached an absorbing state and disease transmission stops. In the limit, of course,
the infectious individuals in the stochastic and deterministic models always approach zero, IðtÞ/0 as t/∞. But finite time
extinction of I occurs in the stochastic model. We are interested in the stochastic dynamics at the initiation of an epidemic,
when almost everyone in the population is susceptible. (The duration of the epidemic, once initiated, is another interesting
stochastic problem, not considered here, see e.g., (Barbour, 1975; Daley & Gani, 1999)).

The branching process is the linear approximation of the SIR stochastic process near the disease-free equilibrium. For a few
initial infectious individuals, the branching process either grows exponentially or hits zero. These two phenomena are
captured in the branching process approximation of the CTMC model near the disease-free equilibrium. If the number of
infectious individuals increases substantially to a large number of cases, then there is a major outbreak. However, if there are
only a few additional cases, above the initial number of cases, then there is a minor outbreak. The branching process is a good
approximation of the CTMC model, if the susceptible population size is sufficiently large. Then the two outcomes, either a
major or minor outbreak, are clearly distinguishable.

The branching process is a birth and death process for I; the variables S and R are not considered in this approximation. The
term bi is the infection rate (birth) and gi is the recovery rate (death). The process begins with just a few infectious individuals.
The branching process approximation is a CTMC, but near the disease-free equilibrium, the rates are linear (Table 2).

Three important assumptions underlie the branching process approximation:

(1) Each infectious individual behavior is independent from other infectious individuals.
(2) Each infectious individual has the same probability of recovery and the same probability of transmitting an infection.
(3) The susceptible population is sufficiently large.

Assumption (1) is reasonable if a small number of infectious individuals is introduced into a large homogeneously-mixed
population (assumption (3)). Assumption (2) is also reasonable in a homogeneously-mixed population with constant
transmission and recovery rates, b and g.

Two probability generating functions (pgfs) are used in the study of the probability of extinction. The first one applies to
each infectious individual, known as the offspring pgf, and the second one applies to the entire infectious class IðtÞ at time t.
For our purposes, the offspring pgf is the most important one. In general, an offspring pgf has the form:

f ðuÞ ¼
X∞
j¼0

pju
j; u2½0;1�;

where p is the probability of one individual generating j new individuals of the same type, e.g., one infectious individual
j
generates j infectious individuals. The pgf has some properties that are useful in the analysis. For example, f ð1Þ ¼ 1 and the
“mean” number of offspring generated from one individual is defined as

f 0ð1Þ ¼
X∞
j¼1

jpj:
The offspring pgf for one infectious individual, Ið0Þ ¼ 1, is defined from Table 2:

f ðuÞ ¼ g

bþ g
þ b

bþ g
u2; u2½0;1�: (5)
Table 2
Branching process approximation of the SIR CTMC model
near the disease-free equilibrium.

Change DI Probability

þ1 biDt þ oðDtÞ
�1 giDt þ oðDtÞ
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The first term in f ðuÞ is the probability that an infectious individual recovers and the coefficient of the second term is the
probability that an infectious individual infects another individual. The power to which u is raised is the number of infectious
individuals generated from one infectious individual. If an individual recovers, then no new infections are generated ðu0Þ and
if the infection is transmitted to another individual, there are now two individuals infectious ðu2Þ. This offspring pgf differs
from a discrete-time branching process, where the “parent” dies and is replaced by the offspring in the next generation. The
difference is due to the fact that in a small period of time, in a continuous-time process, the infectious individual that infects
another person is counted as still being infectious (two infectious individuals). This infectious individual has the same
probability of infecting another individual b=ðbþ gÞ and the same probability of recovery, g=ðbþ gÞ.

The offspring pgf (5) satisfies f ð1Þ ¼ 1 and the mean value is

f 0ð1Þ ¼ 2b
bþ g

:

This latter expression is not the same as the basic reproduction number, the average number of infectious individuals
generated by one infectious individual during the period of infectivity. However, f 0ð1Þ is a threshold parameter, similar toR0.
In particular, f 0ð1Þ>1 if and only if R0 >1.

It is well-known from the theory of branching processes that a fixed point of the offspring pgf yields the asymptotic
probability of extinction (Athreya & Ney, 1972; Dorman, Sinsheimer, & Lange, 2004; Harris, 1963; Jagers, 1975). It is shown in
Appendix B that the fixed points of f are the stationary solutions (time-independent solutions) of the branching process
approximation for the probability of extinction of the infectious class IðtÞ. Solving for the fixed points of f in (5), f ðuÞ ¼ u for
u2½0;1�, yields two solutions, namely, u ¼ 1 ðf ð1Þ ¼ 1Þ, and u ¼ g=b ¼ 1=R0 (if R0 >1). It is shown in Appendix B that if
R0 <1, then the fixed point u ¼ 1 is stable and ifR0 >1, the fixed point u ¼ 1=R0 is stable. When Ið0Þ ¼ i>1, the assumption
of independence of infectious individuals, implies the probability of no outbreak is either 1 or ð1=R0Þi.

