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Abstract Point process regression models, based on
generalized linear model (GLM) technology, have been

widely used for spike train analysis, but a recent pa-

per by Gerhard et al. described a kind of instability, in

which fitted models can generate simulated spike trains

with explosive firing rates. We analyze the problem by
extending the methods of Gerhard et al. First, we im-

prove their instability diagnostic and extend it to a

wider class of models. Next, we point out some common

situations in which instability can be traced to model
lack of fit. Finally, we investigate distinctions between

models that use a single filter to represent the effects

of all spikes prior to any particular time t, as in a 2008

paper by Pillow et al., and those that allow different

filters for each spike prior to time t, as in a 2001 pa-
per by Kass and Ventura. We re-analyze the data sets

used by Gerhard et al., introduce an additional data

set that exhibits bursting, and use a well-known model

described by Izhikevich to simulate spike trains from
various ground truth scenarios. We conclude that mod-

els with multiple filters tend to avoid instability, but

there are unlikely to be universal rules. Instead, care in

data fitting is required and models need to be assessed

for each unique set of data.
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1 Introduction

Point process regression models based on the frame-

work of generalized linear models (GLMs) have been
applied to a wide variety of spiking neuron data (Kass

et al. (2014), Weber and Pillow (2017), and references

therein). These models, which may be considered non-

linear Hawkes processes (Chen et al., 2017; Eichler et al.,

2017), allow neural firing rates to depend on spiking
history. Recently, however, Gerhard et al. (2017) re-

ported that models fitted to real data sets could be un-

stable in the sense that their firing rates could evolve

to become arbitrarily large, generating unrealistic spike
trains, even when standard goodness-of-fit tests fail to

identify lack of fit (see Figure 1 for two examples). In

this paper we identify several factors that can lead to

this problem, we provide additional analysis for diag-

nosing it, and we present methods to improve model
stability.

In some circumstances, causes of instability are easy

to identify and easy to fix. The problem of stability,

however, leads naturally to an interesting detail in GLM-

type modeling of spike trains. When spike trains are
modeled as point processes, the firing rate is defined by

the conditional intensity function

λ(t|Ht) = lim
∆t→0

P
(

∆N(t,t+∆t] = 1|Ht

)

∆t
(1)

where Ht is the set of spikes prior to time t, known as
the spiking history up to time t, and ∆N(t,t+∆t] is the

number of spikes in the interval (t, t+∆t]. This succinct

representation can also incorporate stimulus effects and

coupling effects and its implementation can take ad-
vantage of a large body of knowledge about generalized

regression models (Kass et al., 2014). Here we only con-

sider the history effects without external stimulus and
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coupling neurons. There are many ways to capture the

effects of the history Ht on the intensity. Letting tj∗ be

the jth spike time counting backwards prior to time t, a

concise and intuitive assumption, for steady-state sce-

narios (where the baseline rate is constant), takes the
intensity to have the form

logλ(t|Ht) = β0 +
∑

j

h(t− tj∗) (2)

where h(u) is a smooth function, and the summation
extends to all spikes that precede time t (within a given

trial, if there are trials). This is the form used by Pil-

low et al. (2008) and by Gerhard et al. (2017). Pillow

et al. (2008) referred to h(u) as a post-spike filter. An

alternative model, used by Kass and Ventura (2001),
instead allows the effects of each previous spike to be

different:

logλ(t|Ht) = β0 +

k
∑

j=1

hj(t− tj∗). (3)

If each function hj involves separate free parameters,
then the model in (3) would typically have more pa-

rameters than the model in (2). A main contribution

of this paper is to describe situations under which this

additional flexibility can be useful. In particular, we

suggest that, in realistic scenarios, models of the form
(3) tend to be stable.

One issue in using (3) is that the number of terms k

must be selected. In theory the number could be infinite

as long as a suitable condition is placed on the functions
hj , such as

∑

Mj < ∞, where Mj = maxu hj(u), but in

practice Kass and Ventura (2001) selected k by apply-

ing the likelihood ratio test; here, in Section 4, we will

suggest another criterion, based on stability. Similarly,

in practice, the summation in (2) extends over a fixed
window of time preceding t, having length we label Th

(at most, the total length of the experiment), leading

to the alternative representation

logλ(t|Ht) = β0 +
∑

tj∗∈(t−Th,t]

h(t− tj∗). (4)

We refer to a model described by (4) as Fixed Length

Filter (FLF), and those described by (3) as Fixed Num-

ber Filter (FNF), where the fixed number refers to the

fixed number of spikes. In our analysis we have found it

useful to further categorize FNF models by considering
the special case in which hj(u) = h1(u), for all j and

all u. These models we write these as FNFS, where S

stands for single filter. The more general case we write

as FNFM, with M for multiple. Note that FNFS differs
from FLF in that the number of spikes is fixed rather

than the length of the time interval, but both models

use a single filter while FLFM uses multiple filters.

We begin, in Section 2, by giving some analytical

stability results along the lines of those in Gerhard et al.

