
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tlib20

Letters in Biomathematics

ISSN: (Print) 2373-7867 (Online) Journal homepage: https://www.tandfonline.com/loi/tlib20

An introduction to compartmental modeling for
the budding infectious disease modeler

Julie C. Blackwood & Lauren M. Childs

To cite this article: Julie C. Blackwood & Lauren M. Childs (2018) An introduction to
compartmental modeling for the budding infectious disease modeler, Letters in Biomathematics,
5:1, 195-221, DOI: 10.1080/23737867.2018.1509026

To link to this article:  https://doi.org/10.1080/23737867.2018.1509026

© 2018 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 16 Aug 2018.

Submit your article to this journal 

Article views: 5182

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tlib20
https://www.tandfonline.com/loi/tlib20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/23737867.2018.1509026
https://doi.org/10.1080/23737867.2018.1509026
https://www.tandfonline.com/action/authorSubmission?journalCode=tlib20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tlib20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/23737867.2018.1509026
https://www.tandfonline.com/doi/mlt/10.1080/23737867.2018.1509026
http://crossmark.crossref.org/dialog/?doi=10.1080/23737867.2018.1509026&domain=pdf&date_stamp=2018-08-16
http://crossmark.crossref.org/dialog/?doi=10.1080/23737867.2018.1509026&domain=pdf&date_stamp=2018-08-16
https://www.tandfonline.com/doi/citedby/10.1080/23737867.2018.1509026#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/23737867.2018.1509026#tabModule


LETTERS IN BIOMATHEMATICS
2018, VOL. 5, NO. 1, 195–221
https://doi.org/10.1080/23737867.2018.1509026

EDUCATION ARTICLE

An introduction to compartmental modeling for the budding
infectious disease modeler

Julie C. Blackwooda∗ and Lauren M. Childs b∗
aDepartment of Mathematics and Statistics, Williams College, Williamstown, Massachusetts; bDepartment of
Mathematics, Virginia Tech, Blacksburg, Virginia

ABSTRACT
Mathematical models are ubiquitous in the study of the transmission
dynamics of infectious diseases, In particular, the classic ‘susceptible-
infectious-recovered’ (SIR) paradigmprovides amodeling framework
that can be adapted to describe the core transmission dynamics of
a range of human and wildlife diseases. These models provide an
important tool for uncovering themechanisms generating observed
disease dynamics, evaluating potential control strategies, and pre-
dicting future outbreaks. With ongoing advances in computational
tools aswell as access to disease incidence data, the use of suchmod-
els continues to increase. Here, we provide a basic introduction to
disease modeling that is primarily intended for individuals who are
new to developing SIR-type models. In particular, we highlight sev-
eral common issues encountered when structuring and analyzing
these models.
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1. Introduction

Recent high profile infectious disease outbreaks around the globe – including SARS,
Ebola, and Zika – have reignited a general interest in understanding the spread of disease.
The utility of mathematical and computational approaches to simulate and numerically
analyze infections within populations has also benefited from major advances in com-
putational power over the past several decades. As a result, public health officials and
policymakers have increasingly relied on a quantitative understanding of infectious disease
dynamics.

Mathematical models of infectious disease dynamics have a rich history that dates back
more than 100 years. Mathematically simple formulations that describe the transition of
individuals in a population between ‘compartments’ that capture the infection status of
individuals leads to surprisingly significant insight. Their elegance and simplicity allow
the ease of expansion to more complexities through, for example, the addition of com-
partments. Expanding these models is often straight forward but the apparent simplicity
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can mask subtle, but important, model structure and parameterization choices. Further-
more, while there are many wonderful texts focused on infectious disease modeling, there
exist several complexities that are rarely discussed in sufficient detail for a novice disease
modeler.

Here we highlight several of these potential pitfalls, describe how they arise and, when
possible, how to address them.We also point to further resources in the literature.We begin
with a brief introduction to disease modeling as a means to provide basic context as well
as introduce the notation that we will use throughout this paper. We often provide more
mathematical detail and discussion in sections in the Appendix.

Following our introduction, we focus on analysis of the compartmental epidemiolog-
ical model with an emphasis on computing the basic reproductive number, commonly
known as R0. We focus on the following two difficulties: (i) deriving the force of infec-
tion and (ii) instances when R0 does not represent a precise disease extinction threshold.
Keep in mind, this is by no means meant to be a all-encompassing discussion of infec-
tious disease modeling but a resource to supplement other more comprehensive texts
(e.g. Anderson, May, & Anderson, 1992; Brauer, 2008; Brauer & Castillo-Chavez, 2001;
Brauer & Kribs, 2015; Brauer, vanden Driessche, & Wu, 2008; Keeling & Rohani, 2008;
Martcheva, 2015; Vynnycky &White, 2010).

2. A brief introduction to diseasemodeling

Mathematical models that describe the population-level dynamics of infectious diseases
are typically based on the classic Susceptible – Infectious – Recovered (SIR)-type frame-
work, a structure inspired by the seminal work of Kermack and McKenrick in 1927
(Kermack & McKendrick, 1927). In SIR-type models, individuals are separated into com-
partments based on their infectious status. Thus, any individual can only be in a single
compartment at a given time, although they can transition between compartments. In this
section, we briefly introduce and provide an analysis of a simple SIRmodel. We then gen-
eralize themodel analysis so that it can be applied to a large suite of compartmental disease
models.

2.1. Constructing compartmental models: the SIR framework

Compartmental disease models divide a population into groups (or compartments) based
on each individual’s infectious status and track the corresponding population sizes through
time. Here, we first consider a model with straight forward properties: susceptible individ-
uals (S) become infected through contact with infectious individuals (I), and infectious
individuals recover (R) at a fixed rate γ and confer lifelong immunity. The fixed rate γ

has the interpretation that 1/γ is the average amount of time spent in the infectious class
(see Appendix 1 for a detailed explanation). Although there typically is some lag between
acquiring infection and becoming infectious, here we do not distinguish between infected
and infectious individuals; we instead assume that individuals are infectious immediately
upon infection. This assumption will be relaxed later in Section 3.1. Almost all diseases
have some delay between infection and infectiousness, however, when that delay is short
(hours or days) and the goal is understanding the long term dynamics (years in the future),
the assumption that individuals are immediately infectiousmay be reasonable. Examples of
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some infections that are frequently modeled within the SIR framework includemany com-
mon childhood diseases such as chicken pox and measles. An important common feature
among these pathogens is that infection is thought to confer life-long immunity so that,
from amodeling perspective, individuals move directly into (and remain in) the recovered
compartment upon recovery.

Now, to model the infection process we consider a system of ordinary differential equa-
tions describing the change in the population size of each compartment. Let λ be the force
of infection, or the per capita rate at which susceptible individuals acquire infection. It is
important to note that the force of infection is not a constant but rather a function of the
size of the infectious compartments; that is, λ = λ(I).

The definition of λ(I) can indeed be tricky and depends on assumptions about the
nature of interactions between individuals (see Section 4.1). However, complications in
the different ways to define the force of infection most often come into play when the total
population size is changing, which is not the case at the moment. Thus, we will ignore
this complexity for the time being. The force of infection is comprised of a transmission
rate β or, more precisely, the product of the contact rate and the probability of trans-
mission given contact, and an interaction term with infectious individuals. In order to
preserve the units of the equation, using our definition of β (which has units time−1),
we will think about the interaction with the proportion of infectious individuals: I/N.
Thus,

λ(I) = β
I
N
.

The definition of λ(I)will change for eachmodel, although it will always remain a function
of the infectious class(es). Here, we have written λ(I) as a function of the infectious class,
but frequently the dependence is not explicitly included. in model formulation.

