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Introduction 
 
Several months ago, Phil Bourne, the initiator and frequent author of the wildly successful 
and incredibly useful “10 Simple Rules” series, suggested that some statisticians put together 
a 10 Simple Rules article related to Statistics. (One of the rules for writing a PLOS ten simple 
rules article is to be Phil Bourne [1].  In lieu of that, we hope effusive praise for Phil will 
suffice.)  
 
Implicit in the guidelines for writing 10 simple rules [1] is “know your audience.”  We 
developed our list of rules with researchers in mind: researchers having some knowledge of 
statistics, possibly with one or more statisticians available in their building, or possibly with a 
healthy do-it-yourself attitude and a handful of statistical packages on their laptops.  We drew 
on our experience in both collaborative research and teaching, and, it must be said, with our 
frustration of being asked, more than once, to “take a quick look at my student’s thesis/my 
grant application/my referee’s report: it needs some input on the stats, but it should be pretty 
straightforward”.    
 
There are some outstanding resources available that explain many of these concepts clearly 
and in much more detail than we have been able to do here: among our favorites are Cox 
and Donnelly [2], Leek [3], Peng [4], Kass et al. [5], Tukey [6] and Yu [7].   
 
Caveat:  Every article on statistics requires at least one caveat. Here is ours. We refer in this 
article to “science” as a convenient short-hand for investigations using data to study 
questions of interest.  This includes social science, and engineering, and digital humanities, 
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and finance, and so on.  Statisticians are not shy about reminding administrators that 
statistical science has an impact on nearly every part of almost all organizations. 

Rule 1: Statistical methods should enable data to answer scientific questions. 
 
A big difference between inexperienced users of statistics and expert statisticians appears as 
soon as they contemplate the uses of some data. While it is obvious that experiments 
generate data to answer scientific questions, inexperienced users of statistics tend to take for 
granted the link between data and scientific issues and, as a result, may jump directly to a 
technique based on data structure rather than scientific goal. For example, if the data were in 
a table, as for microarray gene expression data, they might look for a method by asking, 
“Which test should I use?” while a more experienced person would, instead, start with the 
underlying question, such as, “Where are the differentiated genes?” and, from there, would 
consider multiple ways the data might provide answers. Perhaps a formal statistical test 
would be useful, but other approaches might be applied as alternatives, such as heat maps 
or clustering techniques. Similarly, in neuroimaging understanding brain activity under 
various experimental conditions is the main goal; illustrating this with nice images is 
secondary. This shift in perspective from statistical technique to scientific question may 
change the way one approaches data collection and analysis. After learning about the 
questions, statistical experts discuss with their scientific collaborators the ways that data 
might answer these questions, and thus what kinds of studies might be most useful; together, 
they try to identify potential sources of variability, and what hidden realities could break the 
hypothesized links between data and scientific inferences; and only then do they develop 
analytic goals and strategies. This is a major reason why collaborating with statisticians can 
be helpful, and also why the collaborative process works best when initiated early in an 
investigation. See Rule 3. 
 

Rule 2: Signals always come with noise. 
 
Grappling with variability is central to the discipline of statistics. Variability comes in many 
forms. In some cases variability is good, since we need variability in predictors to explain 
variability in outcomes. For example, to determine if smoking is associated with lung cancer, 
we need variability in smoking habits; to find genetic associations with diseases, we need 
genetic variation.  Other times variability may be annoying, such as when we get three 
different numbers when measuring the same thing three times. This latter variability is usually 
called “noise,” in the sense that it is either not understood or thought to be irrelevant.  
Statistical analyses aim to assess the signal provided by the data, the interesting variability, 
in the presence of noise, or irrelevant variability.  
 



 
 

A starting point for many statistical procedures is to introduce a mathematical abstraction: 
outcomes, such as patients being diagnosed with specific diseases, or receiving numerical 
scores on diagnostic tests, will vary across the set of individuals being studied, and statistical 
formalism describes such variation using probability distributions. Thus, for example, a data 
histogram might be replaced, in theory, by a probability distribution, thereby shifting attention 
from the raw data to the numerical parameters that determine the precise features of the 
probability distribution, such as its shape, its spread, or the location of its center. Probability 
distributions are used in statistical models, with the model specifying the way signal and 
noise get combined in producing the data we observe, or would like to observe. This 
fundamental step makes statistical inferences possible. Without it, every data value would be 
considered unique, and we would be left trying to figure out all the detailed processes that 
might cause an instrument to give different values when measuring the same thing several 
times. Conceptualizing signal and noise in terms of probability within statistical models has 
proven to be an extremely effective simplification, allowing us to capture the variability in data 
in order to express uncertainty about quantities we are trying to understand.  The formalism 
can also help by directing us to look for likely sources of systematic error, known as bias. 
 