The preceding results were first applied to the stochastic SIR epidemic model by Whittle in 1955 (Whittle, 1955). More
precisely, he used the terminology, “the probability of a minor outbreak” is ð1=R0Þi and “the probability of a major outbreak”
is 1� ð1=R0Þi. As these estimates for extinction (no outbreak) are asymptotic approximations from the branching process,
they are more accurate for a large susceptible population size N and a few infectious individuals. The results are summarized
below:

ℙminor outbreak ¼

8>><>>:
�

1
R0

�i

; R0 >1

1; R0 <1;

ℙmajor outbreak ¼

8>><>>:
1�

�
1
R0

�i

; R0 >1

0; R0 <1:
3.4. Numerical simulation

In general, for multivariate processes, it is difficult to find analytical solutions for the transition probabilities from the
forward and backward Kolmogorov differential equations. For multivariate processes, it is often simpler to numerically
simulate stochastic realizations (sample paths) of the process. A numerical method for simulation of CTMC models was
developed by Gillespie (Gillespie, 1977). This method is known as the Gillespie algorithm or the Stochastic Simulation al-
gorithm. To numerically simulate the change in state, two uniform random numbers, u1;u22U½0;1�, are required for each
change, one for the interevent time and a second one for the particular event.

The Markov property implies that the interevent time T has an exponential distribution T � le�lt , where the parameter l
is the sum of the rates for all possible events. For the SIR CTMC model,

l ¼ bsi=N þ gi;

where ðs; iÞ is the particular value for the state of ðSðtÞ; IðtÞÞ at a given time t. To compute a value for the interevent time t from
the exponential distribution, the first uniform random number u1 yields

t ¼ �ln u1
l

: (6)

(See Appendix A for the derivation of the interevent time.) The second random number u2 tells which particular event occurs.
In general, given n events, the interval ½0;1� is subdivided according to the probability of each event,
½0; p1�; ðp1; p1 þ p2�;…; ðp1 þ/pn�1;1�,

Pn
i¼1pi ¼ 1. If u2 lies in the kth subinterval, then the kth event occurs. For the SIR

CTMC model, there are only two events with corresponding probabilities
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p1 ¼ bsi=N
bsi=N þ gi

and p2 ¼ gi
bsi=N þ gi

:

If i ¼ 0, an absorbing state has been reached and the process stops.
Four sample paths of the SIR CTMC model are plotted in Fig. 1 for N ¼ 100 (top two graphs) and N ¼ 750 (bottom two

graphs). The close-up of the dynamics on the right side illustrates exponential growth at the initiation of an outbreak, the
region where the branching process approximation is applicable.

4. SIR stochastic differential equations

4.1. Formulation

Stochastic differential equations for the SIR epidemic model follow from a diffusion process. The random variables are
continuous,

SðtÞ; IðtÞ2½0;N�:
Forward and backward Kolmogorov partial differential equations for the transition probability density functions can be
derived and they in turn lead directly to the SDEs, e.g., (E. Allen, 2007; Allen, 2008; E. Allen et al., 2008; Kurtz, 1970, 1971,
1972). The SDEs are useful in simulating sample paths of the continuous-state process. In addition, the SDEs are much
easier to solve numerically than the Kolmogorov differential equations and faster than simulating sample paths of the CTMC
model. A heuristic derivation of the SDEs corresponding to the SIR epidemic model is described below.

Divide the time interval ½0; t� into small subintervals of length Dt. Let DXðtÞ ¼ ðDSðtÞ;DIðtÞÞT . Subdivide Dt further into
smaller subintervals of length Dti ¼ ti � ti�1, i ¼ 1;…;n with t0 ¼ t, tn ¼ t þ Dt, and

Pn
i¼1Dti ¼ Dt.

DXðtÞ ¼
Xn
i¼1

DXðtiÞ:
For Dti sufficiently small, it is reasonable to assume that the randomvariables fDXðtiÞg on the interval Dt are independent and
identically distributed. For n sufficiently large, the Central Limit Theorem implies that DXðtÞ has an approximate normal
distribution with mean EðDXðtÞÞ and covariance matrix CVðDXðtÞÞ, e.g., (E. Allen, 2007; E. Allen et al., 2008; Kurtz, 1970, 1971,
1972). Thus,

