
 Statistical Science
 2009, Vol. 24, No. 2, 179-182
 DOI: 10.1214/09-STS284A
 Main article DOI: 10.1214/09-STS284
 ? Institute of Mathematical Statistics, 2009

 Comment: The Importance of Jeffreys's
 Legacy
 Robert Kass

 Abstract. Theory of Probability is distinguished by several high-level philo
 sophical attitudes, some stressed by Jeffreys, some implicit. By reviewing
 these we may recognize the importance in this work in the historical devel
 opment of statistics.

 Key words and phrases: Approximate Bayesian inference, Bayes factors,
 statistical models.

 Jeffreys is one of the major figures in the history of
 statistics, and Theory of Probability is his chief work
 on the subject. It is wonderful that Robert, Chopin, and
 Rousseau (RCR) have devoted so much effort to pour
 ing through the book. Their insights will be appreciated
 by all future readers.

 The two elements of Bayesian analysis most strongly
 attributed to Jeffreys are Bayes factors and the selec
 tion of priors by formal rules. My own understanding
 of these subjects was embedded in a pair of reviews
 roughly 15 years ago (Kass and Raftery, 1995; Kass
 and Wasserman, 1996). Now, however, my priorities
 have evolved?I have spent much of the past 10 years
 worrying about the application of statistics to problems
 in neuroscience, and trying to identify the most impor
 tant lessons from our discipline that should be passed
 on to budding data analysts. I would like to offer a few
 comments on Jeffreys's legacy from this current per
 spective. Or, perhaps my aim is better communicated
 by asking, How should our legacy be informed by Jef
 freys's legacy? Before getting to this high-level ques
 tion I would like to make one technical remark.

 1. GEOMETRY

 It is worth noting Jeffreys's clear geometrical think
 ing in his choice of general prior, discussed at the
 beginning of RCR's Section 4.7. The lurking differen
 tial geometry is subtle, as he says only that Hellinger
 distance and Kullback-Leibler divergence "have the
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 form of the square of an element of distance in curvi
 linear coordinates," but, in addition, his notation gik
 for the (/, k) element of the Fisher information ma
 trix is the standard notation of his day for the ele

 ments of the matrix representation for a Riemannian
 metric. It was obvious that the Riemannian natural vol

 ume element?the determinant of the matrix represen
 tation of the metric?would be invariant and, as argued
 in Kass (1989), this provides a bit of intuition. In addi
 tion, basic to Jeffreys's treatment of Bayes factors was
 his use of orthogonal parameters (see Section 5.01 of
 Theory of Probability and Section 6.1 of RCR)?which
 are "orthogonal" in the sense of differential geometry.
 Furthermore, his use of his general prior for Bayes fac
 tors, discussed in RCR Section 6.4, is again intelligible
 as a prior (approximately) on the resulting Riemannian
 distance (the "information distance" discussed in Kass,
 1989). I have always assumed this was an important
 part of Jeffreys's thought process.

 2. THE BAYESIAN ENGINE

 As I look back again, now, on Theory of Probability
 I find four particularly striking features.

 First, it treated a wide variety of problems, many of
 which continue to be of interest. [A list of a dozen such
 problems appeared in Kass (1991) as part of a special
 issue of Chance devoted to the 100th anniversary of
 Jeffreys's birth.] In this integration of theory and prac
 tice it became a model text. Indeed, in the intervening
 years there has been an unfortunate bifurcation of the
 ory and practice, so that theoretical texts rarely give the
 kind of attention to practical problems that Jeffreys did.