Big data makes these issues more important, not less.  For example, Google Flu Trends 
debuted to great excitement in 2008, but turned out to over-estimate the prevalence of 
influenza by nearly 50%, largely due to bias caused by the way the data were collected; see 
Harford [8], for example. 
 

Rule 3: Plan ahead, really ahead. 
 
When substantial effort will be involved in collecting data, statistical issues may not be 
captured in an isolated statistical question such as, “What should my n be?” As we 
suggested in Rule 1, rather than focusing on a specific detail in the design of the experiment, 
someone with a lot of statistical experience is likely to step back and consider many aspects 
of data collection in the context of overall goals, and may start by asking, “What would be the 
ideal outcome of your experiment, and how would you interpret it?” In trying to determine 
whether observations of X and Y tend to vary together, as opposed to independently, key 
issues would involve the way X and Y are measured, the extent to which the measurements 
represent the underlying conceptual meanings of X and Y, the many factors that could affect 
the measurements, the ability to control those factors, and whether some of those factors 
might introduce systematic errors (bias).  
 
In Rule 2 we pointed out that statistical models help link data to goals by shifting attention to 
theoretical quantities of interest. For example, in making electrophysiological measurements 
from a pair of neurons, a neurobiologist may take for granted a particular measurement 



 
 

methodology along with the supposition that these two neurons will represent a whole class 
of similar neurons under similar experimental conditions. On the other hand a statistician will 
immediately wonder how the specific measurements get at the issue of co-variation; what the 
major influences on the measurements are, and whether some of them can be eliminated by 
clever experimental design; what causes variation among repeated measurements, and how 
quantitative knowledge about sources of variation might influence data collection; and 
whether these neurons may be considered to be sampled from a well-defined population, 
and how the process of picking that pair could influence subsequent statistical analyses. A 
conversation that covers such basic issues may reveal possibilities an experimenter has not 
yet considered. 
 
Asking questions at the design stage can save headaches at the analysis stage: careful data 
collection can greatly simplify analysis, and make it more rigorous. Or, as Sir Ronald Fisher 
put it: “To consult the statistician after an experiment is finished is often merely to ask him to 
conduct a post mortem examination. He can perhaps say what the experiment died of” [9].  
As a good starting point for reading on planning of investigations, see Chapters 1 through 4 
of [2]. 
 
 

Rule 4: Worry about data quality. 
 

Well-trained experimenters understand instinctively that when it comes to data analysis, 
“garbage in produces garbage out.” However, the complexity of modern data collection 
requires many assumptions about the function of technology, often including data pre-
processing technology. It is highly advisable to approach pre-processing with care, as it can 
have profound effects that easily go unnoticed.  
 
Even with pre-processed data, further considerable effort may be needed prior to analysis; 
this is variously called “data cleaning,” “data munging,” or “data carpentry.” Hands-on 
experience can be extremely useful, as data cleaning often reveals important concerns about 
data quality, in the best case confirming that what was measured is indeed what was 
intended to be measured, and in the worst case ensuring that losses are cut early.   
 
Units of measurement should be understood, and recorded consistently. It is important that 
missing data values can be recognized as such by relevant software. For example, 999 may 
signify the number 999, or it could be code for “we have no clue.” There should be a 
defensible rule for handling situations such as “non-detects,” and data should be scanned for 
anomalies such as variable 27 having half its values equal to 0.00027. Try to understand as 
much as you can how these data arrived at your desk or disk.  Why are some data missing or 



 
 

incomplete? Did they get lost through some substantively relevant mechanism? 
Understanding such mechanisms can help to avoid some seriously misleading results.  For 
example,  in a developmental imaging study of attention deficit hyperactivity disorder, might 
some data have been lost from children with the most severe hyperactivity because they 
could not sit still in the MR scanner? 
 
Once the data have been wrestled into a convenient format, have a look! Tinkering around 
with the data, also known as exploratory data analysis, is often the most informative part of 
the analysis. Exploratory plots can reveal data quality issues and outliers. Simple summaries 
such as means, standard deviations and quantiles can help refine thinking and offer face 
validity checks for hypotheses. Many studies, especially when going in completely new 
scientific directions, are exploratory by design; the area may be too novel to include clear a 
priori hypotheses. Working with the data informally can help generate new hypotheses and 
ideas. However, it is also important to acknowledge the specific ways data are selected prior 
to formal analyses, and to consider how such selection might affect conclusions. And it is 
important to remember that using a single set of data to both generate and test hypotheses is 
problematic.  See Rule 9.  
 

Rule 5: Statistical analysis is more than a set of computations. 
 