DXðtÞ � EðDXðtÞÞzNormalð0; CVðDXðtÞÞ;
where 0 is the zero vector. The expectation of DX to order Dt is the change that occurs (þ1 or �1) times the probability:
Fig. 1. The dashed curve is the ODE solution of IðtÞ in the SIR model and the other curves are four sample paths of the SIR CTMC model. Parameter values are
b ¼ 0:3, g ¼ 0:15, and either N ¼ 100 (top graphs) or N ¼ 750 (bottom graphs). The initial conditions are Sð0Þ ¼ 98 and Ið0Þ ¼ 2. The graphs on the right are a
close-up view on the time interval ½0;15� of the graphs on the left. The value ℙ ¼ 0:25 is the estimate for the probability of a minor outbreak. On average, one
sample path out of four hits zero, given R0 ¼ 2 and Ið0Þ ¼ 2.
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EðDXÞz
� �bSI=N
bSI=N � gI

�
Dt ¼ fDt

and the covariance matrix of DX to order Dt is
CVðDXÞzE
�
DXðDXÞT

�
¼ E

 
ðDSÞ2 DSDI
DSDI ðDIÞ2

!
¼
�

bSI=N �bSI=N
�bSI=N bSI=N þ gI

�
Dt ¼ CDt:
To write the SDEs for the SIR stochastic process, either the square root of the covariance matrix CDt is required, or
alternately, a matrix G so that GGT ¼ C (E. Allen, 2007; E. Allen et al., 2008). The following matrix G has this latter property (G
is not unique) (E. Allen, 2007; E. Allen et al., 2008). Matrix G is straightforward to compute as each column represents the
square root of the rates as given in Table 1,

G ¼
 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
bSI=N

p
0ffiffiffiffiffiffiffiffiffiffiffiffiffi

bSI=N
p

� ffiffiffiffiffi
gI

p !
:

Then DXðtÞzf ðXðtÞÞDt þ GðXðtÞÞDWðtÞ, where DWðtÞ ¼ ðDW1ðtÞ;DW2ðtÞÞT and DWiðtÞ � Normalð0;DtÞ. Letting Dt/0, leads
to the following system of SDEs:

dXðtÞ ¼ f ðXðtÞÞdt þ GðXðtÞÞdWðtÞ;

where WðtÞ ¼ ðW1ðtÞ;W2ðtÞÞT is a vector of two independent Wiener processes. That is, WiðtÞ � Normalð0; tÞ is a normally
distributed random variable with mean zero and variance t or dWiðtÞ � Normalð0; dtÞ. The notation BðtÞ ¼ WðtÞ is also
employed, where BðtÞ denotes Brownian motion, e.g., (Oksendal, 2000). This stochastic differential equation is known as an
Itô SDE because the right side is evaluated at time t (E. Allen, 2007; E. Allen et al., 2008).

Rewriting the expression dXðtÞ in terms of the random variables SðtÞ and IðtÞ leads to the following system of Itô SDEs:

dSðtÞ ¼ �½bSðtÞIðtÞ=N�dt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bSðtÞIðtÞ=N

p
dW1ðtÞ

dIðtÞ ¼ ½bSðtÞIðtÞ=N � gIðtÞ�dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bSðtÞIðtÞ=N

p
dW1ðtÞ �

ffiffiffiffiffiffiffiffiffiffi
gIðtÞ

p
dW2ðtÞ:

(7)

Note that if IðtÞ ¼ 0, then the epidemic stops. The Itô SDEs reduce to the original ODE model (1), if the two Wiener processes
are neglected.

4.2. Numerical simulation

The Euler-Maruyama method is a simple numerical method that can be used to simulate sample paths of SDEs. The Euler-
Maruyama method is of order Dt and follows directly from the derivation of the SDE, where
DWðtÞ ¼ Wðt þ DtÞ �WðtÞ � Normalð0;DtÞ. In general, for a system of SDEs of the form,

dXðtÞ ¼ f ðXðtÞ; tÞdt þ GðXðtÞ; tÞdWðtÞ;

the Euler-Maruyama method is a finite-difference approximation,

Xðt þ DtÞ ¼ XðtÞ þ f ðXðtÞ; tÞDt þ GðXðtÞ; tÞh
ffiffiffiffiffiffi
Dt

p
;

t ¼ 0;Dt;2Dt;…, where Dt is chosen sufficiently small to ensure convergence. For k independent Wiener processes
WðtÞ ¼ ðW1ðtÞ;…;WkðtÞÞT , the vector h ¼ ðh1;…; hkÞ is k independent standard normal random numbers hi2Normalð0;1Þ.
Sample paths of the SIR SDEmodel are illustrated in Fig. 2. The sample paths are continuous, but not differentiable (a property
of the Wiener process).

Numerical simulation of sample paths for SDEmodels is faster and simpler than computing sample paths for CTMCmodels
when the population size is large. The time step in SDE models is chosen small but it has a fixed length, whereas in CTMC
models the interevent time tmust be computed for each change DX and the interevent time decreases as the population size
increases (see Equation (6)). Numerical methods with greater accuracy than the Euler-Maruyamamethod are discussed in the
references, e.g., (Kloeden& Platen,1992; Kloeden, Platen,& Schurz,1997). In addition, methods have been developed to speed
up the stochastic simulation (see, e.g., StochSS: Stochastic Simulation Service, www.StochSS.org, Petzold, UC Santa Barbara).

