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The raster and PSTH plot is a wonderful graphic. The raster displays the complete set of
spike times for all trials on a single neuron in a particular exponential condition, while the
PSTH accumlates these to show the way the firing rate varies accross time. One reason the
PSTH works well is that our eye is able to smooth the PSTH so that we see the temporal
evolution of the firing rate.
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Once we articulate the goal of estimating the firing rate, however, it is possible to improve the
PSTH by smoothing (often called filtering), as shown in the figure. This talk will describe
physiological motivation for smoothing and methods for carrying it out. We will focus,
especially, on a method called BARS that produces nice, smooth curves like the one shown
here.
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At the outset we would like to be clear that when we speak of “estimating the firing rate” we
mean that we will use the data to produce an estimate of the instantaneous firing rate, which
we write as

� ��  

, at each time

�
, where

�

varies across the whole range of experimentally
interesting values. In other words, we are interested in estimating the curve described by� ��  

.
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In statistics, we usually write an estimate obtained from data with a hat, so

� ��  

should really
be written as

! � ��  

. This emphasizes the distinction between an unknown “true” curve and an
estimate of it.
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Why do we care about instantaneous firing rate? Sometimes, questions of interest require it.
For example, a study in the lab of Carl Olson, our colleague at the Center for the Neural
Basis of Cognition in Pittsburgh, examined neurons in the Supplementary Eye Field (SEF)
when a monkey moved his eyes in response to either an explicit external cue (the point to
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which the eyes were to move was illuminated) or an internally-generated translation of a
complex cue (a particular pattern at fixation point determined the location to which the
monkey was to move his eyes). We were interested in the time at which maximal firing rate
was achieved, and the delay of this maximum for the internally-generated cue compared to
the external cue.
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It would be possible to use the PSTH to estimate the time at which the maximal firing rate is
achieved: find the highest peak ...
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then the time at which it occurs. However, as can be seen in the figure, that estimate would
be noisy.
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A more accurate method is to first fit a smooth curve ...
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and repeat the process for the curve....
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This produces a different value, which better represents the time of peak firing rate under the
rather natural assumption that the firing rate is varying smoothly.
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A second example again comes from Carl Olson’s lab, this time involving neurons from
inferotemporal (IT) cortex. In one condition a stimulus was displayed alone, while in the
second condition a pair of distractors were also illuminated. For the second condition the
damped oscillatory response was more pronounced. One way to quantify this is to measure
the peak-to-trough differences. Again, these may be computed from the fitted curves.
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It is also worth pointing out that, as this figure shows, it can be easier to compare two curves
than to compare two histograms. Here, the two curves are overlayed on top of each other.
Using the curves we have great flexibility in quantifying the distinctions we perceive. The
statistical methods we discuss can be applied to essentially any feature we wish to analyze.
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(in non-Poisson case
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is generalized; we return to this below)

A second reason that we care about instantaneous firing rate is that probability models make
efficient use of the data, and the function

� ��  
is needed in writing down a probability model,

as shown here. This kind of model may be fitted using either maximum likelihood or
Bayesian methods, which often provide nearly identical fits, both methods being optimal in
the sense of statistical efficiency. The issue of efficiency is particularly important when
studying trial-to-trial variation (and its relation to effects such as response time) or when
making real-time predictions (decoding) from multiple neurons recorded simultaneously.
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To illustrate the statistical efficiency of smoothing, consider data simulated from the true
firing rate function shown in this figure.
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When we simulate 16 trials (the number of trials in the SEF data shown earlier) we get the
PSTH shown here.
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We then use the spline-based smooth fit, shown next as “estimated rate.”
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We repeated this three more times to show that there is some variability in the fits: each of
the 4 times we generate new data, we get a new PSTH and a new smooth fitted curve. Now
consider what happens when we repeat this process 1000 times, each time using the same
firing rate function. We can evaluate how close each of the 1000 PSTH and spline-based fits
are to the true firing rate curve and, thus, we can compare the accuracy of the two methods.
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This figure shows the 95% bands for the PSTH: 95% of the 1000 PSTH values (at each point
in time