For now, we ignore demography, i.e. natural birth and mortality, but relax this assump-
tion later. We can now write down a system of ordinary differential equations (ODEs) of
the SIRmodel:

dS
dt

= −λ(I)S,
dI
dt

= λ(I)S − γ I,
dR
dt

= γ I. (1)

A schematic diagram of this model is provided in Figure 1(A). Here, the nature of our
equations show us that the population is ‘closed’; that is, the total population size (defined
by N= S+I+R) is constant over time (dN/dt = 0). A nice property of this assumption
is that the system is entirely determined by two, rather than three, of the equations. For
example, we can write the recovered population as R=N−S−I so that only susceptible
and infected populations need to be determined explicitly.

A final comment before wemove into themodel analysis is that throughout this paper S,
I, andR always represent population densities (although wewill refer to population density
and size interchangeably throughout this paper). However, some texts define S, I, and R as
proportions of the population in each class, respectively. Non-dimensionalizing the state
variables in this way for disease models is a common modeling choice, and the associated
derivation is demonstrated in the Appendix (see Appendix 2). Our choice to consistently
write the models in terms of densities, rather than proportions, will make it more straight
forward to interpret some common pitfalls in disease modeling.
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Figure 1. (A) Schematic representation of the standard SIRmodel in the absence of demography, as in
Equation (1). S, I, and R represent the total number of susceptible, infected, and recovered individuals
in a population, respectively. λ(I) is the force of infection, and γ is the recovery rate. The dashed arrow
indicates the necessity of interactionwith the I compartment for transition from S to I. (B) Same as above,
but this schematic includes demography in grey (as in Equation (2)).

2.2. Analysis of the SIRmodel

Many questions can be asked regarding the dynamics of an infectious disease: How quickly
will the disease sweep through a population? Howmany people will be infected during the
outbreak?Will the disease persist in the population? Compartmental ODEmodels such as
the SIR framework introduced above can help answer these questions through analysis of
the ODE systems.

2.2.1. Finding equilibria
A typical first step in analyzing a system of differential equations is finding the equilibria.
At equilibrium we do not mean that individuals are fixed within particular compartments,
but rather the rate of individuals entering and leaving a compartment is exactly balanced.
This is equivalent to setting the right hand side of our equations, i.e. the rate of change of
individuals into and out of each compartment, equal to zero.

In epidemiology, models generally have two important equilibria: (1) the disease-free
equilibrium (DFE) and the endemic equilibrium. The DFE requires there to be no infected
individuals in the population, or in the case of the SIR model I∗ = 0, where the star des-
ignates an equilibrium solution. In contrast, the endemic equilibrium corresponds to the
state in which infected individuals persist indefinitely such that I∗ > 0.

In the model presented in Section 2.1, the canonical DFE is given by (S∗, I∗,R∗) =
(N, 0, 0); in other words, the entire population is susceptible to infection. For this model,
there is no endemic equilibrium as the infectious population always returns to zero once
the epidemic has completed (see Appendix 3). Biologically speaking, an endemic equi-
librium requires that there is a continuous supply of susceptible individuals – known as
‘susceptible replacement’ – in order for infection to persist endemically. This replacement
process can, for example, occur through births into the susceptible population or waning of
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immunity. Without such replacement, the number of infected individuals returns to zero
following an epidemic, as in the SIR model without demography (i.e. in Equation (1)). In
this section, we therefore introduce a small modification to the SIR model of Section 2.1:
demography, i.e. the inclusion of natural birth and death.

For mathematical simplicity, we make the following key biological assumptions: (i) the
birth rate and death rate are equal and given by μ, (ii) all individuals are capable of repro-
ducing and are equally subject to mortality, and (iii) all individuals are born susceptible
to infection. The first two assumptions maintain a constant population size and the third
assumption is made for simplicity (and is a valid assumption for many directly transmitted
pathogens). It is possible to model infectious disease dynamics without these assumptions.
For example, a discussion ofmodels that include demographywith variable population size
can be found in Brauer (2008), Hethcote (2000), and Ledder (2017). The simple SIRmodel
with demography is given by:

dS
dt

= μN − β
I
N
S − μS,

dI
dt

= β
I
N
S − (γ + μ)I,

dR
dt

= γ I − μR (2)

and a schematic representation of this model is provided in Figure 1(B). For this model,
we can find both a DFE and an endemic equilibrium, which are given by:

(S∗, I∗,R∗) = (N, 0, 0), and (3)

(S∗, I∗,R∗) =
(

γ + μ

β
N,

μ

β
N

(
β

γ + μ
− 1

)
,N − S∗ − I∗

)
, (4)

respectively.
Finding equilibria is only the first step to understanding long-term behaviour in a sys-

tem. We must also determine which of the behaviours are typically realized. This involves
determining the stability of the equilibria and will show us whether we will approach the
equilibria ormove away from it, assumingwe have started nearby. In order to determine the
stability of each of these equilibria, we can apply a standard linear stability analysis (more
details can be found in any standard ODEs or linear algebra textbook). In brief, we lin-
earize our system around each equilibria using the Jacobianmatrix evaluated at the chosen
equilibrium of interest. We then find the associated characteristic polynomial, whose roots
are the eigenvalues to the Jacobian matrix. For local stability of the equilibrium, we require
that all of the eigenvalues have negative real parts; otherwise, the equilibrium is locally
unstable. In some cases, the value of the eigenvalues can be calculated directly. However,
under more complicated scenarios an alternative method can be used to determine the
sign of the eigenvalues (e.g. with a symbolic programming language or analytically with
the Routh-Hurwitz criteria, see Brauer & Castillo-Chavez, 2001).

Using linear stability analysis, we can determine the local stability of each equilib-
rium. However, even for simple systems, this does not always give us a clear biological
interpretation on when disease will spread or die out globally. Furthermore, when using
more complicated models, there may be multiple stable equilibria present simultaneously.
In such cases, it is important to obtain a more global picture of the infection dynamics
using, for example, bifurcation analysis to supplement the linear stability analysis (as in
Section 4.2.1).
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In the standard SIR model with demography, however, we can use a standard linear
stability analysis to identify conditions under which the DFE and endemic equilibrium are
stable as well as unstable. As it turns out, stability is closely related to an important quantity
in epidemiology: R0, often called the basic reproductive number (or ratio). Therefore, we
introduce R0 before discussing the stability of this model.

2.2.2. The basic reproductive number: a biologically motivated introduction
The basic reproductive number, R0, is arguably the most important quantity in disease
modeling and is generally defined as the ‘average number of secondary cases arising from
a typical primary case in an entirely susceptible population’. There is rich mathematical
theory that describes how this quantity can be computed for a range of SIR-type models
with varying degrees of complexity. We will introduce some of this theory beginning in
Section 3. Here, however, we find R0 for the SIR model with demography in an intuitive
way motivated by one question central to disease modeling: under what conditions will a
disease die out?

To begin answering this question, we assume that the population at the initial time
(t=0) has one infected individual and is otherwise susceptible. Therefore, I(0) = 1 and
S(0) = N − 1. The disease will fail to produce additional infections, i.e. fail to invade, if
the rate of change in the infectious compartment is decreasing at time t=0, or

dI
dt

∣∣∣∣
t=0

< 0.

Recalling from Equation (2), the differential equation for I is given by

dI
dt

= β
I
N
S − (γ + μ)I.

Now, we want to evaluate this equation at t=0 by plugging in S=N−1,I=1 and consider
when this equation is negative:

dI
dt

∣∣∣∣
t=0

= β
1
N

(N − 1) − (γ + μ) < 0

We rearrange this inequality to a form which provides biological intuition, and now shifts
the threshold of interest to one (rather than zero when considering whether the size in the
compartment will grow or shrink). Thus,

⇒ β

γ + μ

N − 1
N

< 1.