5. Malaria deterministic model

Malaria infection is caused by a Plasmodium parasite. An infectious mosquito transmits the parasite to a susceptible host
through a mosquito bite. It is the female mosquito that bites the host to acquire blood for reproduction. According to the



Fig. 2. The dashed curve is the ODE solution of IðtÞ in the SIR model and the other solid curves are four sample paths of the SIR SDE model. Parameter values and
initial conditions are the same as for the CTMC model in Fig. 1 for N ¼ 100 (left) and N ¼ 750 (right).
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website of theWorld Health Organization (World Health Organization, 2015) therewere approximately 214million new cases
of malaria and 438,000 deaths worldwide in 2015. Most cases were reported in the African region. Sir Ronald Ross was one of
the first scientists to formulatemathematical models for the spread of malaria between insect vectors and human hosts (Ross,
1909, 1911; Smith et al., 2012) and for his work on malaria he was awarded the Nobel Prize in Physiology or Medicine in 1902.

In the Ross malaria model, the total number of vectorsM and hosts H are constant. The variables S and I are the number of
susceptible and infectious hosts, respectively, and U and V are the number of healthy and infectious vectors, respectively. A
female mosquito requires a certain number of blood meals for reproduction and it is assumed that a single mosquito takes k
bites per unit time to fulfill this blood requirement. Another important assumption is that the total number of bites by the
mosquito population is dependent on the total number of mosquitoes but it is not dependent on the number of human hosts
(only the proportion of human hosts). The probability per bite that an infectious mosquito transmits malaria is p and the
probability per bite that a healthy mosquito acquires infection is q. Parameter a ¼ kp is the transmission rate from an in-
fectious mosquito to a human and b ¼ kq is the acquisition rate from an infectious host to a healthy mosquito. The host
recovery rate is g and the mosquito death rate is m. The birth rate and death rate of the mosquito population are equal. The
natural birth and death rates of humans are negligible with respect to the modeling time frame and are assumed to be zero.
With the preceding assumptions, the malaria model takes the form:

dS
dt

¼ �aV
S
H
þ gI

dI
dt

¼ aV
S
H
� gI

dU
dt

¼ �bU
I
H
þ mM � mU

dV
dt

¼ bU
I
H
� mV

(8)
The disease-free equilibrium for this model is S ¼ H, U ¼ M and I ¼ 0 ¼ V . Linearization of the differential equations for I
and V about the disease-free equilibrium yields the matrices from the next generation matrix approach (van den Driessche &
Watmough, 2002):

F � V ¼
0@ 0 a

b
M
H

0

1A�
�
g 0
0 m

�
: (9)

The spectral radius of FV�1 is often defined as the basic reproduction number (van den Driessche & Watmough, 2002):

r
�
FV�1

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abðM=HÞ

mg

s
:

An equivalent form in terms of the threshold of one, is defined as the product of the transmission fromvector to host and from
host to vector:

R0 ¼
�
a

m

��
bðM=HÞ

g

�
(10)
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(e.g., (Heffernan, Smith, & Wahl, 2005; Lloyd, Zhang, & Morgan Root, 2007)). This latter expression is used in the following
discussion of the basic reproduction number. For model (8), the disease dies out if R0 <1 and a stable endemic equilibrium
exists if R0 >1.

6. Malaria continuous time Markov chain

6.1. Formulation

Themalaria CTMCmodel is a time-homogeneous process with theMarkov property. There are six events corresponding to
transmission from host to vector and vector to host, recovery of humans, death of healthy and infectious mosquitoes, and
birth of mosquitoes. Table 3 is a summary of these events and their probabilities.
In the malaria CTMC model, given ðSðtÞ; IðtÞ;UðtÞ;VðtÞÞ ¼ ðs; i;u; vÞ, the exponential distribution for the interevent time
T � le�lt has parameter

l ¼ giþ avðs=HÞ þ buði=HÞ þ mðM þ uþ vÞ:
A sample path of the CTMCmodel is graphed in Fig. 3. A stable endemic equilibrium exists in the ODE model ifR0 >1 and
the sample path of the CTMC model fluctuates around this endemic equilibrium.

6.2. Branching process approximation

Approximation of the CTMC near the disease-free equilibrium, leads to a multitype branching process in two variables IðtÞ
and VðtÞ. Table 4 is a summary of the changes in I and V near the disease-free equilibrium when SzH and UzM.