Statistical software provides tools to assist analyses, not define them.  The scientific context 
is critical, and the key to principled statistical analysis is to bring analytic methods into close 
correspondence with scientific questions. See Rule 1. While it can be helpful to include 
references to a specific algorithm or piece of software in the Methods section of a paper, this 
should not substitute for an explanation of the choice of statistical method in answering a 
question. A reader will likely want to consider the fundamental issue of whether the analytic 
technique is appropriately linked to the substantive questions being answered. Don’t make 
the reader puzzle over this: spell it out clearly.   
 
At the same time, a structured algorithmic approach to the steps in your analysis can be very 
helpful in making this analysis reproducible, by yourself at a later time, or by others with the 
same, or similar data.  See Rule 10. 
 

Rule 6: Keep it simple. 
 

All else being equal, simplicity trumps complexity.  This rule has been rediscovered and 
enshrined in operating procedures across many domains, and variously described as 
“Occam’s razor”, “KISS”,  “less is more”, and “simplicity is the ultimate sophistication.” The 



 
 

principle of parsimony can be a trusted guide: start with simple approaches and only add 
complexity as needed, and then only add as little as seems essential.  
 
Having said this, scientific data have detailed structure, and simple models can’t always 
accommodate important intricacies.  The common assumption of independence is often 
incorrect, and nearly always needs careful examination. See Rule 8.  Large numbers of 
measurements, interactions among explanatory variables, nonlinear mechanisms of action, 
missing data, confounding, sampling biases, and so on, can all require an increase in model 
complexity.  
 
Keep in mind that good design, implemented well, can often allow simple methods of 
analysis to produce strong results. See Rule 3.  Simple models help us to create order out of 
complex phenomena, and simple models are well suited for communication to our colleagues 
and the wider world. 
 

Rule 7: Provide assessments of variability. 
 

Nearly all biological measurements, when repeated, exhibit substantial variation, and this 
creates uncertainty in the result of every calculation based on the data.  A basic purpose of 
statistical analysis is to help assess uncertainty, often in the form of a standard error or 
confidence interval, and one of the great successes of statistical modeling and inference is 
that it can provide estimates of standard errors from the same data that produce estimates of 
the quantity of interest. When reporting results it is essential to supply some notion of 
statistical uncertainty.  A common mistake is to calculate standard errors without taking into 
account the dependencies among data or variables, which usually means a substantial 
underestimate of the real uncertainty. See Rule 8.  
 
Remember that every number obtained from the data by some computation would change 
somewhat, even if the measurements were repeated on the same biological material.  If you 
are using new material, you can add to the measurement variability an increase due to the 
natural variability among samples.  If you are collecting data on a different day, or in a 
different lab, or under a slightly changed protocol, there are now three more potential sources 
of variability to be accounted for.  In micro-array analysis, batch effects are well-known to 
introduce extra variability, and several methods are available to filter these.   Extra variability 
means extra uncertainty in the conclusions, and this uncertainty needs to be reported.  Such 
reporting is invaluable as well for planning the next investigation. 
 
It is a very common feature of big data that uncertainty assessments tend to be overly 
optimistic (Cox [10], Meng [11]). For an instructive, and beguilingly simple, quantitative 



 
 

analysis most relevant to surveys, see the “data defect” section of [11].  Big data is not 
always as big as it looks: a large number of measurements on a small number of samples 
requires very careful estimation of the standard error, not least because these measurements 
are quite likely to be dependent. 
 
Rule 8: Check your assumptions.  
 
Every statistical inference involves assumptions, assumptions that are based on substantive 
knowledge and some probabilistic representation of data variation----this is what we call a  
statistical model.  Even the so-called “model-free” techniques do require assumptions, albeit 
less restrictive assumptions, so this terminology is somewhat misleading.  
 
The most common statistical methods involve an assumption of linear relationships. For 
example, the ordinary correlation coefficient, also called Pearson correlation, is a measure of 
linear association. Linearity often works well as a first approximation, as a depiction of a 
general trend, especially when the amount of noise in the data makes it difficult to distinguish 
between linear and nonlinear relationships. However, for any given set of data, the 
appropriateness of the linear model is an empirical issue, and should be investigated.  
 
In many ways a more worrisome, and very common, assumption in statistical analysis is that 
multiple observations in the data are statistically independent. This is worrisome because 
relatively small deviations from this assumption can have drastic effects. When 
measurements are made across time, for example, the temporal sequencing may be 
important; if it is, specialized methods appropriate for time series need to be considered. 
 
In addition to nonlinearity and statistical dependence, missing data, systematic biases in 
measurements, and a variety of other factors can cause violations of statistical modeling 
assumptions, even in the best experiments. Widely available statistical software makes it 
easy to perform analyses without careful attention to inherent assumptions, and this risks 
inaccurate, or even misleading, results.  It is therefore important to understand the 
assumptions embodied in the methods you are using, and to do whatever you can to 
understand and assess those assumptions. At a minimum you will want to check how well 
your statistical model fits the data. Visual displays and plots of data and of residuals from 
fitting are helpful for evaluating the relevance of assumptions and the fit of the model, and 
some basic techniques for assessing model fit are available in most statistical software. 
Remember though that several models can “pass the fit test” on the same data. See Rule 1 
and Rule 6. 
 