In other words, the threshold is determined by the product of the transmission rate β with
the quantity 1/(γ + μ) (which is related to the average time spent in the infectious class
and the average lifespan, see Appendix 1) and the initial fraction of susceptible individuals.
Combined this must be ‘small enough’ (i.e. < 1) so that the epidemic cannot take off. As
long as we are considering relatively large population sizes, we can look at the approximate
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behaviour in the limit N → ∞) and simplify such that

β

γ + μ
< 1

implies the disease will die out. A parallel analysis that begins with the question ‘under
what conditions will a disease persist?’ reveals that

β

γ + μ
> 1

implies the disease will persist. This quantity, β/(γ + μ), is defined as the basic reproduc-
tive number for the SIR system. It is a threshold quantity where the ‘critical value’ is at
R0 = 1, and we are now better able to interpret our original definition: if a typical infec-
tious individual infects less than one person on average during the time they are infected
then a disease will die out. In contrast, if a typical infectious individual infects more than
one person on average during the infectious period then the disease will spread. Intuitively,
this makes sense: R0 is the product of the transmission rate and – roughly – the average
amount of time spent in the infectious class.

Notice that this definition includes several important assumptions: (i) R0 is the aver-
age number of onward infections produced by a single individual (and therefore excludes
individual variation), (ii) the average transmissibility among individuals is used in the
definition of R0 (again ignoring individual variation), and (iii) all individuals in the pop-
ulation are susceptible at time t=0. In other more complicated settings, this definition
changes such as when one of these assumptions is broken by the model structure (see
Section 4.1.2 on structured populations). We note that the mathematical form of R0
will differ for each model and numerically will depend on model parameters. How-
ever, almost all methods of computing R0 require examination of when the DFE loses
stability.

As you may expect, the way we have derived the basic reproductive number here by
examining whether the infectious population grows or shrinks at time zero is only possible
when the model framework is simple. However, there are multiple ways to determine R0
in a more general setting, some of which we discuss later (see Section 3).

2.2.3. R0 and equilibrium stability
We are now well-suited to determine the stability of both equilibria for the SIRmodel with
demography. Now that we have found R0 for this model, we can actually simplify the com-
plicated endemic equilibrium (Equation (4)) by replacing the appearance of β/(γ + μ)

with R0:

(S∗, I∗,R∗) =
(

1
R0

N,
μ

β
N (R0 − 1) ,N − S∗ − I∗

)
,

It is no coincidence that R0 keeps appearing. In fact, this threshold is important in evaluat-
ing the stability of our equilibrium. As one might expect, as long as R0 < 1 then the DFE is
stable. More generally, we can use linear stability analysis, i.e. when the eigenvalues of the
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Jacobian matrix evaluated at the DFE have negative real part, to show:

Disease-free equilibrium (DFE) is: Endemic equilibrium is:{
linearly stable if R0 < 1
unstable if R0 > 1

{
unstable if R0 < 1
linearly stable if R0 > 1

We emphasize that when using most standard methods for the computation of R0, which
involve linearization around the DFE, we can really only say something definitively about
the local stability of the DFE. In other words, the derivation of R0 typically depends on
the stability of the DFE. As R0 increases past the critical threshold value of one, the DFE
is destabilized – thereby often, and indeed in the case of the SIRmodel with demography,
this leads to stability of the endemic equilibrium.Wewill introduce an example later where
this is not the case (see Section 4.2.1).

3. Methods for computing R0

In the previous section, we defined the thresholdR0 for disease invasion simply by examin-
ing the sign of the differential equation describing the change in the infectious population
for the SIR model with demography (see Section 2.2.2). We then described how a linear
stability analysis can be used to describe equilibrium stability in terms of R0 of the equi-
libria and observed how R0 provides information on stability properties. See Appendix 4
for a more detailed example of linear stability analysis. This is straightforward for simple
models, but as models increase in complexity they often contain multiple compartments
with infectious individuals, making this process difficult. In this section we introduce a
commonly used method for finding R0: the next generation matrix method (Diekmann,
Heesterbeek, & Johan, 1990; Diekmann, Heesterbeek, & Roberts, 2009). Importantly, this
method is centered on considering the dynamics near the DFE.

3.1. Next generationmatrixmethod

We introduce the next generationmatrix method by demonstrating the process with a par-
ticular example where infected individuals are not immediately infectious. This is a much
more biologically valid assumption for most diseases (e.g. Ebola, influenza, and pertus-
sis), as individuals typically have some delay between infection and becoming infectious.
However, the SIRmodel, where this delay is ignored, is often a reasonable approximation,
especially when the duration of the prior to infectiousness is much shorter than the time
spent infectious. Therefore, we now assume that there is a latent period prior to the onset of
infectiousness in which individuals have been exposed to disease but are not yet capable of
transmission. This class is commonly called the exposed, or E, class and the corresponding
model is known as the SEIRmodel (Figure 2).

In particular, we let σ be the rate at which individuals leave theE class (recall that implies
that 1/σ is the average amount of time spent in the E class), and we can extend the model
in Equation (2) to:

dS
dt

= μN − λ(I)S − μS, (5)
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Figure 2. Schematic representation of the SEIRmodel.λ(I) is the force of infection,σ is the rate atwhich
individuals transition from the exposed class to the infectious class, γ is the recovery rate, and μ is the
natural mortality rate. The dashed arrow indicates the necessity of interaction with the I compartment
for transition from S to E.

dE
dt

= λ(I)S − (σ + μ)E, (6)

dI
dt

= σE − (γ + μ)I, (7)

dR
dt

= γ I − μR, (8)

where N= S+E+I+R. In this model, the force of infection λ(I) is the same as in the SIR
model (λ(I) = βI/N). There are no new infections contributed through interactions with
the exposed individuals, as they are not infectious. If we try to findR0 using the samemeth-
ods as we did for the SIRmodel, we run into trouble. More precisely, when examining the
behaviour of I at t=0, in contrast to the SIRmodel, we cannot factor out an I. Fortunately,
the next generation matrix method allows us to generalize the process of computing R0.

A nice feature of the next generation matrix method is that it only requires use
of the DFE which is often easy to compute. In the SEIR model, the DFE is given by
(S∗,E∗, I∗,R∗) = (N, 0, 0, 0). After determining the DFE, we must create a sub-model that
only considers the ‘disease’ compartments, a subset of the equations in the SEIRmodel. The
disease compartments are those that include individuals that are in any stage of infection
which, for the SEIR model, includes both the exposed and infectious individuals. There-
fore, this sub-model will only contain the E and I equations (i.e. Equations (6)–(7)), which
we write in the form

d�x
dt

= F(�x) − V(�x) (9)

where �x is a vector of the j disease compartments; in the SEIR model j=2 because the
disease compartments are E and I. The right hand sides of Equations (6)–(7) are therefore
contained in the vectors F(�x) and V(�x).

Here, F(�x) contains any terms that directly lead to new infections entering each com-
partment j. Notice that the second element of F is zero because no new infections enter the
I compartment, rather they transition from the E compartment into the I compartment.
V(�x), on the other hand, can be further broken down as

V(�x) = V−(�x) − V+(�x) (10)

where V−(�x) and V+(�x) contain all other outputs and inputs, respectively, from each dis-
ease class. This includes terms such as mortality or transition between classes. Although
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mathematically it is not necessary to separate V(�x), we introduce this notation here as it is
commonly seen in the literature on the next generation method. For the SEIR model, we
can now define the vectors in Equations (9)–(10) as

d�x
dt

=

⎡
⎢⎣
dE
dt
dI
dt

⎤
⎥⎦ = F(�x) − (V−(�x) − V+(�x))

=
[
β
I
N
S

0

]
−

([
(σ + μ)E
(γ + μ)I

]
−

[
0

σE

])

=
[
β
I
N
S

0

]
−

[
(σ + μ)E

(γ + μ)I − σE

]
(11)

Notice, this is exactly equivalent to our sub-model original equations (Equations (6)
and (7)).