 Second, it relied on first-order approximation, via
 Laplace's method, especially to center the posterior at
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 the MLE (though modern applications often use the
 posterior mode). This is noteworthy, in part, because it
 played a fundamental role in his views on selecting pri
 ors. Jeffreys admitted the choice of prior was somewhat
 arbitrary, but he pointed out that asymptotic consider
 ations made this degree of arbitrariness a rather minor
 practical difficulty. Over the years there has been some
 misunderstanding of Jeffreys's point of view because
 it changed over time in response to critics?this is one
 reason it is worth examining the multiple editions of his
 book. (See Kass and Wasserman, 1995, Section 2.) Fur
 thermore, we see in Jeffreys's use of Laplace's method
 the germs of Bayesian computation: he recognized,

 more clearly than many subsequent researchers, who
 were concerned with exact results, how Bayes's theo
 rem could be applied in a wide range of analytically
 intractable problems. And, of course, first-order as
 ymptotics brought Jeffreys's methods into close agree
 ment with Fisher's. In the preface of the first edition
 of Theory of Probability Jeffreys stated, 'There is, on
 the whole, a very good agreement with the recommen
 dations made in statistical practice." In my view it is
 worth emphasizing the use of first-order asymptotics
 because much elaborate, painstaking statistical work
 ends up being useful in scientific inference mainly in
 its ability to provide a well-founded estimate and stan
 dard error. In contemplating the practical value of his
 treatise, Jeffreys recognized this as well when he said,
 in the preface to its third edition, "There is a decided
 improvement in the willingness of physicists to esti

 mate uncertainties of their results properly, and I sup
 pose that I can claim some of the credit for this."

 A third striking high-level feature of Theory of Prob
 ability is its championing of posterior probabilities of
 hypotheses (Bayes factors), which made a huge contri
 bution to epistemology. Emanating from his early work
 with Dorothy Wrinch, this was Jeffreys's main moti
 vation for writing the book. In the preface to the first
 edition he wrote,

 In opposition to the statistical school, [phys
 icists] and some other scientists are liable to
 say that a hypothesis is definitely proved by
 observation, which is certainly a logical fal
 lacy; most statisticians appear to regard ob
 servations as a basis for possibly rejecting
 hypotheses, but in no case for supporting
 them. The latter attitude, if adopted con
 sistently, would reduce all inductive infer
 ence to guesswork; the former, if adopted
 consistently, would make it imposssible
 ever to alter the hypotheses, however badly

 they agreed with new evidence_In the
 present book I ... maintain that the ordi
 nary common-sense notion of probability
 is capable of precise and consistent treat

 ment when once an adequate language is
 provided for it. It leads to the results that a
 precisely stated hypothesis may attain either
 a high or a negligible probability as a result
 of observational data.

 In showing the world the importance of Bayes' the
 orem, Jeffreys succeeded spectacularly well. The no
 tion that Bayes' theorem can describe, with beautiful
 brevity, the way we incorporate information to gain
 knowledge is very widely accepted?even by those,
 within and outside of statistics, who are not very fond
 of Bayesian statistical methods in practice. Laplace
 made an important start, but Jeffreys took the argument
 much further by showing how Bayes' theorem may be
 connected with the fundamental aspirations of science.

 Jeffreys's observations opened the door to a unifi
 cation of epistemology with scientific inference via
 statistical methodology. This was his great goal, and
 it has remained a goal of Bayesian "true believers"
 ever since, even for those who have discarded parts of
 Jeffreys's philosophy and replaced it with subjectivist
 foundations. There is an undeniable allure of the power
 and simplicity of the Bayesian approach?I see it in
 neuroscience as well as statistics?but, in my opinion,
 despite all its spendor, the Bayesian approach has not
 realized the goal of unifying statistical inference, nor is
 it likely to do so in the forseeable future.
 There are many reasons for the failure of the