(2017). In Section 3 we identify several kinds of model

mis-specification that lead to instability, and we note

potential solutions. In Section 4 we focus on FNF mod-
els and the variation that replaces the constant β0 with

a time-varying function β(t). An analytical diagnostic

method is then used to select the number of previous

spikes to be considered in the model, i.e., the number
of terms k in (3). In section 5, we compare FLF and

FNF models. We close in Section 6 with advices on the

use of these models.

2 Stability analysis

Figure 1 shows two examples of unstable simulations

from FLF models (equation 4) fitted to the Monkey-

PMv and Human-Cortex datasets described in Table

1, Appendix A, using the smooth basis method of Pil-
low et al. (2008). The fitted FLF models pass the origi-

nal and discrete KS goodness of fit tests (Brown et al.,

2002; Haslinger et al., 2010) but they are unstable, in

the sense that the firing rates of some or all the sim-
ulated spike trains evolve to become arbitrarily large,

generating unrealistic spike trains. We emphasize that

instability is not a matter of extrapolation to unseen

data outside the experimental range of time. Rather,

if a model is unstable, in simulations it can evolve to
producing firing rates far in excess of those seen in real

data, which makes it patently unrealistic as a represen-

tation of neural physiology.

Gerhard et al. (2017) argue that a reliable diagnostic

of model instability can be obtained from the relation-
ship between the firing rate A0 before the last spike at

t∗1 in an interval, and the firing rate after t∗1. They

approximate A0 with the average firing rate in the in-

terval (t − Th, t1∗). Then they rewrite the fitted FLF
model (Equation 4) as

logλ(t|Ht) =

β0 + h(t− t1∗) +
∑

tj∗∈(t−Th,t1∗)

h(t− tj∗),

and approximate the summation by its expectation un-

der the assumption that the point process in the interval

(t− Th, t1∗) is homogeneous Poisson, yielding

logλ(t|Ht) ≈

β0 + h(t− t1∗) +A0

∫ Th

t−t1∗

(

eh(u) − 1
)

du.
(5)

Gerhard et al. (2017) then use Equation 5 to derive the

approximate PDF of the future ISI t∗ − t1∗, where t∗ is
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Fig. 1: Simulation divergence of FLF models (equation 4) fitted to data. (A,D) Spike time raster plot and PSTH for datasets
Monkey-PMv and Human-Cortex. (B,E) The fitted FLF models pass the original and discrete KS tests of Brown et al. (2002)
and Haslinger et al. (2010); the two tests overlap so they are hard to distinguish. (C,F) Spike time raster plot and PSTH of
spike trains simulated from the fitted FLF models, using algorithm 2 in Appendix C. (C) If the simulation lasts longer than the
training session, the firing rate keeps growing to produce ISIs that are shorter than the refractory period. (F) The simulated
spike trains resemble the observed data except for trials 2 and 4, which have many more spikes than the observed spike trains.

A B C

Fig. 2: (B) Three diagnostic curves corresponding to the three FLF models (equation 4) with baseline rates β0 = −4 and
filters h(t) shown in (A) in matching colors, where h(t) = β1 ·B1(t)+β2 ·B2(t), B1(t) = e−t/0.02 and B2(t) = e−t/0.1 are the
smooth basis functions used in Pillow et al. (2008) and shown in the insert in (A), and Th = 0.35 sec. The values of (β1, β2)
for the three models are marked as crosses in (C). (C) Diagnostic map for the above model as β1 and β2 vary.

the time of the next spike after t1∗, and calculate the

firing rate after t1∗ as the reciprocal of the mean future

ISI:

Lh(A0) =
1

E[t∗ − t1∗]
. (6)

Equation 6 is a function of A0 because Equation 5 is

a function of A0. The instability diagnostic is thus ob-

tained by plotting Lh(A0) versus A0, as in Figure 2B,

for A0 ∈ [0, λmax], where λmax is the maximum pos-

sible firing rate. Without loss of generality, in this pa-

per we do not build a refractory period in the models
we consider, except to reproduce Gerhard et al. (2017)

Figure 4 (see Appendix B Figure 9), so λmax is our

simulation resolution of 1000 spikes per second. We ex-

amine intersections of the diagnostic curve with the line
Lh(A0) = A0, referring to them as cross points.
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A model is deemed

– divergent if all cross points exceed λthr or

Lh(A0) is always larger than A0 (e.g. Figure
2B, red curve), where λthr is a threshold rate

judged too high physiologically; here we used

λthr = 0.9 · λmax spikes/sec;

– stable if the number of cross points is odd and

they are all below λthr (green curve);
– fragile otherwise (blue curve).

Note that the diagnostic green curve in Figure 2B

exceeds the first sequent for small values of A0, which is

desirable because otherwise the firing rate would even-
tually decrease down to zero. A divergent model yields

unstable simulations, whereas spike trains simulated

from a fragile model might first look stable and then

degenerate. Therefore the difference between divergent
and fragile models is the duration it takes for spike

trains to become unstable. Without loss of generality

of our results, we do not distinguish between divergent

and fragile models, and consider them both unstable.