Next, we must linearize around the DFE, which involves the Jacobian, i.e. the
matrix of partial derivatives, evaluated at the DFE. Recalling that the DFE is given by
(S∗,E∗, I∗,R∗) = (N, 0, 0, 0), the Jacobian matrix of the sub-model evaluated at the DFE
is given by

J(S∗,E∗, I∗,R∗) =

⎡
⎢⎣

∂E
∂E

∂E
∂I

∂I
∂E

∂I
∂I

⎤
⎥⎦

∣∣∣∣∣∣∣
N,0,0,0

(12)

=
[
−(σ + μ) β

S
N

σ −(γ + μ)

]∣∣∣∣∣
N,0,0,0

(13)

=
[−(σ + μ) β

σ −(γ + μ)

]
. (14)

As a result, we can factor out the vector �x = [ E
I
]
on the right hand side, leaving us with⎡

⎢⎣
dE
dt
dI
dt

⎤
⎥⎦ =

([
0 β

0 0

]
−

[
σ + μ 0
−σ γ + μ

]) [
E
I

]
. (15)

Notice that in the F matrix the only non-zero term β arises from the derivative of the
first row of F with respect to I, evaluated at S=N. To simplify, we define matrices in
Equation (15) as F and V, respectively, and rewrite Equation (15) as

d�x
dt

= (F − V)�x. (16)

Recall from Section 2.2.2 that the ultimate goal is to determine when the number of infec-
tious individuals, I, is increasing or decreasing when the population is near the DFE,
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i.e. when a single infected individual is introduced into an otherwise susceptible popu-
lation. We can now investigate a similar question: when are the compartments containing
the infectious classes increasing or decreasing near the DFE? From linear stability anal-
ysis we know that stability of the DFE is equivalent to the real part of all eigenvalues of
(F − V) being less than zero. From Equation (16), we can extract what is known as the
next generation matrix, or

FV−1.

Here, an analogous threshold (to the eigenvalues of the Jacobian) for when theDFE is stable
is given by the spectral radius of the next generation matrix denoted by

R0 = ρ
(
FV−1) < 1.

where the spectral radius (ρ) is the eigenvalue with the largest magnitude. While we
omit the proof here, it can be found in other sources, e.g. van den Driessche and Wat-
mough (2002).

For the SEIRmodel, the next generation matrix is given by

FV−1 =
⎡
⎣ βσ

(σ + μ)(γ + μ)

β

γ + μ
0 0

⎤
⎦ .

We find the eigenvalues of this matrix are βσ/(γ + μ)(σ + μ) and 0. Here, R0 (or the
spectral radius of FV−1) is given by

R0 = βσ

(γ + μ)(σ + μ)
.

For the SEIR model, notice that R0 is very similar to the basic reproductive number
in the SIR model with demography, (β/(γ + μ)), multiplied with one additional term,
(σ/(σ + μ)). This term leads to a smaller R0 for the SEIRmodel because some individu-
als are lost to natural mortality while in the E class and never actually reach the infectious
class.

While we provided a brief introduction to the next generation matrix in this section
using a particular example (the SEIRmodel), more formal mathematical treatments of this
can be found in other references, e.g. Diekmann andHeesterbeek (2000),Martcheva (2015)
and van den Driessche and Watmough (2002). We also note that analytically finding the
roots of the characteristic polynomial (and thereby finding R0) can be challenging; it is
common to use a symbolic mathematical programme (e.g. Mathematica) or to find it
numerically (e.g. using MATLAB). Furthermore, a great deal of tractability, both math-
ematically and biologically, may be gained by first non-dimensionalizing the model. Such
simplifications may reveal biologically relevant quantities that were obscured by relying
solely on the mathematical computation. We refer the reader to Ledder (2017) for a more
detailed description of non-dimensionalization of models.

3.1.1. A cautionary tale of computing R0
The next generationmatrixmethod is a widely usedmethod for computing R0 for a variety
of compartmental models that have varying degrees of complexity. There are, however,
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instances in which the construction of amodel is not amenable to this – or other – standard
methods for analytically finding R0.

One common example in which R0 cannot be directly computed is when there is
‘importation’. Suppose a particular pathogen follows the standard SEIR structure with
demography as in Equations (5)–(8). Now, assume that there is some external source of
infection that does not depend on the number of infected individuals present in the popu-
lation. For example, an infected individual from another populationmay briefly encounter
a susceptible individual and transmit infection. If we assume the importation rate is given
by φ, then this modifies the force of infection so that

λ(I) = β
I
N

+ φ.

The S and E equations change to ensure that the total population size remains constant.
WhileR0 cannot be computed explicitly for amodel containing infectious imports, some

modeling studies still attempt to take advantage of the information R0 provides in similar
standard models. For example, R0 can first be computed for the model in the absence of
imports (i.e. when φ = 0). This R0 then represents an ‘intrinsic’ basic reproductive num-
ber; that is,R0 in the absence of any spatial processes. The dynamical impact of importation
can then be explored numerically through simulations (e.g. Blackwood, Streicker, Altizer,
& Rohani, 2013). Other models with importation focus on other aspects of the model all
together, such as direct parameterizations that are independent of the preciseR0 value itself
(e.g. Shrestha et al., 2015, 2013).

3.2. Othermethods for finding R0

The next generation matrix is the most commonly used method for finding R0 in standard
disease ecology studies. However, there are alternativemethods such as the graph theoretic
method (de Camino-Beck, Lewis, & van den Driessche, 2009). While we do not discuss
them in this paper, a nice discussion can be found in Heffernan, Smith, and Wahl (2005)
and Li, Blakeley, and Smith (2011).

4. Treading carefully when formulating a diseasemodel

4.1. Formulating the force of infection

Recall that the force of infection gives the per capita rate at which susceptible individuals
acquire infection. Generally, the force of infection, denoted by λ(I) can be broken apart
into three components: (i) the contact rate, (ii) the probability of infection given a contact,
and (iii) the size of the infectious population. The product of the first two is the overall
transmission rate, standardly denoted byβ . Although these quantities are tightly connected
we will address each of them independently, beginning with the infectious population.

4.1.1. Infectious population
When the total population size is constantwe donot need toworry toomuch about how the
infectious population is used within the system. However, if we expect the total population
size to change due to, for example, differing birth and death rates or disease induced mor-
tality, we need to be more careful in its formulation. Throughout our discussion thus far,
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the force of infection λ(I) depended on the infectious proportion of the total population:
I/N.

There are twomainways to incorporate the infectious population into the force of infec-
tion λ(I).We generally assume that transmission is either ‘frequency dependent’ or ‘density
dependent’. In the former, which we have used throughout this paper, λ(I) is independent
of population size and depends on the fraction of individuals who are infected in a pop-
ulation so that λ(I) = βI/N. In the latter, λ increases proportionally with the number of
infected individuals I such that λ(I) = βI. Here, if the density of the infectious population
increases, i.e. there are more infectious individuals in the same area, the force of infection
also increases.

Frequency dependent transmission, also known as standard incidence, is typically used
for sexually transmitted pathogens in human population (Begon et al., 2002; Keeling
& Rohani, 2008). As the population size changes, the number of interactions between
susceptible and infectious individuals does not change. Hence, the relevancy for sexual
transmission, where the number of partners an individual has is likely independent of
the number of individuals near by, at least when the population is not very low. In con-
trast, density dependent transmission allows for reduced interaction between susceptible
and infectious individuals as the population size changes (Begon et al., 2002; Keeling
& Rohani, 2008). Consider a population that is declining due to disease-induced mortal-
ity from a disease with high mortality. As fewer individuals remain, it is more difficult for
individuals to come into contact, reducing the force of infection (Keeling & Rohani, 2008).
Density dependent transmission is typically used to model airborne and directly transmit-
ted infections such as measles or influenza. We remind the reader that these definitions
only differ when the total population size is variable.