 Bayesian grand scheme?in the face of all the Bayesian
 successes?but one important difficulty is the discrep
 ancy between the conceptual, epistemological use of
 posterior probabilities and their use in practice. In
 practice, posterior probabilities are used for model se
 lection (e.g, in reversible jump MCMC) and classi
 fication, but they are almost never used in the man
 ner Jeffreys emphasized, namely, to provide evidence
 in favor of scientific hypotheses. Frequentist signifi
 cance testing (via bootstrap and permutation tests) is
 pretty easy, even in relatively complicated situations.
 Bayesian testing, however, is in one respect difficult
 even setting aside computational issues: although (as
 reviewed in Kass and Raftery, 1995) Bayes factors are
 generally not sensitive to priors on suitably-defined
 nuisance parameters ("null orthogonal" parameters in
 the sense of Kass, 1989), they remain sensitive?to first
 order?to the choice of prior on the parameter being
 tested. This implies that interpretations such as Jef
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 freys's, reported by RCR, are contaminated by a con
 stant that does not go away asymptotically. Indeed,
 this is the reason for the large range of values within
 Jeffreys's interpretive categories. One may see this as
 a virtue of the Bayesian approach, that its very am
 biguity provides a more thorough ("honest") assess
 ment of evidence, but it does impose a burden on those
 who wish to make scientific inferences. In some ap
 plied situations, the evidence may be "decisive" over a
 wide enough range of priors to be convincing, and it is
 possible that continuing research will eventually bring
 Bayes factors into widespread scientific use. I can re
 port, though, that in neuroscience, despite considerable
 penetration of Bayesian ideas and Bayesian methods,
 Bayes factors for scientific hypothesis testing are es
 sentially non-existent. And I have yet to find a good
 application for them, myself.

 Nonetheless, despite the apparent over-reach of the
 Bayesian aspiration set forth by Jeffreys, these first
 three components of Theory of Probability demon
 strated constructively the great power of the Bayesian
 engine. It had a tremendous influence on the next gen
 eration of books, which in turn educated those who be

 came soldiers in the "Bayesian revolution" during the
 1990s.

 3. DECISION THEORY

 Theory of Probability articulated only one of the two
 crucial elements in the emergence of modern Bayesian
 analysis, in statistics and throughout science: Bayes'
 Theorem as an engine for scientific inference. The sec
 ond element, the optimality of Bayesian procedures,
 including especially the optimality of Bayes classifiers,
 had to wait for Wald (and then others such as Savage
 and Raiffa and Schlaiffer). It is impossible to sing the
 praises of Theory of Probability without emphasizing
 the continuing importance of optimality. As RCR point
 out, Jeffreys did mention the performance of methods,
 and in fact noted the optimality of the Bayes factor in
 balancing type I and type II errors, but this appears
 largely as an afterthought in response to Neyman and
 Pearson, rather than as the fundamental motivation that

 frequentist optimality subsequently became.

 4. STATISTICAL MODELS AND SCIENTIFIC LAWS

 The fourth feature of Theory of Probability that
 remains, at least to me, especially important is its iden
 tification of scientific laws with statistical models. Jef

 freys put it this way:

 A physical law is not an exact prediction,
 but a statement of the relative probabilities
 of variations of different amounts.

 This passage appeared in the first edition of the book,
 and was italicized in the second and third editions. The

 point of view is echoed throughout Theory of Proba
 bility and it stands in contrast to anything declared by
 Fisher.

 I see this as crucially important to our contempo
 rary situation. In a recent article, Emery Brown and I
 (Brown and Kass, 2009) noted our disgruntlement with

 much data analysis we have seen in neuroscience. We
 put it this way:

 We have seen many highly quantitative re
 searchers trained in physics and engineer
 ing, but not statistics, apply sophisticated
 techniques to analyze their data. These are
 often appropriate, and sometimes inventive
 and interesting. In the course of perusing
 many, many articles over the years, how
 ever, we have found ourselves critical of
 much published work. Starting with vague
 intuitions, particular algorithms are con
 cocted and applied, from which strong sci
 entific statements are made. Our reaction is

 too frequently negative: we are dubious of
 the value of the approach, believing alter
 natives to be much preferable; or we may
 concede that a particular method might pos
 sibly be a good one, but the authors have
 done nothing to indicate that it performs
 well. In specific settings, we often come to
 the opinion that the science would advance

 more quickly if the problems were formu
 lated differently?formulated in a manner

 more familiar to trained statisticians.