 
 

Rule 9: When possible, replicate!  
 
Every good analyst examines the data at great length, looking for patterns of many types, 
searching for predicted and unpredicted results. This process often involves dozens of 
procedures, including many alternative visualizations and a host of numerical slices through 
the data. Eventually, some particular features of the data are deemed interesting and 
important, and these are often the results reported in the resulting publication.  
 
When statistical inferences, such as p-values, follow extensive looks at the data, they no 
longer have their usual interpretation. Ignoring this reality is dishonest: it is like painting a 
bull’s eye around the landing spot of your arrow.  This is known in some circles as p-hacking, 
and much has been written about its perils and pitfalls: see, for example, [12] and [13]. 
Recently there has been a great deal of criticism of the use of p-values in science, largely 
related to the misperception that results can’t be worthy of publication unless “p is less than 
0.05”.  The recent statement from the American Statistical Association [14] presents a 
detailed view of the merits and limitations of the p-value.    
 
Statisticians tend to be aware of the most obvious kinds of data snooping, such as choosing 
particular variables for a reported analysis, and there are methods that can help adjust 
results in these cases; the False Discovery Rate method of Benjamini and Hochberg [15] is 
the basis for several of these. 
 
For some analyses there may be a case that some kinds of preliminary data manipulation are 
likely to be innocuous. In other situations analysts may build into their work an informal check 
by trusting only extremely small p-values. For example, in high energy physics the 
requirement of a “5-sigma” result is at least partly an approximate correction for what is 
called the “look-elsewhere effect”. 
 
The only truly reliable solution to the problem posed by data snooping is to record the 
statistical inference procedures that produced the key results, together with the features of 
the data to which they were applied, and then to replicate the same analysis using new data. 
Independent replications of this type often go a step further by introducing modifications to 
the experimental protocol, so that the replication will also provide some degree of robustness 
to experimental details.  
 
Ideally, replication is performed by an independent investigator. The scientific results that 
stand the test of time are those that get confirmed across a variety of different, but closely 
related situations.  In the absence of experimental replications, appropriate forms of data 
perturbation can be helpful (Yu [16]).  In many contexts complete replication is very difficult or 



 
 

impossible, as in large-scale experiments such as multi-center clinical trials.  In such cases a 
minimum standard would be to follow Rule 10. 
 

Rule 10: Make your analysis reproducible.  
 
In our current framework for publication of scientific results, the independent replication 
discussed in Rule 9 is not practical for most investigators. A different standard, which is 
easier to achieve, is reproducibility: given the same set of data, together with a complete 
description of the analysis, it should be possible to reproduce the tables, figures and 
statistical inferences. However, even this lower standard can face multiple barriers, such as 
different computing architectures, software versions and settings. 

One can dramatically improve the ability to reproduce findings by being very systematic 
about the steps in the analysis (see Rule 5), by sharing the data and code used to produce 
the results, and by following Goodman et al [17].   Modern reproducible research tools like 
Sweave [18], knitr [19] and iPython [20] notebooks take this a step further and combine the 
research report with the code. Reproducible research is itself an ongoing area of research, 
and a very important area that we all need to pay attention to. 

 
Conclusion 
 
Mark Twain popularized the saying, “There are three kinds of lies: lies, damned lies, and 
statistics”. It is true that data are frequently used selectively to give arguments a false sense 
of support. Knowingly misusing data, or concealing important information about the way data 
and data summaries have been obtained, is of course highly unethical. More insidious, 
however, are the widespread instances of claims made about scientific hypotheses based on 
well-intentioned yet faulty statistical reasoning. One of our chief aims here has been to 
emphasize succinctly many of the origins of such problems, and ways to avoid the pitfalls. 
 
A central and common task for us as research investigators is to decipher what our data are 
able to say about the problems we are trying to solve. Statistics is a language constructed to 
assist this process, with probability as its grammar.  While rudimentary conversations are 
possible without good command of the language (and are conducted routinely), principled 
statistical analysis is critical in grappling with many subtle phenomena, to ensure that nothing 
serious will be lost in translation, and to increase the likelihood that your research findings 
will stand the test of time.  To achieve full fluency in this mathematically sophisticated 
language requires years of training and practice, but we hope the 10 simple rules laid out 
here will provide some essential guidelines. 
 



 
 

Among the many articles reporting on the ASA statement on p-values, we particularly liked a 
quote from biostatistician Andrew Vickers in [21]: “treat statistics as a science, not a recipe”.  
This is a great candidate for Rule 0. 
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