Although the vast majority of the literature uses one of these two functions, a variety of
phenomenological non-linear formulations have also been introduced (Begon et al., 2002;
McCallum, Barlow, & Hone, 2001). When altering the transmission function it is essential
that careful consideration is given to the estimation of the transmission rate, β , as the units
of the term must be consistent within the equation. For example, a non-linear force of
infection such as the following

λ(I) = βIq

where β is the transmission rate, I is the number of infected individuals, and 0<q<1 is
a constant defining a power law relationship (Hochberg, 1991; Liu, Levin, & Iwasa, 1986).
The exponent on I requires thatβ take the units ( q√individuals · time)−1 rather than time−1

as discussed above in Section 2.
A further complication ariseswhen the population is subdivided by characteristics other

than those that are disease-related such as risk status or age. Nothing changes when we
consider density-dependent transmission because we are only concerned with the actual
number of infectious individuals from a particular group. However, closer attention to the
details is required when using frequency dependent transmission: the fraction of individ-
uals infectious from a particular class refers to the number infectious of that class divided
by the total number from that class rather than the fraction of the total population of all
infectious individuals.

To demonstrate this, let us consider the case of an age-structured model, pictured in
Figure 3. Although age changes continuously and can be more generally described using
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Figure 3. Schematic representation of the age-structured SIR. SC , IC , and RC represent the total number
of susceptible, infected, and recovered children in a population, and SA, IA, and RA represent the same
classes but in the adult population. λC(IC , IA) and λA(IC , IA) are the forces of infection for the child and
adult classes, respectively, and γC and γA are their recovery rates. Dashed lines indicate transmission
between classes which contribute to the forces of infection, originating from infectious adults (red lines)
or infectious children (blue lines).

a continuous-age model with, for example, partial differential equations (Feng et al., 2016;
Martcheva, 2015), we examine an age-structured model with two discrete age classes so
that our population is sub-divided into children and adults. Such a model would be rel-
evant for infections that spread much faster among children than adults, whether due
to higher susceptibility or greater contact rates. We will use the subscript C to refer to
children populations and the subscript A to refer to adult populations. For example, the
number of susceptible children will be denoted as SC. We assume that the total number
of children is given by NC = SC + IC + RC and the total number of adults is given by
NA = SA + IA + RA. We also assume that children age into the adult compartment at a
rate f and that only adults reproduce and all births enter the SC class. Finally, only adults
are subject to natural mortality so that the total population size remains fixed. Now,

dSC
dt

= μANA − λC(IC, IA)SC − fSC,

dIC
dt

= λC(IC, IA)SC − γCIC − fIC,

dRC
dt

= γCIC − fRC,

dSA
dt

= −λA(IC, IA)SA − μASA + fSC,

dIA
dt

= λA(IC, IA)SA − (γA + μA)IA + fIC,

dRA
dt

= γAIA − μARA + fRC.

A schematic representation of this model is provided in Figure 3.
Notice that we distinguish between the force of infection to children λC(IC, IA) and the

force of infection to adults λA(IC, IA). In the former, the rate at which susceptible chil-
dren become infected will depend on the rate at which susceptible children contact both
infectious adults and children as well as the fraction of the adult and child populations
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that are infectious in their respective populations. Additionally, in contrast to the mod-
els presented earlier, this model contains multiple infectious classes. Therefore, the forces
of infection now depend on both infectious classes. We now assign two subscripts to the
transmission rate so that βij is the transmission rate from individuals in population j to
those in population i, where i and j can take on values ofC orA. Notice that the proportion
of infectious individuals refers to the proportion of each class. Thus, the force of infection
for children and adults, respectively, are

λC(IC, IA) = βCC
IC
NC

+ βCA
IA
NA

,

λA(IC, IA) = βAC
IC
NC

+ βAA
IA
NA

.

4.1.2. Contact rate
Akey component of the force of infection is the quantityβ , i.e. the transmission rate, which,
as described earlier, can be broken down to the product of the probability of transmission
per contact and the contacts per unit time. In many unstructured populations (for exam-
ple, those that do not account for age or sex structure), β can usually be assigned a fixed
value without paying direct attention to the two components that make up this quantity.
However, there are also a lot of model structures that require more nuanced assumptions
on the structure of β . For example, the notion of contacts per time becomes non-trivial
when a population has been grouped by factors other than disease status, such as by age.

We follow from the age-structured model introduced in the previous section. The dif-
ferent βij values are a composition of both the probability of transmission and the contact
rate. Contacts of children with other children or of adults with other adults are easiest to
account for. However, contacts between adults and children must be symmetric, i.e. an
adult contacting a child requires a child contacting an adult. Thus, when recording con-
tacts between individuals as occurs in experimental attempts to estimate contact rates, the
resulting data of total reported contacts will be symmetric (see Table 1 for example data).
However, as long as the total number of children and adults are different, obtaining the
contact rate requires that the total number of reported contacts correct for differences in
population size (Table 2 computes the contact rates associated with the data in Table 1).

Table 1. Total reported contacts over a week
between 50 children and 100 adults.

from Children from Adults

to Children 290 130
to Adults 130 190

Table 2. Calculated contact rates (per week) corresponding to the total
reported contact data provided in Table 1. Here, it is assumed that the are 50
children and 100 adults.

from Children from Adults

to Children
290

50
= 5.8

130

100
= 1.3

to Adults
130

50
= 2.6

190

100
= 1.9
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4.1.3. Conservation of biting
Models of vector-borne diseases where transmission does not occur directly between
humans pose additional complications, as contacts no longermark the interaction between
two individuals. The simplest compartmental model of a vector-borne disease contains
susceptible and infectious populations for both human and vector populations. In this
model, the subscriptsH and V denote variables and parameters that pertain to the human
and vector populations, respectively.Here, wewill consider standard assumptions formany
mosquito-borne illnesses like malaria or dengue that new human infections only originate
from bites of the infected vector population and new infected vectors only occur from bit-
ing an infected human. Furthermore, we ignore human demography to focus on infection
and recovery to a susceptible state at rate γ . Vector demography, as it occurs at a much
shorter time scale relative to humans, will be retained such that vector populations have a
birth and death rate μ. This gives us the following system of ODEs

dSH
dt

= −λH(IH , IV)SH + γ IH ,

dIH
dt

= λH(IH , IV)SH − γ IH ,

dSV
dt

= μNV − λV(IH , IV)SV − μSV ,

dIV
dt

= λV(IH , IV)SV − μIV ,

where NV = SV + IV is the total vector population size (see schematic representation in
Figure 4).

Figure 4. Schematic representation of the vector-borne disease model. SH and SV represent the total
number of susceptible humans and mosquitoes, respectively, and IH and IV represent the total number
of infected humans and mosquitoes, respectively. λH(IH , IV) and λV(IH , IV) are the forces of infection for
human andmosquito populations, respectively. Here, γ is the recovery rate for infections in humans and
this model assumes humans become susceptible to infection again after recovery. Dashed lines indicate
transmission between classes which contribute to the forces of infection: humans become infected only
through contact with an infected mosquito (red line), and mosquitoes only acquire infection through
biting a human (blue line). The only route for mosquitoes to leave the infectious class is by natural
mortality.
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Given how we defined the force of infection in previous sections, our first instinct may
be to define the forces of infection for human and vector populations as follows:

λH(IH , IV) = βHV
IV
NV

, λV(IH , IV) = βVH
IH
NH

(17)

such that the infection of humans is dependent upon the transmission rate βHV from vec-
tors to humans as well as fraction of the vector population that is infected; whereas the
infection of vectors is dependent upon the transmission rate βVH from humans to vec-
tors and the fraction of humans that are infected (NH = SH + IH is the total number of
humans). As in the previous models, the transmission rates βij include both the contact
rate and the probability of transmission given contact. Here, contacts that are capable of
generating infections occur through bites, bi, and we denote the probability of infection by
αij. In other words, we require that the transmission rate from j to i (βij) to be equal to the
product of the contact rate bi and the infection probability αij so that

βij = biαij.