 This led us to consider what statistical training brings
 to the table, and we articulated a succinct answer in the

 form of a pair of dogmas of modern statistical think
 ing:

 1. Statistical models of regularity and variability in
 data are used to express knowledge and uncertainty
 about a signal in the presence of noise, via inductive
 reasoning.

 2. Statistical methods may be analyzed to determine
 how well they are likely to perform.

 The claim was not that these two things describe what
 statisticians do, but rather that they characterize the
 way they think. The implication, and the main subject
 of that article, was that we as a profession should con
 scientiously emphasize these points in our teaching and
 curriculum development. Here, I would like to add that
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 the first item, stressing statistical models, is central in
 Theory of Probability. Our modern notion of statisti
 cal model is much broader than that of Jeffreys, and
 owes much to Fisher. For example, statistical models
 are used in bootstrap and permutation tests, as well as
 a host of nonparametric inference and prediction meth
 ods. However, the point that statistical models drive the
 process remains at the essence of our discipline. (For
 interesting related remarks see Cox, 2001 and Efron,
 2001.) To me, this is the most fundamental message of
 the Theory of Probability.

 On the other hand, we can't neglect the second item
 above, performance of methods. This is equally impor
 tant to our discipline?yet it is largely absent from The
 ory of Probability (and crucial aspects are also absent
 from Fisher).

 5. ON RE-READING JEFFREYS

 Because of Jeffreys's emphasis on the connection be
 tween scientific laws and statistical models, re-reading
 Theory of Probability always leaves me with a burning
 question: What is the scientific status of a statistical
 model? That is, in using a statistical model, to what
 extent are we making scientific claims?

 This foundational issue, at once philosophical and
 practical, has received considerable discussion over the
 years, and deserves continued attention. Lehmann and
 Cox, in special lectures and articles, both pointed out
 that the extent to which a model is "explanatory" or
 "empirical" depends on context (Lehmann, 1990; Cox,
 1990), and Lehmann cited Kruskal and Neyman (1956)
 in saying the distinction is not rigid: "[These descrip
 tions] represent somewhat extreme points of a contin
 uum." Freedman repeatedly criticized claims based on
 statistical models because he felt they were empirical
 in nature yet were used inappropriately for explanation
 (e.g., Freedman and Zeisel, 1988, Statistical Science).
 The nature of statistical models is closely related to
 the nature of scientific models (or theories), which are
 often regarded as either "real" or "instrumental" (see
 Stanford, 2006). It is worth asking whether, and how,
 statistical models are essentially different than other
 kinds of scientific models.

 In discussing the connection between statistical
 models and scientific laws, some of Jeffreys's favorite
 examples are chosen for their rhetorical value, such as
 gravitation. Such nice clean examples where scientific
 theories are extremely precise are, however, quite rare.
 Certainly in neuroscience the "theories," even when
 stated mathematically, are supposed to be provide only
 rough approximations to reality. The same can be ar
 gued in principle in physics, but in the biological realm
 the "rough approximation" is very rough.

 Perhaps all models are similar in their attempt to de
 scribe the world, but we in statistics are conscious of

 their shortcomings, especially when they are statisti
 cal models. And perhaps contributions can come from
 the quintessential statistical attitude, "All models are
 wrong, but some are useful" (Box, 1979), implemented
 by stressing essential features captured by models that
 do represent scientific claims, from inessential features
 that do not.

 In any case, as RCR so thoroughly demonstrate, The
 ory of Probability is full of weighty material. Reading
 it from a contemporary perspective opens up all kinds
 of questions; questions of detail, and questions about
 the nature of our discipline. One thing is for sure: it is
 a landmark in the history of statistics. Reading it helps
 us better understand the conceptual development of our
 subject.
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