Gerhard et al. (2017) validated their model stability

diagnostic against spike train data: they considered a

model family Fθ parametrized by θ, and for each value

of θ in a range, they (i) simulated a 10 sec. long spike
train from Fθ (e.g. using algorithm 2 in Appendix C),

and deemed the spike train unstable if the model gen-

erated over 0.9 ·λmax spikes in the last second, (ii) pro-

duced the diagnostic curve and determined from it if the

model was stable, fragile, or divergent and (iii) plotted
θ against the outcomes in (i) and (ii). Such plots are

displayed in Appendix B Figure 9 for two model fami-

lies Fθ. Figure 9A shows the same stability map as in

Gerhard et al. (2017) Figure 4, where Fθ is an FLF
model (Equation 4) with baseline rate β0 = −5.3 and

filter h(t) = β1 ·B1(t)+β2 ·B2(t)+Dip(t), θ = (β1, β2),

B1(t) = e−t/0.02 and B2(t) = e−t/0.1 are the smooth

basis functions used in Pillow et al. (2008) and shown

in the insert in Figure 2A, Dip(t) is a negative win-
dow function modeling a 2 msec. refractory period, and

the filter length is Th = 0.2 sec. In Figure 9C, Fθ

is an FLF model with baseline rate β0 = −4, filter

h(t) = β1 · B1(t) + β2 · B2(t) with B1(t) and B2(t) de-
fined above, and filter length Th = 0.35 sec.

The stability maps in Figure 9A,C suggest that the

diagnostic is mostly reliable, except in small regions

of the parameter spaces. This happens because Ger-
hard et al. (2017) replaced h(u) by the Taylor expan-

sion (exph(u) − 1) in Equation 5, which is accurate

only when h(u) is small. Without this approximation,

Equation 5 becomes

logλ(t|Ht) ≈

β0 + h(t− t1∗) +A0

∫ Th

t−t1∗

h(u)du,
(7)

and the diagnostic is still tractable, as shown in Ap-

pendix C. Figure 9B,D show the updated stability maps

based on Equation 7. The agreement between diagnos-

tic and simulation is very close, and closer than in Fig-
ures 9A,C, so we use the updated diagnostic in the rest

of the paper. Figure 9D is reproduced in Figure 2C.

To solve the stability problem when a model is found

to be divergent or fragile, Gerhard et al. (2017) sug-

gested stabilizing it by refitting to the data with the
constraint that its parameters lie in the stable region

of the parameter space. In the next section, we identify

three data features that might lead to unstable simu-

lation models, namely small sample size, time varying
firing rates, and trial to trial variability or outlier trials,

and we provide alternative suggestions for stabilization:

collecting more data, fitting inhomeogeneous rate mod-

els, and removing outliers, respectively.

3 Special cases of FLF model instability

A feature that might lead to unstable models is a small

sample size. Indeed fitting a model to a small dataset

yields parameter estimates that have large variances
and, therefore, that could lie in unstable regions of the

parameter space by chance, even if the true parameters

lie in stable regions. Collecting more data, if possible,

would reduce the variability of parameter estimates and
stabilize the model.

Next, consider theMonkey-PMv, shown in Figure 1A.

An FLF model fitted to the data satisfies the KS goodness-

of-fit tests (Figure 1B), yet simulations from the model

diverge (Figure 1C). Because the peri-stimulus time his-
togram (PSTH) in Figure 1A appears to increase, we fit

a time-varying baseline rate β(t) in place of β0 in Equa-

tion 4. That model fits the data somewhat better ac-

cording to a likelihood ratio test (p = 0.046), and data
simulated from it do not diverge (Figure 3C). (To sim-

ulate data past the maximum experimental time of one

second, we set β(t) = β(1) for t ≥ 1 sec.) Figure 3D,E,F

shows a similar outcome when we apply the same analy-

sis to synthetic data generated from an inhomogeneous
Izhikevich model (algorithm 1, Appendix B). Hence, in

the presence of a time-varying trial-averaged rate, fit-

ting a constant rate term can produce instability and

fitting a time-varying rate can rectify the problem.
Finally, consider the Human-Cortex data displayed

in Figure 1D. An FLF model fitted to the data satis-

fies the KS goodness-of-fit tests (Figure 1E) but two
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Fig. 3: Stability of FLF models (equation 4) with constant and time varying baseline firing rates. (A) Constant (blue) and time
varying (red) baseline rates of FLF models fitted to the Monkey-PMv data: the baseline appears to vary. A likelihood ratio test
confirms that the time varying baseline model fits the data significantly better (p = 0.046). (B) Fitted filters of the constant
and time-varying baseline models. (C) PSTHs of the observed data and of data simulated from the fitted homogeneous and
inhomogeneous FLF models: the homogeneous model simulates unstable spike trains; the inhomogeneous model is simulation
stable. (D, E, F) Same analysis applied to artificial data generated from an inhomogeneous Izhikevich model (algorithm 1 in
Appendix C). (D) Data raster plot. (E) Fitted filters of the homogeneous and inhomogeneous baseline FLF models: the latter
is mostly below the former, which may reduce the chance of unstable simulated spike trains. (F) Indeed, the homogeneous
model produces data whose rate diverges; the inhomogeneous model appears to be stable. Note that the inhomogeneous model
fits the data significantly better according to a likelihood ratio test (p ≪ 0.001).