Next, two offspring pgfs are defined, one for a host and one for a mosquito. Each offspring pgf has the general form:X
j;k

ℙððI;VÞ ¼ ðj; kÞÞuj1uk2; ui2½0;1�; i ¼ 1;2:

For one infectious host, there are only two events, either recovery of the host or infection of a mosquito. The offspring pgf for I,
given Ið0Þ ¼ 1 and Vð0Þ ¼ 0 is

f1ðu1;u2Þ ¼
g

gþ bðM=HÞ þ
bðM=HÞ

gþ bðM=HÞu1u2: (11)

That is, one infectious host recovers with probability g=ðgþ bðM=HÞÞ or infects a mosquito with probability
bðM=HÞ=ðgþ bðM=HÞÞ: Note the term u1u2 in (11) means one infectious host generates one infectious mosquito (u2 raised to
the power one) and remains infectious (u1 raised to the power one). The offspring pgf for V, given Vð0Þ ¼ 1 and Ið0Þ ¼ 0, is

f2ðu1;u2Þ ¼
m

mþ a
þ a

mþ a
u1u2: (12)

That is, one infectious mosquito dies with probability m=ðmþ aÞ or infects a host with probability a=ðmþ aÞ.
To find the probability of extinction (no outbreak), we compute the fixed points of the system on the unit square

½0;1� � ½0;1�, f1ðu1;u2Þ ¼ u1 and f2ðu1;u2Þ ¼ u2, e.g., (Allen & van den Driessche, 2013; Athreya & Ney, 1972; Dorman et al.,
2004; Harris, 1963). The two solutions of this system are (1,1) and ðq1; q2Þ, where

q1 ¼ g

gþ bðM=HÞ þ
bðM=HÞ

gþ bðM=HÞ
�

1
R0

�
(13)

q2 ¼ m

mþ a
þ a

mþ a

�
1
R0

�
(14)

(e.g., (Allen & Lahodny, 2012)). The fixed point ðq1; q2Þ exists in the unit square providedR0 >1. Equivalent expressions were
derived by Bartlett in 1964, but theywere not written in terms ofR0 (Bartlett, 1964). Another equivalent set of expressions for
Table 3
Ross malaria CTMC model assumptions

ðDS;DIÞ Probability ðDU;DVÞ Probability

ðþ1;�1Þ giDt þ oðDtÞ ð�1; 1Þ buði=HÞDt þ oðDtÞ
ð�1;þ1Þ avðs=HÞDt þ oðDtÞ ðþ1; 0Þ mMDt þ oðDtÞ

ð�1; 0Þ muDt þ oðDtÞ
ð0;�1Þ mvDt þ oðDtÞ



Fig. 3. The smooth curve in each figure is the solution of the host-vector ODE model. The other curves are one sample path of the CTMC model (top two figures)
and one sample path of the SDE model (bottom two figures). The parameters are H ¼ 100;M ¼ 1000, a ¼ 0:2, g ¼ 0:1, b ¼ 0:2, and m ¼ 0:5. Initial conditions are
Ið0Þ ¼ 0, Vð0Þ ¼ 10, Sð0Þ ¼ 100 and Uð0Þ ¼ 990: The value of R0 ¼ 8 with q1 ¼ 1=6 and q2 ¼ 3=4. The probability of extinction in the CTMC is approximately
ℙz0:06. The stable endemic equilibrium in the ODE model is ðS; I;U;VÞ ¼ (16.7, 83.3, 750, 250).

Table 4
Branching process approximation of the malaria model near the disease-
free equilibrium

Change ðDI;DVÞ Probability

ðþ1;0Þ avDt þ oðDtÞ
ð0;þ1Þ biðM=HÞDt þ oðDtÞ
ð�1;0Þ giDt þ oðDtÞ
ð0;�1Þ mvDt þ oðDtÞ

L.J.S. Allen / Infectious Disease Modelling 2 (2017) 128e142 137
q1 and q2 were derived by Lloyd et al. assuming geometric offspring pgfs (Lloyd et al., 2007). The expression for q1 in (13) has a
biological interpretation. Beginning from one infectious host, there is no outbreak if the infectious host recovers with
probability g=ðgþ bðM=HÞÞ or if there is no successful transmission to a susceptible mosquito with probability
bðM=HÞ=ðgþ bðM=HÞÞ½1=R0�.

The stability of the fixed points is determined from the spectral radius of the Jacobian matrix of the offspring pgfs,
evaluated at ð1;1Þ, e.g., (Allen & van den Driessche, 2013; Athreya & Ney, 1972; Dorman et al., 2004; Harris, 1963). If the
spectral radius is less than one, then ð1;1Þ is stable and if it is greater than one, (1,1) is unstable and ðq1; q2Þ is stable. (See
Appendix C.) The Jacobian matrix of the offspring pgfs evaluated at ð1;1Þ is

M ¼

0BBB@
bM=H

gþ bM=H
bM=H

gþ bM=H
a

mþ a

a

mþ a

1CCCA:
In general, it can be shown that

WðM� IÞ ¼ F � V ; (15)

where F and V are computed from the next generation matrix approach, Equation (9), W is a diagonal matrix of interevent
time parameters,W ¼ diagðgþ bM=H;mþ aÞ, and I is the identity matrix (Allen& van den Driessche, 2013). In addition, there
is an important relation between R0 and matrix M:

R0 >1 if and only if rðMÞ>1

which follows from the identity (15) (Allen & van den Driessche, 2013).
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Therefore, the probability of extinction (no outbreak) is one, if R0 <1, but less than one, if R0 >1. Given Ið0Þ ¼ i and
Vð0Þ ¼ v, it follows from the independent assumption in the branching process approximation that the probabilities of a
major or a minor outbreak are:

ℙminor outbreak ¼
	
qi1q

v
2; R0 >1

1; R0 <1;
ℙmajor outbreak ¼

	
1� qi1q

v
2; R0 >1

0; R0 <1
:

Alternate forms for the offspring pgf have been proposed that differ from the assumptions in the underlying SIR CTMC
epidemic model (Table 1) or in the host-vector CTMC model (Table 3), e.g., (Antia, Regoes, Koella, & Bergstrom, 2003;
Blumberg & Lloyd-Smith, 2013; Lloyd et al., 2007; Lloyd-Smith, Schreiber, Kopp, & Getz, 2005). Offspring pgfs have been
assumed to have geometric, Poisson, gamma, or negative binomial distributions (Antia et al., 2003; Blumberg & Lloyd-Smith,
2013; Lloyd et al., 2007; Lloyd-Smith et al., 2005). But they are often applied in the discrete-time case. The geometric dis-
tribution and the forms in (5), (11), and (12) preserve the Markov property of an exponentially distributed lifetime (Dorman
et al., 2004). Branching process approximations can be extended to more complex epidemic models with multiple groups
(Allen & Lahodny, 2012; Allen & van den Driessche, 2013).

7. Malaria stochastic differential equations

A derivation of the SDEs for the host-vector model follows in a similar manner as for the SIR model. For simplicity, denote
the change of the system variables as DX ¼ ðDS;DI;DU;DVÞT and the right side of the host-vector ODE model as gi,
i ¼ 1;2;3;4, i.e., dS=dt ¼ g1. Then the Itô SDEs for the malaria model are computed from the expectation and covariance of DX
based on the six events in Table 3. The system of SDEs has the form dXðtÞ ¼ f ðXðtÞÞ dt þ GðXðtÞÞ dWðtÞ, where G is a 4� 6
matrix satisfying GGT ¼ C, where to order Dt, CDt is the approximate covariance matrix,

G ¼

0BBB@
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aVS=H
p ffiffiffiffiffi

gI
p

0 0 0 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aVS=H

p � ffiffiffiffiffi
gI

p
0 0 0 0

0 0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bUI=H

p ffiffiffiffiffiffiffiffi
mM

p � ffiffiffiffiffiffiffi
mU

p
0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bUI=H

p
0 0 � ffiffiffiffiffiffiffi

mV
p

1CCCA;

and WðtÞ is a vector of six independent Wiener processes, corresponding to the six events represented in Table 3 (E. Allen,
2007; E. Allen et al., 2008). More explicitly, the system of Itô SDEs for the host-vector model is

dS ¼ g1dt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aVS=H

p
dW1 þ

ffiffiffiffiffi
gI

p
dW2

dI ¼ g2dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aVS=H

p
dW1 �

ffiffiffiffiffi
gI

p
dW2

dU ¼ g3dt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bUI=H

q
dW3 þ

ffiffiffiffiffiffiffiffi
mM

p
dW4 �

ffiffiffiffiffiffiffi
mU

p
dW5

dV ¼ g4dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bUI=H

q
dW3 �

ffiffiffiffiffiffiffi
mV

p
dW6;

where the dependence on time t is omitted. For IðtÞ ¼ 0 and VðtÞ ¼ 0, the epidemic stops.
The Euler-Maruyama method is used to compute sample paths of the host-vector SDE model (see Fig. 3) and to

approximate the probability density for large time (see probability histogram in Fig. 4). The probability density appears to be
approximately stationary as solutions fluctuate near the endemic equilibrium of the ODE model. How much fluctuation
occurs in the disease dynamics depends on the transmission processes (demographic variability). In a more realistic host-
vector model, the disease dynamics are also affected by environmental conditions. Environmental variability is especially
important in a vector-borne disease, where the vector life cycle is intimately connected to temperature and moisture levels.

8. Environmental variability

For the SIR epidemic model or the malaria host-vector model, changes in the environment may impact the parameters for
birth, death, recovery, or transmission. For example, if birth, death, or transmission rates fluctuate with changes in the
environmental conditions, then a stochastic differential equation for the model parameter can be formulated as a mean-
reverting process (fluctuation about some average value) (E. Allen, 2016).