Contact through bites has the symmetrical property such that every bite received by a
human is a bite taken by a vector, a concept referred to as ‘conservation of biting’. We
observed a similar idea in contacts between adults and children in Section 4.1.2. Conse-
quently, the number of bites depends on the population sizes of both the human and vector
populations. To demonstrate what this means, let us assume that bV is the biting rate of a
single mosquito and bH is the rate at which a single human gets bitten per unit time. Then
the total number of bites received by the human population and total number of bites taken
by the mosquitoes should equate as follows:

bHNH = bVNV . (18)

Solving for NV in the equation for conservation of biting (Equation (18)) and substi-
tuting in λH(IH , IV) into our original force of infection equations (Equation (17)) leads
to

λH(IH , IV) = bVαHV
IV
NH

, λV(IH , IV) = bVαVH
IH
NH

.

As the same biting rate appears in both equations, typically the subscript is dropped. As
a note of caution, the canonical model of malaria (known as the Ross-Macdonald model
after Ronald Ross and George Macdonald who contributed to its formulation) often refers
to biting rate by the parameter a (Anderson et al., 1992; Macdonald, 1957; Ross, 1911).
Furthermore, although they use the notion of conservation of biting, the derivation is often
omitted. The appearance of the ratio of mosquitoes to humans, commonly denoted bym,
results from this assumption.

4.2. Disease can persist when R0 < 1

Up to this point, we have assumed that we can define the threshold of disease spread R0
by examining the local behaviour near the DFE. In other words, we generate conditions
for which the DFE becomes unstable (i.e. when R0 > 1) which, in turn, indicates that the
endemic equilibrium exists and is locally stable. However, this scenario is not the only
possibility.
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4.2.1. Backward bifurcations
As it turns out, there exist cases where both the DFE and an endemic equilibrium stably
coexist over a range of parameter values and are separated by an additional unstable equi-
librium. In such cases, R0 is no longer a strict threshold of disease decay and growth. In the
infectious disease literature, these scenarios are commonly termed backward bifurcations.

In these cases, R0 < 1 remains as a requirement for the DFE to be locally stable. How-
ever, the dynamics have changed such that the condition for instability of the disease free
equilibrium (that is, R0 > 1) is no longer equivalent to the condition for the stability of a
biologically relevant endemic equilibrium. Here, we describe the qualitative structure of
the simplest instance where a backward bifurcation is observed. In this case, the system
contains three equilibria.

When R0 << 1 only the DFE exists in the system. As R0 increases, there comes a point
0 < R0 < 1 where two endemic equilibria appear. Mathematically this occurs through
what is known as a saddle node bifurcation (see for example Strogatz, 2014 or most linear
algebra or ODE texts). The appearance of a saddle node bifurcation often arises when the
solution for the endemic equilibrium contains a radical (or square root). For 0 < R0 << 1,
the values of the endemic equilibria are imaginary, i.e. the number under the radical is
negative, and are therefore ignored because biological population sizes are real-valued and
non-negative. However, as R0 increases, the term under the radical may switch from nega-
tive to positive giving rise to two real-valued, biologically relevant endemic equilibria. This
type of equilibrium structure requires that the larger of the newly arisen equilibria is stable
and the smaller is unstable. In the majority of backward bifurcations, as R0 increases the
smaller of the two endemic equilibria eventually intersects the DFE and creates a transcrit-
ical bifurcation (see Strogatz, 2014) atR0 = 1 such that the DFE becomes unstable. Beyond
R0 = 1, the smaller endemic equilibrium is negative and is therefore not biologically real-
istic. Additionally, the positive, biologically relevant endemic equilibrium is always stable
and the DFE is always unstable. Of course, there are more complex equilibrium structures
that may not exactly follow this description, but the fact that R0 = 1 is no longer a strict
threshold for disease persistence always holds in backwards bifurcations.

One example of a system that exhibits this bifurcation structure is that of an Susceptible-
Infectious-Susceptible (SIS) model with an imperfect vaccine (Kribs-Zaleta & Velasco-
Hernandez, 2000) (see schematic in Figure 5). Assuming that the number of individuals in
the vaccinated class is given by V

dS
dt

= μN + θV + γ I − λ(I)S − (μ + φ)S,

dV
dt

= φS − λV(I)V − (μ + θ)V ,

dI
dt

= λ(I)S + λV(I)V − (μ + γ )I,

where N= S+V +I is the total population size, λ(I) = β(I/N) is the force of infection to
the susceptible class, λV(I) = σβ(I/N) is the force of infection to the susceptible class,
β is the transmission rate, μ is the natural birth/mortality rate, θ is the vaccine wan-
ing rate, σ is the ability of vaccinated individuals to produce new infections, γ is the
recovery rate, and φ is the vaccination rate. When the rate of waning of immunity from
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Figure 5. Schematic representation of the SIS model with an imperfect vaccine. Here, λ(I) = β(I/N)

and λV(I) = σβ(I/N) are the force of infection to the susceptible and vaccinated classes, respectively. β
is the transmission rate, θ is the rate of immunity loss, σ represents the ability of vaccinated individuals
to produce new infections, γ is the recovery rate, φ is the vaccination rate, andμ is the natural mortality
rate.

the vaccine exceeds that of recovery rate, it is possible to have a stable endemic equilib-
rium while R0 < 1. As found in Kribs-Zaleta and Velasco-Hernandez (2000), R0(φ) =
(β/(μ + c))((μ + θ + σφ)/(μ + θ + φ)). Varying R0 through the variation of the vac-
cination rate φ yields different dynamics dependent on the value of σ , i.e. the ability of
vaccinated individuals to produce new infections. Figure 6 shows an example of backward

Figure 6. Backward bifurcation in the presence of an imperfect vaccine. (A) The presence of a back-
ward bifurcation occurs with σ = 0.02. Solid line indicates a stable equilibrium while the dashed line
represents unstable. The grey shaded area indicates when two stable equilibria are simultaneously
present. (B) The backward bifurcation is not observed when when the vaccine is perfect σ = 0. Param-
eters are: μ = 0.01; θ = 0.01; γ = 0.5; β = 3.27. φ is varied between 0 and 100. Initial conditions
are: S(0) = 1 − η; I(0) = η; V(0) = 0 with η = 10−4 except near R0 = 1 where η = 10−10 is also
used to capture the stable DFE equilibrium. The model and parameters are motivated by Kribs-Zaleta
and Velasco-Hernandez (2000).
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bifurcation for this system when σ = 0.02 which disappears when the vaccine is perfect,
i.e. σ = 0.

Backwards bifurcations have arisen in the mathematical analysis of a variety of epi-
demiological models (e.g. Arino, McCluskey, & van den Driessche, 2003; Dushoff, Huang,
& Castillo-Chavez, 1998; Hadeler & van den Driessche, 1997; Martcheva & Thieme, 2003;
van denDriessche&Watmough, 2000).However, often the constructions necessary to pro-
duce these dynamics require biologically tenuous assumptions such as in the model above
where the rate of reinfection from the vaccinated state is greater than the rate of returning
to the susceptible state. Another example is a model for Tuberculosis in which a back-
ward bifurcation will occur when infection with re-exposure is more likely than infection
with primary exposure (Feng, Castillo-Chavez, &Capurro, 2000;Martcheva, 2015). To our
knowledge, however, there exists no real-world experimental evidence of the occurrence
of backwards bifurcation in infectious disease systems.