out of 10 spike trains simulated from it diverge (Fig-

ure 1F). Figure 4A show that trials 8, 9, and 10 have

rather large spike counts compared to the others, so

there might be excess trial-to-trial variability or outlier
trials that might cause the instability. To examine the

extent to which some trials may be unusually different

than others, compute the distance of each spike train

from a central spike train ST (defined below) based

on a spike train metric devised by Wu and Srivastava
(2011). This metric measures the discrepancy between

two spike trains by counting the number of spikes in

one spike train that can be matched by spikes in the

other spike train using a smooth deformation of time, or
“time-warping function.” If there are N1 and N2 spikes

in two spike trains ST1 and ST2, the distance between

the two spike trains is defined as

d(ST1, ST2) = inf
γ∈Γ

(

N1 +N2− 2

N1
∑

i=1

N2
∑

j=1

I[ti=γ(sj)]

+ η

∫ T

0

(

1−
√

γ′(t)
)2
dt

)

,

(8)

where I is the indicator function, ti and sj are spike

times from ST1 and ST2, respectively, and Γ (t) is the

set of all continuous and piecewise differentiable time

warping functions γ such that γ(0) = 0, γ(T ) = T ,

and 0 < γ′(T ) < ∞. In practice γ is approximated
by a piecewise linear function from [0, 0] to [T, T ] in

a discrete grid and the tuning parameter η is set to

(N1 + N2) · c/2T , with 5 ≤ c ≤ 25 (Wu and Srivas-

tava, 2011). The choice of c in this range has little im-
pact on results. The first term on the right hand side

of Equation 8 measures how close ST1 is to the time

wrapped ST2, and the second penalizes the deviation
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Fig. 4: Trial-to-trial variability affects simulation stability. (A) Spike train counts and deviations from the central spike train
for the Human-Cortex dataset. Trials 8 and 9 might be outliers. (B) Filters of FLF models (Equation 4) fitted to data with and
without suspected outliers. The latter remains mostly below the former for all t, which reduces the possibility of simulating
unstable spike trains. (C) Diagnostic curves for models fitted before and after removing the suspected outliers: the model
becomes stable after removal. Synthetic spike trains simulated from that more are indeed stable (not shown). (D,E,F) Same
analysis applied to spike trains generated from a two-rate Izhikevich model. (D) The dataset is composed of 16 spike trains
with a high firing rate, and four with a low firing rate. (E) spike counts and deviations from the central spike train clearly
identify two groups of spike trains. (F) Diagnostic curves of FLF models fitted to the full datasets (blue), and to the dataset
after the four unusual spike trains are removed. The former diagnoses an unstable model, the latter a stable model. Spike
trains simulated from the latter model are indeed stable (not shown).

of the time warping transformation from the identity

function γ(t) = t. The central spike train ST , is de-
fined as

ST = argmin
C∈S

n
∑

i=1

d(STi, C),

where S is the set of all spike trains. We then compute

each distance

di = d(ST , STi), i = 1, . . . , n

and use di to identify unusually discrepant trials.

The deviations di for the Human-Cortex spike trains

are shown in Figure 4A. Trials 8 and 9 have the largest
values of di, and they also have large spike counts. After

removing them, the fitted FLF model becomes stable,

according to the diagnostic plot in Figure 4C. Figure

4B shows that the filter fitted after excluding the out-
liers lies mostly below the initial filter, which reduces

the chance of simulation divergence. We note that if

we remove only one of these trials the fitted model is

again unstable. Furthermore, if we remove any other 2

trials the fitted model is unstable. Figure 4D,E,F shows
that a similar analysis applied to data generated from

Izhikevich models with two different firing rates – 16

spike trains have a large firing rate and four have a

small firing rate – yields similar conclusions: that is,
outlier trials can destabilize models, and careful data

pre-processing to remove them might improve stability.

Different kinds of outliers may have to be treated

differently. Outlier trials resulting from bad recordings

should be removed. But absent such experimental diffi-
culties it remains important to consider unusual fea-

tures of the data, and to avoid models that fail to

account for those features. In the synthetic two-rate

Izhikevich dataset, for example, four trials are notice-
ably sparse, making a common rate model fit poorly.

Methods based on models that allow for excess trial-to-

trial variability are available (Ventura et al., 2005).
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Fig. 5: Diagnostic curves of FNFS models with k = 2, 4, 5 fitted to the Human-Cortex dataset. The dashed red lines are the
models’ maximum firing rates. The largest model with k = 5 is unstable because the diagnostic curve is above the first sequent
after it last intersects it. The two other models are stable.