�

) fall inside the wide pair of bands surrounding the true firing rate curve. In this figure
each of the 1000 simulated data sets was based on 16 trials.
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We summarize numerically by computing the mean integrated squared error (MISE), a
measure of the amount by which the PSTH misses the true value, on average. It is 4.68
(spikes/sec)

w

.
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We next do the same for the spline-fitted smooth curves: we find for this method that 95% of
the fitted values fall inside the much narrower pair of bands (shown as small dotted bands).
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Furthermore, the mean integrated squared error is now only 0.34, which is 14 times smaller
than that for the PSTH. This means that when the PSTH is used to estimate firing rate, 14
times as much data are needed.
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In this last version of the figure we now add a pair of bands obtained from the PSTH when
224 trials are used rather than 16 (because 224 = 14 � 16). This shows that the accuracy in
estimating the firing rate using spline smoothing based on 16 trials is the same as the
accuracy using the PSTH based on 224 trials. Clearly it is very much better to use
smoothing when estimating the instantaneous firing rate.
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There are many ways to accomplish the smoothing or filtering. We happen to like
spline-based methods, which we will explain briefly in a moment. In this figure we return to
the SEF data and show a PSTH together with a spline-based smooth version of it.
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In this overlay we have added an alternative smoothed version of the PSTH, this time
produced using a Gaussian filter, or, what in the statistical literature is called a kernel density
estimate. The two methods give very similar fitted curves. The reason the two methods
agree well is that the firing rate is in this case varying quite slowly.
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A different example, now from another experiment on IT neurons from Carl Olson’s lab,
shows a case in which the Gaussian filter has difficulty. Note the wiggliness of the fitted
curve it produces, together with its inability to track the quick increase in firing rate. The
difficulty here is due to the uneven variation of the function: it begins relatively flat, then at
around 100 ms after time 0 it has a very steep increase, and then has a relatively smooth
decline. The Gaussian filter, which is linear, has a fixed amount of smoothing it applies
throughout the range of time. What is needed, instead, is a variable (nonlinear) amount of
smoothing, that is, what we might call an adaptive method.
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An adaptive method called BARS is shown in the overlay. It succeeds in capturing what we
believe are the essential features of the firing rate curve. We next briefly outline what BARS
is, and why we like it.
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BARS uses cubic splines. A cubic spline is a piecewise cubic polynomial: several cubic
pieces are joined at locations called “knots,” shown at locations

�A B � w , and

��� in the figure.
The pieces are constrained so that the resulting curve is smooth (it is twice continuously
differentiable). When we use a spline to fit a curve to some data we must begin by choosing
how many knots to use and where these knots will go. This determines how smooth the
curve will be in each interval of time. From a statistical point of view, choosing the knots is
the hard part of the problem.
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Bayesian Adaptive Regression Splines (BARS) DiMatteo, Genovese, Kass (Biometrika,
2001)

� Monte Carlo simulation method� searches for number of knots and locations of knots� produces optimally fitted curve and assessments of uncertainty

BARS, which stands for Bayesian Adaptive Regression Splines, was defined and studied in a
recent paper by DiMatteo, Genovese, and Kass (Biometrika, 2001). In the statistical
literature, this kind of application of splines is called “regression splines” because the fitting
procedure uses linear regression and its generalizations. BARS uses a Bayesian Monte
Carlo method to search through the space of possible numbers of knots and their locations,
and to provide an optimally fitted curve based on this search. It also provides assessments
of statistical uncertainty, which is crucial for the sorts of applications we outlined above.
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For IT neuron: peak minus trough difference�� � ¡ � D ¢  

spikes/sec greater for Condition 2 than for Condition 1

For example, in the comparison of distractor and non-distractor conditions in the IT neuron
shown earlier DiMatteo et al. computed both an estimated difference in peak minus trough
heights of 50 and also a standard error of 20.8 spikes per second to indicate uncertainty in
the estimate.
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SARS DMS BARS