For example, a mean-reverting Ornstein-Uhlenbeck (OU) process for the parameter a is modeled by the SDE:

daðtÞ ¼ rða� aðtÞÞdt þ sdWðtÞ;

where a is the mean value and s2 is proportional to the variance. In particular, for the OU process, aðtÞ has a normal dis-
tribution with mean

EðaðtÞÞ ¼ aþ ðað0Þ � aÞe�rt



Fig. 4. The two histograms (computed from 10,000 sample paths of the host-vector SDE model) approximate the probability density for I and V at t ¼ 50.
Parameter values are the same as in Fig. 3 but with initial conditions sufficiently large such that the probability of hitting zero is close to zero. The computed mean
values and standard deviations are mI ¼ 83:2, mV ¼ 249:6, sI ¼ 3:94, and sV ¼ 17:8. The mean values are close to the endemic equilibrium values of the host-
vector ODE model: ðI;VÞ ¼ ð83:3;250Þ.
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and variance

VarðaðtÞÞ ¼ s2

2r
ð1� expð�2rtÞÞ (16)

(E. Allen, 2016; Oksendal, 2000). In the limit, as t/∞, the mean is a and variance is s2=ð2rÞ. The mean agrees with the
solution of the ODE: daðtÞ=dt ¼ rða� aðtÞÞ.

In another example, if the carrying capacity K≡KðtÞ varies both seasonally and randomly, a biologically reasonable model
for KðtÞ has the form (Allen, E. Allen, & Jonsson, 2006):

dKðtÞ ¼ r


K � KðtÞ�dt þ brcosðutÞdt þ sdWðtÞ: (17)
The mean of K is

EðKðtÞÞ ¼ K þ
�
Kð0Þ � K � rbr

u2 þ r2

�
e�rt þ br

u2 þ r2
½u sinðutÞ þ r cosðutÞ�

and variance has the same expression as in (16). (See Fig. 5.) The parameter K can also be modeled as a discrete random
variable. Other mean-reverting stochastic processes that have the additional desirable property of being nonnegative are
discussed in (E. Allen, 2016).

9. Summary

The intent of this primer is to introduce the topic of stochastic epidemic modeling from the perspective of an ODE
epidemic framework. The emphasis is on continuous-time Markov chains and stochastic differential equations. Many topics
Fig. 5. The smooth curve is the ODE solution of KðtÞ (Wiener process neglected in (17)) and the random curve is one sample path of the SDE model (17).
Parameter values are K ¼ 100, r ¼ 0:3, br ¼ 4, u ¼ 2p=365, and s ¼ 5. The initial condition is Kð0Þ ¼ 110:
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of relevance to stochastic epidemic modeling have been omitted, e.g., epidemic duration, discrete-time Markov chains,
stochastic spatial models, and parameter estimation for stochastic models. The references provide awealth of information on
these and other topics in stochastic epidemic modeling.

Appendix A. Interevent time in the CTMC model

Let FðtÞ ¼ 1� e�lt ¼ ℙðT � tÞ be the cumulative distribution for the interevent time T. Let U denote the uniform distri-
bution on ½0;1�. Properties of U and the fact that F is strictly increasing on ½0;∞Þ, yields

FðtÞ ¼ ℙðU � FðtÞÞ ¼ ℙ
�
F�1ðUÞ � t

�
:

But this implies T ¼ F�1ðUÞ. Calculation of the inverse function and using the fact that 1� U has the same distribution as U

leads to the formula for t in Equation (6):

F�1ðUÞ ¼ �lnð1� UÞ
l

¼ �lnðUÞ
l

:

Appendix B. PGF for the SIR branching approximation

For the SIR CTMC model, the pgf Gi for the infectious class IðtÞ, given Ið0Þ ¼ i, is defined in terms of the transition prob-
abilities, pi;jðtÞ ¼ ℙðIðtÞ ¼ jjIð0Þ ¼ iÞ:

Giðu; tÞ ¼ E
�
uIðtÞ

���Ið0Þ ¼ i
�
¼
X∞
j¼0

pi;jðtÞuj ¼ pi;0ðtÞ þ pi;1ðtÞuþ pi;2ðtÞu2 þ/: (B.1)

Note that Gið0; tÞ ¼ pi;0ðtÞ is the probability of disease extinction by time t: IðtÞ ¼ 0, given Ið0Þ ¼ i. From the independent

assumptions, it follows that Gi is the product of i generating functions for Ið0Þ ¼ 1:

Giðu; tÞ ¼ ½G1ðu; tÞ�i: (B.2)

The backward Kolmogorov differential equations for the branching process approximation of IðtÞ are as follows:
dpi;k
dt