4 Stability of FNF models

To evaluate the performance of FNF models, we extend
the method of Gerhard et al. (2017) to obtain a stabil-

ity diagnostic, further allowing the baseline rate to be

a time-varying function β(t), as in Kass and Ventura

(2001). If we approximate the firing rate before the last
spike t1∗ with the reciprocal of the mean ISI, A0 = 1/τ ,

and replace the ISIs by their expectation in Equation

6, we obtain:

logλ(t|Ht)

≈ β(t) +

k
∑

k=1

hj(t− t1∗ + (k − 1)τ).
(9)

As in Section 2, we then use this approximation to de-

rive the approximate PDF of the future ISI t∗ − t1∗,

and calculate the firing rate Lh(A0) after t1∗ as the re-

ciprocal of the mean future ISI (see Equation 6). The
diagnostic for a fitted model is again based on a plot of

Lh(A0) against A0, and its stability determined using

the rules in the boxed text in Section 2. For example,

Figure 5 shows the diagnostics of three FNFS models

fitted to the Human-Cortex dataset described in Table
1, using the smooth basis in (Pillow et al., 2008). The

largest model (panel A) is unstable, in the sense that

spike trains generated from that model could have unre-

alistically large number of spikes; the other two models
are stable.

Just as in Gerhard et al. (2017), we can validate our

FNF model stability diagnostic against spike train data.

For example, Figure 5 shows the stability map for the
FNFS family of models with firing rate logλ(t|Ht) =

β0 +
∑5

j=1 h(t− tj∗), where β0 = −4, h(t) = β1B1(t) +

β2B2(t), and B1(t) = e−t/0.02 and B2(t) = e−t/0.1 are

the basis functions shown in the inset of Figure 2A. For

each value of (β1, β2), we (i) simulated a 10 sec. long

Fig. 6: Stability map for FNFS models with firing rates
log λ(t|Ht) = β0 +

∑5
j=1 h(t − tj∗), where β0 = −4, h(t) =

β1B1(t) + β2B2(t), B1(t) = e−t/0.02 and B2(t) = e−t/0.1.
For each value of (β1, β2), we (i) simulated a 10 sec. long
spike train from the model and deemed the model unstable if
it generated over 900 spikes in the last second, (ii) produced
the diagnostic curve and determined from it if the model was
stable, fragile, or divergent, and (iii) plotted (β1, β2) against
the outcomes in (i), with unstable simulations indicated by
black dots, and (ii), in colors. Our diagnostic is reliable be-
cause it matches the simulation well.

spike train from the model and deemed the model di-

vergent if it generated over 900 spikes in the last second,

(ii) produced the diagnostic curve and determined from
it if the model was stable, fragile, or divergent, and (iii)

plotted (β1, β2) against the outcomes in (i) and (ii):

the two match, which suggests that our diagnostic is

reliable. The many FNFM models we investigated also

suggest that the diagnostic is reliable; we did not pro-
vide an example diagnostic map here because all these

models were stable across the entire parameter space.

Figures 5 and 7C,F show that all FNFS models with

k ≤ 4 and all FNFM models fitted to the Human-Cortex

dataset are stable. They also all pass the two KS tests so
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Fig. 7: (A,B,C) AIC and (D,E,F) BIC values for several FLF, FNFS , and FNFM models fitted to three datasets. (FNFS and
FLF values are equal in panel F, and the latter mask the former.) Simulation unstable models and models that failed the
original and/or the discrete KS test are indicated by red squares and crosses. Many models are simulation stable; the FNFM

models fitted here are all simulation stable. Stable models that achieve a desirable criterion, e.g. low AIC, could be chosen.

they are not obviously deficient. With many simulation

stable models available, it may be desirable to choose
one that also fits the data best according to some crite-

rion. Figures 7C,F show the Akaike Information Crite-

rion (AIC) and Bayesian Information Criterion (BIC)

for all these models. Small AIC and BIC values are de-

sirable because AIC is an estimate of prediction risk,
and BIC is inversely related to the posterior probabil-

ity of fitting the correct model, in an asymptotic sense;

BIC tends to prefer models with fewer parameters Kass

et al. (2014). Both criteria suggest that the FNFS model
with k = 1 fits best; it is also simulation stable. Figure 7

shows results from two additional examples.

Among the stable models, the FNFM model with

k = 6 filters fits best based on AIC, and FNFS model

with k = 9 fits best based on BIC. The synthetic Izhikevich-

burst dataset is bursty as well; see Figure 10A. Its best
simulation stable models are FNFM models with k = 7

and k = 4 according to AIC and BIC, respectively.

To summarize, our general strategy is to fit FNF

models for several values of k and choose a model that

is simulation stable and also fits the data well according

to criteria such as the KS tests, and AIC or BIC. (Note
that because AIC and BIC are obtained from a finite

data sample, they have variability, so that similar values

should be considered equal.) If no stable model can be

found, a model that provides a good fit may be used

after constraining its parameters to lie in the parameter
subspace corresponding to stability, as Gerhard et al.

(2017) suggest.