4.2.2. Time varying parameters
The models we have discussed thus far have only considered constant-valued parameters.
However, many of these quantities actually vary with time. Take, for example, the trans-
mission rate, β . Some diseases have seasonal patterns, such measles and flu, which may
be well represented by a periodically varying transmission rate resulting from, for exam-
ple, changes in contact rates corresponding to when children are in school or on extended
breaks. Over the course of a period, assuming frequency or density dependent transmis-
sion, the time varying transmission rate can be replaced, under certain conditions, by
its average in the computation of the reproductive number (Wang & Zhao, 2008; Wes-
ley & Allen, 2009). While R0 for an entire period may be above one, there may be times
when an instantaneous R0 is actually below one. If the epidemic starts at this point in the
transmission cycle with a single infectious individual, it can die out.

5. Conclusions

This paper provides an introduction to modeling infectious disease dynamics with a
focus on several potential pitfalls. We attempt to show when these issues are likely to
arise and how to proceed with models and analyses despite them. This paper provides
an introduction to modeling infectious disease dynamics with a focus on several poten-
tial pitfalls. We attempt to show when these issues are likely to arise and how to proceed
with models and analyses despite them. This paper is intended to serve as a supple-
ment for the many excellent texts on infectious disease dynamics (referenced throughout)
and it provides a concise reference that compiles a range of common issues in disease
modeling.
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Appendices

Appendix 1. Relating constant rates and duration

The common usage of a constant rate of transition between compartments is frequently made for
mathematical simplicity. An underlying assumption for the choice of a constant rate is that average
duration spent within a compartment is exactly the reciprocal of the rate of exit from that compart-
ment. Consider a simplified equation for the infectious (I) compartment, such that only recovery
occurs and there are no new infections:

dI
dt

= γ I. (A1)
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The exit rate from the I compartment, γ , can be found by measuring the average time spent
infectious, d. Specifically, it turns out that γ = 1/d.

To understand the origin of this result, solve Equation (A.1) with an initial condition of I(0) = I0
to obtain the number of infectious individuals at time t

I(t) = I0 exp−γ t . (A2)

Dividing both sides by I0 allows us to rewrite this equation in terms of I(t)/I0, i.e. the fraction of the
originally infectious individuals who are still infectious at time t. This is equivalent to the probability
of remaining infectious at time t.

The complement of this quantity, which we define as F(t; γ ) = 1 − exp(−γ t), is then the prob-
ability of having left the infectious class by time t. Given that the initial time is assumed to be at
t= 0 (that is, there are no infections prior to the initial time), F(t; γ ) is exactly the cumulative dis-
tribution function for a probability distribution known as the exponential distribution where γ is
the rate parameter. Any standard statistical text will demonstrate that the mean of the exponential
distribution with parameter γ is exactly 1/γ , i.e. the average time an individual is infectious.

Appendix 2. SIRmodel in terms of population proportions

As discussed in themain text, the state variables in compartmental models can be written in terms of
proportions of the population instead of the population density. This requires a change of variables,
which we demonstrate here for the SIRmodel without demography (Equation (1) in main text). We
first define the new variables:

S̃ = S
N
, Ĩ = I

N
, R̃ = R

N
so that S̃, Ĩ, and R̃ are the proportions of the population that are susceptible, infectious, and recovered,
respectively. For each of these, we can solve for the state variables as defined in the original model
(Equation (1)) and obtain

S = S̃N, I = ĨN, R = R̃N.
Noting that the total population size,N, is a constant we now substitute the new definition for S into
Equation (1) and

dS
dt

= d(S̃N)

dt
= N

dS̃
dt

and thus replacing dS/dt and plugging in for S and I we obtain

−β
(ĨN)

N
(S̃N) = N

dS̃
dt

which can be simplified by canceling the Ns on both sides of the equation so that

dS̃
dt

= −β ĨS̃.

A similar process applies for the I and R equations, and it can be shown that

dĨ
dt

= β ĨS̃ − γ Ĩ,
dR̃
dt

= γ Ĩ.

In more complexmodels, this change of variables can be applied in a similar way.We refer interested
readers to Ledder (2017) to read more about non-dimensionalization of models in epidemiology.

Appendix 3. SIRmodel without demography

In Section 2.2, we introduced and analyzed the SIR model with demography. Interestingly, it turns
out that if we eliminate demography by settingμ = 0 then the standard analysis of finding equilibria
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and R0 no longer applies in the same way. First, recall the SIRmodel without demography:

dS
dt

= −β
I
N
S,

dI
dt

= β
I
N
S − γ I,

dR
dt

= γ I.

In this model, there is only a DFE. In fact, there are infinitely many DFEs because as long as I= 0
then the value of S and R does not matter.

Suppose we try to findR0 using, for example, the next generationmatrix. In this case, the Fmatrix
is simply a scalar, β(1/N)S and the V matrix is also a scalar given by γ (note that they are scalars
because there is only one infectious class, I). Evaluated at the DFE,

FV−1 = β

γ

so thatR0 = β/γ . Themagnitude ofR0 relative to one determineswhether the disease initially grows
(R0 > 1) or declines (R0 < 1). In contrast to the SIRmodel with demography, you always return to
a disease free state.

Although R0 does not directly relate to the global asymptotic stability of the DFE, it does pro-
vide information on the shape of the epidemic curve. Namely, if R0 < 1 then I is always decreasing.
Consequently, there is no epidemic. If R0 > 1, then I increases until S is equal to γN/β . At that
point, I decreases back towards zero. In this case, the dynamics follow a standard epidemic curve –
increasing cases followed by a peak and eventually extinction of the outbreak. Therefore, although
R0 does not directly impact the global stability of the DFE it does play a substantial role in the short
term epidemic dynamics.

Appendix 4. Linear stability analysis

We show how to perform a linear stability analysis for any two species model through the example
of the SIR model with demography. Notice that since the total population size is constant we only
need to use two equations to describe the system. Thus, our populations are represented by S and I
so that

dS
dt

= μN − β
I
N
S − μS = F1(S, I)

dI
dt

= β
I
N
S − (γ + μ)I = F2(S, I)

with an equilibrium point denoted by (S∗, I∗). Now, suppose that (x(t), y(t)) is a small perturbation
away from the equilibrium such that

x(t) = S(t) − I∗ =⇒ S(t) = x(t) + S∗

y(t) = I(t) − I∗ =⇒ I(t) = y(t) + I∗

Our goal is to determine how the perturbation (x, y) behaves as time increases, so we want to find
the derivatives of x and y. Using the equalities above, this leaves us with

dx
dt

= dS
dt

= F1(S, I) = F1(x + S∗, y + I∗) (A3)

dy
dt

= dI
dt

= F2(S, I) = F2(x + S∗, y + I∗) (A4)

We use the Taylor expansion to approximate these equations near the equilibrium.We now have two
variables, so we need to find the Taylor expansion in two dimensions. Recall that we can approximate
a function f (w, z) at a point (w∗, z∗) using the following:

f (w, z) ≈ f (w∗, z∗) + 1
1!