¼ bipiþ1;k þ gipi�1;k � ðbþ gÞipi;k: (B.3)
A differential equation is derived for p1;0ðtÞ based on the identities (B.1) and (B.2), and the backward Equation (B.3).
Differentiate (B.2) with respect to t, solve for vG1=vt, then replace vGi=vt with an equivalent expression from definition (B.1):

vG1

vt
¼ 1

iðG1Þi�1
vGi

vt
¼ 1

iGi�1

 X∞
k¼0

dpi;k
dt

uk
!
:

Substitution of dpi;k=dt from the backward Kolmogorov differential Equation (B.3) leads to
vG1

vt
¼ 1

Gi�1

X∞
k¼0

h
bpiþ1;k þ gpi�1;k � ðbþ gÞpi;k

i
uk

¼ b
Giþ1
Gi�1

þ g
Gi�1
Gi�1

� ðbþ gÞ Gi

Gi�1

¼ ðbþ gÞ
�

b

bþ g
ðG1Þ2 þ

g

bþ g
� G1

�
¼ ðbþ gÞ½f ðG1Þ � G1�;

where the offspring pgf f is defined in (5). Since the right side of the differential equation is independent of u, the differential

equation also applies to G1ð0; tÞ ¼ p1;0ðtÞ: That is,

dp1;0ðtÞ
dt

¼ ðbþ gÞ
h
f
�
p1;0ðtÞ

�
� p1;0ðtÞ

i
; p1;0ðtÞ2½0;1�: (B.4)
From the theory of autonomous differential equations, the steady-states of (B.4) are the stationary solutions of the process:
solutions u of f ðuÞ ¼ u. From the offspring pgf in (5), there are two possible steady-state solutions, either u ¼ 1 or u ¼ g=b ¼
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1=R0: It is easy to check ifR0 <1, then u ¼ 1 is the stable steady-state and ifR0 >1, then u ¼ 1=R0 is the stable steady-state. If
more than one individual is infectious, Ið0Þ ¼ i>1, then the asymptotic steady-states are either 1 or ð1=R0Þi.

Appendix C. PGF for the host-vector branching approximation

In a manner similar to the derivation for the stochastic SIR model, differential equations for the probabilities of extinction
can be derived for the branching process approximation in the host-vector model. Let pði;vÞ;ðl;mÞðtÞ be the transition proba-
bilities for IðtÞ and VðtÞ in the branching process approximation. The generating function Gði;vÞ is defined as

Gði;vÞðu1;u2; tÞ ¼
X
l;m

pði;vÞ;ðl;mÞðtÞul1um2 :

In the branching process approximation, assume
Gði;vÞðu1;u2; tÞ ¼
h
Gð1;0Þðu1;u2; tÞ

iih
Gð0;1Þðu1;u2; tÞ

iv
: (C.1)

Below are the backward Kolmogorov differential equations for I and V, where the transition probabilities pa;bðtÞ≡pði;vÞ;bðtÞ,

a ¼ ði; vÞ, and b ¼ ðl;mÞ:

dpði;vÞ;b
dt

¼ avpðiþ1;vÞ;b þ bi
M
H
pði;vþ1Þ;b þ gipði�1;vÞ;b þ mvpði;v�1Þ;b �

�
avþ bi

M
H

þ giþ mv

�
pði;vÞ;b:
Differentiate the identity in (C.1) with respect to t for two cases: v ¼ 0 and i ¼ 0.

vGð1;0Þ
vt

¼ 1

i
h
Gð1;0Þ

ii�1

vGði;0Þ
vt

¼ 1
iGði�1;0Þ

X
b

dpði;0Þ;b
dt

ul1u
m
2

vGð0;1Þ
vt

¼ 1

v
h
Gð0;1Þ

iv�1

vGð0;vÞ
vt

¼ 1
vGð0;v�1Þ

X
b

dpð0;vÞ;b
dt

ul1u
m
2 :

Substitute the backward Kolmogorov differential equations into the right side, apply the identity (C.1), and simplify. This leads

to the following differential equations for Gð1;0Þ and Gð0;1Þ:

vGð1;0Þ
vt

¼
�
gþ b

M
H

�h
f1
�
Gð1;0Þ;Gð0;1Þ

�
� Gð1;0Þ

i
vGð0;1Þ
vt

¼ ðmþ aÞ
h
f2
�
Gð1;0Þ;Gð0;1Þ

�
� Gð0;1Þ

i
:

Since pð1;0Þ;ð0;0ÞðtÞ ¼ Gð1;0Þð0;0; tÞ and pð0;1Þ;ð0;0ÞðtÞ ¼ Gð0;1Þð0;0; tÞ, the preceding differential equations can be expressed in
terms of the two probabilities of extinction. The steady-states of this system are the fixed points of the offspring pgfs (11) and
(12). The stability of these steady-states is determined by the eigenvalues of the Jacobian matrix WðM� IÞ. The steady-state
(1,1) is stable if the eigenvalues of the Jacobianmatrix have negative real part if and only if rðMÞ<1 if and only ifR0 <1 (Allen
& van den Driessche, 2013).
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