5 Comparison of FNF and FLF models

A key feature of FLF models is that they sum the ef-

fect of all spikes in the filter window of length Th, which
puts no limitation on the number of past spikes influ-

encing the firing rate at t, even if Th is short. There-

fore, if a fitted intensity function has a rising trend,

an increasing number of spikes could fall within the
filter window, and this could increase the firing rate,

eventually yielding unstable simulated spike trains. In

contrast, FNF models (Equation (3) and also the exten-

sion to time-varying baseline rates) model history with

a fixed number of spikes, k, and if the baseline rate β(t)
and all of the individual filters are bounded above, the

firing rate will be bounded. Furthermore, by allowing

multiple filters, FNFM models can diminish the effects

of multiple spikes that occur, somewhat infrequently,
in close temporal proximity. Thus, in principle, FNFM

models tend to be stable, and we did not find any cases

in which FNFM models were unstable. See, for exam-
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A B C

Fig. 8: (A) Goldfish dataset spike trains and simulated spike trains from FLF, FNFS (k = 5), and FNFM (k = 5) models
fitted to the dataset: despite modeling the effects of past spiking differently, both type of models can generate busts similar
to those in the dataset. (B) Filters of the FNFS models fitted to the Goldfish dataset with past number of spikes k = 1, ..., 9.
When k ≥ 5, the filters are almost identical, suggesting that effects of spikes prior to 5 spikes back do not contribute much
to the fits. The fitted FLF filter has length Th = 0.19 sec., which contains 4 past spikes on average; it overlaps with the
FNFS filters with k ≥ 5, suggesting that these models are functionally similar (although FNFS models are more likely to be
stable). (C) Fitted filters of an FNFM model with k = 5: the filters are substantially different, suggesting that burst behavior
is captured by differentially weighing the contribution of previous spikes according to their timing and ordering. A likelihood
ratio test comparing the FNFS and FNFM models with k = 5 strongly favors the latter (p ≪ 0.001).

ple, the results in Figure 7. However, we have also seen
that, in some cases, the fitted FNFS firing rates can be

large enough to become unstable (see Figures 5A and

panels C and F of Figure 7), and for that reason we de-

veloped a stability diagnostic and a strategy to stabilize

a divergent FNF model in Section 4. We could apply a
similar strategy to FLF models, using several filter win-

dow lengths Th in place of several values of k. Gerhard

et al. (2017) fitted an FLF model with Th = 0.35 sec

to the Human-Cortex dataset, which was unstable. Fig-
ure 7C,F shows the stability status, AIC, and BIC val-

ues of fitted FLF models for several values of Th. (FLN

and FNFS models have similar AIC and BIC values

that are hard to distinguish from one another on the

plots.) The FLF model with a very short filter length
of Th = 0.177 fits the data well (it passes both KS tests

and has smallest AIC and BIC) and is stable. Thus,

while FNFM models seem to be inherently less likely to

be unstable, we can not make any universal compara-
tive statement about stability, and, importantly, fitting

with either type of model requires care. A remaining

issue is whether there are interesting cases in which the

additional flexibility of FNFM models is useful. We now

present a few additional comparative results.

Figure 7 provides a summary of fits for the Human-

Cortex dataset. We see that FNFS models have AIC
and BIC values similar to, or smaller than FLF mod-

els. The FNFM models have higher AIC, presumably

because the additional flexibility of using several fil-

ters is not needed to fit the data well yet it increases
complexity. On the other hand, the FNF models fitted

to the Izhikevich-burst data set have smaller AIC and

BIC values than the FLF models, and FNFM models

have smaller AIC and nearly all smaller BIC values than
FNFS models, presumably because they are bursty and

thus are not fitted adequately with simpler models. We

also used a real data set, labeled Goldfish, which con-

sists of recordings from retinal ganglion cells in vitro

that exhibit bursting firing (Levine, 1991; Tokdar et al.,
2010); see Table 1 and Figure 8A. The AIC and BIC

values are again smaller for most FNF models.

These comparisons are substantiated in Figures 8
and 10. Figure 8A displays theGoldfish data spike trains

together with simulated spike trains from a FLF model

fitted to the data, having filter length Th = 0.19 sec-

onds containing five past spikes on average, as well as
from fitted FNFS and FNFM models with k = 5: de-

spite modeling the effects of past spiking differently,

both type of models can generate busts similar to those

observed in the data. Figure 8B displays the filters of

FNFS models fitted to the Goldfish dataset with past
number of spikes k = 1 to 9. When k ≥ 5, the filters are

almost identical, suggesting that effects of spikes prior

to 5 spikes back do not contribute much to the fits. The

overlayed fitted FLF filter with Th = 0.19 sec. overlaps
with the FNFS filters with k ≥ 5, suggesting that these

models are functionally similar (although, based on our

previous analysis, FNFS models are more likely to be

stable).

Models with a single filter, as in Figure 8B, assume

that the effect of any past spike tj∗ on the firing rate at

time t depends only on the elapsed time t− tj∗ without

considering the number of spikes that may have oc-
curred between tj∗ and t. For the Goldfish data, this

is a questionable assumption: a likelihood ratio test

(LRT) comparing FNFS and FNFM models with k = 5
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strongly favors the latter (p ≪ 0.001). Furthermore, the

fitted filters of the FNFM model, shown in Figure 8C,

are substantially different, suggesting that burst behav-

ior is captured better by differentially weighing the con-

tribution of previous spikes according to their timing
and ordering. We may interpret these multiple distinct

filters by observing several characteristics of the data

(see Tokdar et al. (2010)): the average burst length is

roughly 25ms, a burst ISI is around 7ms, the median
number of spikes in a burst is 4, and bursts occur, on

average, roughly every 200 ms. With these in mind, the

narrowness and height of the first filter suggests that

the effect of the first spike back is strongly influenced

by bursting, i.e., when a spike occurs less than 25 ms in
the past it is likely that the cell is in a bursting state and

the probability of spiking is increased; filters 2 to 4, cor-

responding to the 2nd to 4th spikes back, diminish the

firing rate starting around 25 ms in the past, which pre-
sumably signals that when these multiple spikes back

are spaced further than 25 ms in the past, the neuron

has transitioned to a “down” state; the effect of the 5th

spike back is to increase the firing rate after a longer

duration, peaking around 200 ms in the past, reflect-
ing an expectation that the neuron has already finished

its pause after a burst and has now returned to the

bursting state. Figure 10 in the appendix contains the

corresponding plots for the synthetic Izhikevich-inhomo

dataset, from which similar conclusions can be drawn.