Example 1 0.144 (0.030) 0.206 (0.029) 0.061 (0.007)

Example 2 0.015 (0.001) 0.025 (0.002) 0.008 (0.001)

Example 3 0.044 (0.006) 0.106 (0.007) 0.018 (0.003)

DiMatteo et al. showed in a simulation study that BARS reduces the mean integrated
squared error (MISE) of the fitted curve substantially compared to other methods in the
literature. The table shows MISE (with standard error) for BARS along with two
recently-published methods, which themselves were shown to work well compared to other
available methods. BARS appears to be the best available method for adaptive fitting of
smooth firing rates.
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@A B D D DB @U are spike times prior to

�
We would like to mention, briefly, two other applications of spline-based smoothing. The first
applies to situations where the non-Poisson nature of neural spiking activity may play an
important role in data analysis. According to the Poisson process model the probability of a
spike at time

�

is

� ��  £ �

. Please note that some people when they refer to a Poisson model
mean a constant, time-invariant firing rate, but here we use the term in its more general
time-varying or inhomogeneous form, which specifically allows for a time-varying firing rate
(as we observe in experimental data). The beauty of the Poisson model is that the firing rate
depends only on time. To generalize, we must allow the firing rate to depend also on past
spikes, as shown in the second line here. This general form, however, is too general to be
useful: we now have a

�
function that depends not only on time

�

but also on the values of all
the spike times prior to

�
, and to fit this firing rate empirically from the data is an impossibly

difficult task.
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General prob. spike at time
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@A B D D DB @U are spike times prior to

�
IMI prob. spike at time

�

:
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@¨¦ ��  

is time of previous spike
IMI stands for Inhomogeneous Markov Interval process

To simplify things Kass and Ventura (2001, Neural Computation) introduced Inhomogeneous
Markov Interval (or IMI) processes. The simplification here is that the firing rate now depends
on only two variables: time

�

, and the time since the last spike prior to

�

.
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General prob. spike at time
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@A B D D DB @U are spike times prior to

�
IMI prob. spike at time

�

:

� ��B � ¥ @§¦ ��   £ �

@¨¦ ��  

is time of previous spike
IMI stands for Inhomogeneous Markov Interval process
splines may be used to fit

� ��B � ¥ @¨¦ ��   
This allows the same kind of empirical fitting as we showed previously, using spline methods,
now complicated in a manageable way by involving a function of two variables rather than
one. Kass and Ventura noted that standard software could be used to fit this non-Poisson
probability model.
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The fit of various probability models may be displayed using a graphical method known as a
Q-Q plot, as discussed by Brown, Barbieri, Ventura, Kass, and Frank (2001, Neural
Computation). In the q-q plot, a statistically good fit of a model is indicated by a nearly
diagonal curve that falls within a set of 95% bands. In this figure, taken from the Brown et al.
paper, goodness-of-fit for the PSTH, the inhomogeneous Poisson, and the IMI model are all
displayed. It may be seen that the Poisson model improves substantially on the PSTH, but
the IMI model improves further on the Poisson and may be judged to fit the data well.
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prob. of spike at time
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for neuron 1: FA ��  

prob. of spike at time

�

for neuron 2: F w ��  

prob. of simultaneous spike at time

�

: FA w ��  

independence model: FA w ��  H FA ��  F w ��  

Our final application of spline-based smoothing is to the study of correlated firing in a pair of
neurons. Here we examine the simultaneous firing of two neurons, with simultaneity defined
as coincident spikes occurring within a specified window of time such as 1 millisecond. The
statistical issues are, first, whether there is any evidence that the coincident firing is due to
sources other than chance, i.e., whether the independence model, shown here, is
inadequate and, second, if so, what the departures from independence may be.
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prob. of spike at time