[
(w − w∗)

∂f (w∗, z∗)
∂w

+ (z − z∗)
∂f (w∗, z∗)

∂z

]
+ h.o.t.

where h.o.t. are higher order terms. We can apply this to Equations (A3) and (A4). Because the
perturbations are assumed to be small, we ignore higher order terms and after some simplification
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we are left with the following linear approximations:

dx
dt

= ∂F1(S∗, I∗)
∂S

x + ∂F1(S∗, I∗)
∂I

y

dy
dt

= ∂F2(S∗, I∗)
∂S

x + ∂F2(S∗, I∗)
∂I

y

We can alternatively write these approximations using slightly different notation:

dx
dt

= ∂F1
∂S

∣∣∣∣
(S∗ ,I∗)

x + ∂F1
∂I

∣∣∣∣
(S∗ ,I∗)

y

dy
dt

= ∂F2
∂S

∣∣∣∣
(S∗ ,I∗)

x + ∂F2
∂I

∣∣∣∣
(S∗ ,I∗)

y

where the vertical bar indicates that the partial derivatives are being evaluated at the equilibrium. It
is more convenient to write this in matrix form, i.e. the Jacobian. We can therefore rewrite the linear
approximation as: ⎡

⎢⎣
dx
dt
dy
dt

⎤
⎥⎦ =

⎡
⎢⎣

∂F1
∂S

∂F1
∂I

∂F2
∂S

∂F2
∂I

⎤
⎥⎦

(S∗ ,I∗)

[
x
y

]
(A5)

To simplify this even further, we make the following definitions:

d�n
dt

=

⎡
⎢⎣
dx
dt
dy
dt

⎤
⎥⎦ , J =

⎡
⎢⎣

∂F1
∂S

∂F1
∂I

∂F2
∂S

∂F2
∂I

⎤
⎥⎦

(S∗ ,I∗)

, �n =
[
x
y

]

Note that matrices will be indicated by bold font and vectors will have an arrow above them.We can
now simply write Equation (A.5) as

d�n
dt

= J�n
where J is called the Jacobian matrix and here it is evaluated at the equilibrium. In the case of the
SIRmodel the Jacobian is ⎡

⎢⎣−β
I∗

N
− μ −β

S∗

N
β
I∗

N
β
S∗

N
− (μ + γ )

⎤
⎥⎦

evaluated at the DFE (S∗, I∗) = (0, 0) makes the linearized system⎡
⎢⎣
dS
dt
dI
dt

⎤
⎥⎦ =

[−μ −β

0 β − (μ + γ )

] [
S
I

]

Note that the Jacobian can be extended to higher dimensions.
As our goal is to determine the long term behaviour of the perturbation from the equilibrium,

we need to understand how �n will change. From calculus we know that in a one dimensional setting

dn(t)
dt

= αn(t) =⇒ n(t) = n0 eα

The dynamics of this equation can then be determined by the sign of α. If it is positive, the per-
turbation grows with time. In contrast if it is negative, the perturbation shrinks with time. Now, if
α represents the Jacobian evaluated around an equilibrium, these dynamics tell us about the stabil-
ity of the equilibrium, i.e. when α < 0 the equilibrium is stable and when α > 0 the equilibrium is
unstable.
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A similar idea applies to higher order systems. Let’s return to our two dimensional system

d�n
dt

= J�n. (A6)

It turns out it is possible to analyze equilibria in a similar manner and a solution of Equation (A.6)
exists and is of the form

�n = eλt �n0 (A7)
where �n0 is a non-zero vector and λ is a constant. Differentiating Equation (A.7) leaves us with

d�n
dt

= λ eλt �n0.
Substituting this into Equation (A.6) gives us that

λ eλt �n0 = J�n
but from Equation (A.7), this means that

λ eλt �n0 = J eλt . �n0
Here, eλt is a non-zero constant so we can divide it out and we are left with

λ �n0 = J �n0 (A8)

Here, �n0 is called an eigenvector and λ is an eigenvalue of the matrix J. Details and further expla-
nation on eigenvalues and eigenvectors can be found in any standard linear algebra or ordinary
differential equation textbook.

Keep in mind that our end goal is to determine how the dynamics change, which given
Equation (A.6) depend on λ. To find λ, we subtract λ �n0 from both sides of Equation (A.8), leaving
us with and we are left with

0 = J �n0 − λI �n0
= (J − λI) �n0

Notice that we cannot simply pull out �n0 from the above equation because J and λ have different
dimensions. Therefore, we needed to introduce a 2x2 identity matrix I.

To have a non-zero solution of this equation the determinant of (J − λI) must equal zero. We
further you to a standard ordinary differential equation text to find the determinant.

Thus, a general solution the two-dimensional system

d�n
dt

= J�n
is given by

�n = c1 eλ1t�n1 + c2 eλ2t�n2
where �n1 and �n2 are the eigenvectors corresponding to the eigenvalues λ1 and λ2, respectively, and
c1 and c2 are arbitrary constants.

In the case of the SIR model we find that the two eigenvalues of J are λ1 = −μ and λ2 = β −
(μ + γ ). As our parameters are all positive to ensure biological realism, λ1 < 0 always. However, λ2
may be positive or negative dependent upon the relative sizes of β andμ + γ . The DFE equilibrium
will be linearly stable when

β − (μ + γ ) < 0.
We can rearrange this quantity to find an equivalent comparison, i.e.

β

(μ + γ )
< 1

Notice, this is in fact our definition of R0. In fact, it can be shown that when R0 < 1 then our eigen-
values are negative and the DFE is linearly stable and when R0 > 1 then at least one eigenvalue is
positive and the DFE is unstable.
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We can now move on to determine what the values of λ mean in terms of linear stability of the
equilibria. Here, we will list the different cases; there are two main cases (each with three subcases
each):

(1) Both eigenvalues λ1 and λ2 are real.
(a) Both eigenvalues are positive. In this case, eλit −→ ∞ for both eigenvalues. In otherwords,

perturbations from equilibrium will always move away from the equilibrium. Therefore,
the equilibrium is unstable.

(b) Both eigenvalues are negative. In this case, eλit −→ 0 for both eigenvalues. In other words,
perturbations from equilibrium will always move back to the equilibrium. Therefore, this
equilibrium is linearly stable.

(c) One eigenvalue is positive and the other is negative. In this case, the equilibrium is seem-
ingly stable in ‘one direction’ and unstable in the other. Therefore, the equilibrium is
unstable. In higher, dimensions, a single positive eigenvalue will be sufficient to make the
equilibrium unstable.

(2) Both eigenvalues are imaginary and given by λ1,2 = a1 ± b1i.
(a) The eigenvalues are purely imaginary (i.e. a1 = 0). Here, we can use Euler’s formula to

examine the long-term behaviour of perturbations equilibria. Without loss of generality,
let’s look at λ1 = b1i. Then

eb1it = cos (b1t) + i sin (b1t). (A9)

The presence of sines and cosines indicates that the dynamics near an equilibrium will
oscillate. Specifically, in this case the solutions to d�n/dt = J�n will neither grow nor decay
and instead oscillate with no damping.

(b) The real part of the eigenvalues is positive (a1 > 0). Here, to determine stability we care
about (again without loss of generality) the long-term behaviour of e(a1+b1i)t . Using Euler’s
formula again, the long-term behaviour of a perturbation will depend on

e(a1+b1i)t = ea1t (cos (b1t) + i sin (b1t)) . (A10)

Since a1 > 0 the exponential term grows and we therefore get oscillations of increasing
magnitude. Therefore, the equilibrium is unstable.

(c) The real part of the eigenvalues is negative (a1 < 0). Again, we are concerned with the
long-term behaviour of e(a1+b1i)t . We will again arrive at Equation (A.10) and since a1 < 0
the exponential term decays and we therefore get oscillations of decreasing magnitude.
Therefore, the equilibrium is linearly stable.

To summarize, an equilibrium is linearly stable if the real part of all eigenvalues is less than zero,
i.e. Re(λi) < 0 for all i. Otherwise we say the equilibrium is unstable.
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