In summary, FNFM models do, sometimes, provide

better fits than FLF or FNFS models, but this is an
empirical question that must be answered for each set

of data separately. We should also note that models

that incorporate hidden burst and non-burst states, as

in Tokdar et al. (2010), may provide even better de-

scriptions of bursting spike train data.

6 Discussion

We have attempted to provide a thorough analysis of

the instability phenomenon identified by Gerhard et al.

(2017). We improved the diagnostic of Gerhard et al.

(2017) and extended it to FNF models; we noted that
time-varying baseline rates and excess trial-to-trial vari-

ability can cause instability of models that do not ac-

count for these effects; we introduced a method to de-

tect outlier trials and illustrated its use; and we com-
pared FNF with FLF models in several examples.

It is perhaps worth emphasizing that FNFM mod-

els, with sufficiently large k, were always stable in the
examples we investigated, regardless of whether there

were stable FLF or FNFS models. See, for example,

Figure 7. That figure, together with Figures 8 and 10,

also illustrate the way differing variations in spiking be-

havior may suggest different numbers of filters to use

in an FNF model, according to standard model-fitting

procedures.

Overall, we concluded that FNFM models tend to

avoid instability, and can provide helpful flexibility in
some cases, but we cautioned that selection among the

different FLF and FNF models must be done carefully

based on the unique characteristics of particular data

sets.

Our code is available on https://github.com/

AlbertYuChen/Divergent Spiketrain public.git.

Appendix A Datasets

Data Monkey Human Goldfish

Feature inhomogeneous trial-to-trail variability bursty
# Trials 10 10 1
Trial duration (sec) 1 10 30
Mean firing rate (Hz) 24.0 1.0 32.4
Source Gerhard et al. Gerhard et al. Tokdar et al.

Table 1: Details of the datasets used in this paper. The Mon-

key and Human datasets (Gerhard et al., 2017) consist of sin-
gle unit recordings from monkey cortex PMv and M1 areas,
and from the neocortex of a person with a pharmacologically
intractable focal epilepsy, respectively. The Goldfish dataset
(Levine, 1991; Tokdar et al., 2010) consists of recordings from
retinal ganglion cells in vitro that exhibit bursting firing.
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Appendix B Diagnostic Maps

C D

A B

Fig. 9: Stability maps for two FLF models (Equation 4) Fθ

using the diagnostic of Gerhard et al. (2017) and our updated
diagnostic. For each value of θ, we (i) simulated a 10 sec. long
spike train from Fθ , and deemed the model unstable if it gen-
erated over 900 spikes in the last second, (ii) produced the
diagnostic curve and determined from it if the model was
stable/fragile/divergent, and (iii) plotted θ against the out-
comes in (i) and (ii). (A) Reproduction of the stability map
in Gerhard et al. (2017) Figure 4, where Fθ is an FLF model
with β0 = −5.3 and h(t) = β1 · B1(t) + β2 · B2(t) + Dip(t),
where B1(t) = e−t/0.02, B2(t) = e−t/0.1 and Dip(t) is a neg-
ative window function modeling a 2 msec. refractory period,
θ = (β1, β2), and filter length Th = 0.2 sec. The maps suggest
that the diagnostic is mostly reliable, except in small regions
of the parameter spaces. (B) Our updated diagnostic for the
same model matches the simulation better. (C) Stability map
using the diagnostic of Gerhard et al. (2017) for Fθ an FLF
model with with β0 = −4, h(t) = β1 ·B1(t)+β2 ·B2(t). Basis
B1(t) and B2(t) are the same as Figure 2A. θ = (β1, β2), and
filter length Th = 0.35 sec. (D) Our updated diagnostic for
the same model matches the simulation better.

Appendix C Simulation algorithms

Dataset in form Izhikevich-xx are synthesized by algo-

rithm 1. FLF and FNF model simulation are algorithm

2 and 3.

Algorithm 1: Izhikevich simulation algorithm.

he Izhikevich dynamical model can generate a

rich family of biophysically realistic spike patterns

(Izhikevich, 2003, 2004), including time varying
rate pike trains, tonic spikes, bursts and etc. A list

of parameters to produce various effects is given

in Weber and Pillow (2017).