�

for neuron 1: FA ��  

prob. of spike at time

�

for neuron 2: F w ��  

prob. of simultaneous spike at time

�

: FA w ��  

independence model: FA w ��  H FA ��  F w ��  

replace independence model with

FA w ��  H FA ��  F w ��  � ��  

We consider two possibilities. First we introduce a function

� ��  

, which models the
time-dependent change in the simultaneous firing rate beyond what would be predicted by
the independence model.
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prob. of spike at time

�

for neuron 1: FA ��  

prob. of spike at time

�

for neuron 2: F w ��  

prob. of simultaneous spike at time

�

: FA w ��  

independence model: FA w ��  H FA ��  F w ��  

replace independence with

FA wª© ��  H «A © « w © FA ��  F w ��  � ��  
where

¬

signifies

¬

-th trial

In addition, we introduce constants representing global increments in each neuron’s firing
rate on particular trials. Thus, «A ©is a multiplicative increment (or decrement) of the firing rate
for neuron 1 on the

¬

th trial. The reason we add these coefficients is that we are thereby able
to resolve two distinct features of coincident firing that are otherwise confounded in the joint
PSTH and cross-correlogram: we can separate the effects that act to produce an excess (or
deficit) in coincident spiking globally across time (the « ©’s) from those that produce an
excess (or deficit) in a time-dependent fashion (the

� ��  

function). Having formalized the
problem this way we may now apply spline-based methods to estimate

� ��  

from data.
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We will illustrate with data simulated from a model that includes both a time-dependent

� ��  

function and coefficients « ©representing trial-to-trial variability. In this figure we show the
firing rate functions for the two neurons, together with the

� ��  

function representing excess
coincident spiking that we used in our simulation study. If

� ��  

were equal to the constant 1,
the independence model would hold. The « ©values (not shown) were assumed equal for
neuron 1 and neuron 2 and were generated from a Gamma distribution having mean 1.
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We simulated 100 trials of data. In this figure we show the spline-fitted

� ��  

function from one
of the data sets. It does a reasonably good job of uncovering the true time-varying excess in
coincident spiking. Here the thick line is the true curve

� ��  

and the thin line is the fitted
curve.
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It is important that we included estimates of the « ©coefficients in our fitting method (the
details of which we are omitting here). If we fail to do so, we get the dashed curve shown
here, which is too high. We are trying to make two points here. First, a simple probability
model can separate the effects of trial-related increase in neuronal activity from
time-dependent coincident spiking. Second, spline-based fitting may be used to estimate
these effects from data. Using our spline-based fits we can obtain confidence intervals or
evaluate whether the effects we see are likely to occur due to chance alone.
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In this last slide we show 95% simulation bands for
� ��  

under the null hypothesis that

� ��  

is
equal to 1, i.e., that there is no time-dependent increase in coincident firing above what is
implied by the independence model together with any global (time-invariant) increase or
decrease in firing rates on particular trials. The fitted curve clearly
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falls outside these bands for some values of

�
, which indicates that there is an increase in

coincident firing over an interval of time. These bands were obtained by bootstrap methods.
In addition, found that this degree of variation above the simulation bounds would occur by
chance with a probability of F ã D � � � �

. Although the data were simulated, our intention here
is to illustrate the sort of results that may be obtained by spline-based fitting combined with
modern statistical inference methods such as the bootstrap.
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Summary: The Main Ideas and Two Remarks� We estimate instantaneous firing rate because
* questions of interest often require instantaneous firing rate;
* probability models involving instantaneous firing rate make efficient use of the data.

As an estimate of firing rate the PSTH can be greatly improved by smoothing.

Splines are easy to use, but the trick is to pick the number and locations of the knots;
BARS is currently the best available method

In addition to smoothing the PSTH, spline-based methods are useful for modeling
* non-Poisson spike trains;
* correlated firing among pairs of neurons.

BARS has also been applied to fMRI and EEG analysis.

BARS is computationally-intensive. We are working on faster methods that retain desirable
features.
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