1 Input: Parameters a, b, c, d. Time resolution ∆. I(t).
2 Initial: u(0) = 0, v(0) = 0, S = {0}
3 for t = 0 to T do

4 dv = 0.04v(t)2 + 5v(t) + 140 − u(t) + I(t)
5 du = a(bv(t)− u(t))
6 v(t+ 1) = v(t) + dv ·∆
7 u(t+ 1) = u(t) + du ·∆
8 if v(t+ 1) > 30 then

9 v(t+ 1) = c

10 u(t+ 1) = u(t) + d

11 S = S ∪ {t+ 1}

12 else

13 continue

14 end

15 end

16 Output: S

Algorithm 2: FLF model (Equation 2) simula-
tion algorithm. This algorithm simulates ISIs from

a unit rate exponential distribution and inverts

them using the time rescaling theorem (Brown

et al., 2002; Kass et al., 2014) to obtain the past

spike times.

1 Input: time resolution ∆, baseline β(t), t ∈ [0, T ], and
post-spike filter h with length L;

2 define f(s1, s2) :=
∑s2

t=s1
λ(t|Ht)∆, 0 ≤ s1 < s2 ≤ T ,

assume λ(t|Ht) ≥ 0;
3 Initial: S = ∅ be the set of spike time points;
4 λ(t|Ht) = β(t)
5 while TURE do

6 draw one sample Z ∼ Exp(1);
7 if f(t1∗, T ) < Z then

8 return

9 else

10 s = argmin
τ

{f(t1∗, τ) ≥ Z}

11 S = S ∪ {s}
12 Update the firing rate function by adding the

impact of the spike to the future firing rate:
log λ(τ + t|Ht) = log λ(τ + t|Ht) + h(τ), for all
τ ∈ [t,min(t+ L, T )]

13 end

14 end

15 Output: S, λ(t|Ht)
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A B C

Fig. 10: (A) Izhikevich-burst synthetic dataset spike trains and simulated spike trains from FLF, FNFS(k=4), FNFM (k=4).
Both type of models can generate busts similar to those in the dataset. (B) Fitted filters of the FNFS models with number of
spikes k = 1, ..., 9. When k > 3, the filters are very close to each other since further spikes will not make too much contribution
to the future firing rate, thus will only affect the filter shape slightly. The fitted FLF filter overlaps with the FNFS filters with
k ≥ 5, suggesting that these models are functionally similar. (C) Fitted filters of an FNFM model with k = 4: the filters are
substantially different, which suggests that past spikes of different order have different effects on the firing rate. A likelihood
ratio test comparing the FNFS(k=5) and FNFM(k=5) models favors the FNFM model (p ≪ 0.001).

Algorithm 3: FNF model (Equation 3) simula-

tion algorithm.

1 Input: time resolution ∆, baseline β(t), t ∈ [0, T ], and
k post-spike filter hi with length Li

2 define f(s1, s2) :=
∑s2

t=s1
λ(t|Ht)∆, 0 ≤ s1 < s2 ≤ T ,

λ(t|Ht) ≥ 0 is the total firing rate
3 Initial: S = ∅ be the set of spike time points
4 λ(t|Ht) = β(t)
5 while TURE do

6 draw one sample Z ∼ Exp(1)
7 Update the firing rate function

log λ(t|Ht) = β(t) +
∑min(k,|S|)

i=1 hi(t− ti∗), if
t > Li, hi(t) = 0. ti∗ are the last i’th spike. if
f(t1∗, T ) < Z then

8 return

9 else

10 s = argmin
τ

{f(t1∗, τ) ≥ Z}

11 S = S ∪ {s}

12 end

13 end

14 Output: S, λ(t|Ht)

Appendix D Misc. results

Derivation of Equation 7

∑

tj∗∈(t−Th,t1∗)

h(t− tj∗)

≈ E
N

[

∫ t1∗

t−Th

h(t− τ)dN(t−Th,τ ]

]

(10)

= E
N∆

[

E
N |N∆

[

∫ t1∗

t−Th

h(t− τ)dN(t−Th,τ ]

∣

∣

∣
N∆

]

]

(11)

t−τ=u
= E

N∆

[ N∆

t1∗ − t+ Th

∫ Th

t−t1∗

h(u)du
]

(12)

= A0

∫ Th

t−t1∗

h(u)du (13)

where N∆ = N(t−Th,t1∗) is the number of spikes in

(t − Th, t1∗), and A0 is the mean firing rate in that

time window. In equation 11, the inner expectation is
taken over spike count conditioned on a fixed number

of spikes in the interval (t − Th, t1∗). If the filter h(u)

is estimated by eh(u) − 1 in (Gerhard et al., 2017), the

error will be larger if h(u) is not close to 0. Because the

point process itself is unknown, the firing rate function
is approximated under the assumption that it is a ho-

mogeneous Poisson process. For homogeneous Poisson

process, if the number of events is fixed, they distribute

evenly in the interval, which leads to equation 12.

The time rescaling theorem Let Zi =
∫ ti
ti−1

λ0(t)dt, where

ti are spike times, Zi are time integral transformed in-
tervals. Time rescaling theorem states that if λ0(t) is

the firing rate of the true model, then Zi are iid and

Zi ∼ Exp(1). The goodness-of-fit test checks how close

the distribution of transformed intervals from estimated

model is to the unit exponential distribution.
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