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 Comment
 ROBERT E. KASS*

 Laboratory experiments often provide strong evidence

 about carcinogenesis or mutagenesis at high doses of a
 toxic agent in certain species. With specific assumptions
 about the relevance of this evidence, could some of its

 strength be borrowed, so to Tukey-speak, in order to bet-

 ter estimate the effect of exposure to the agent on the
 probability of cancer in humans? DuMouchel and Harris

 suggest that it can and they propose Bayesian analysis of
 covariance components models as an appropriate tech-
 nology for accomplishing the task.

 The great benefit of the Bayesian approach to this prob-
 lem is that it makes precise the assessments of relevance
 and uncertainty in related results. Just as the purpose of

 a Bayesian theory of scientific inference is, as Jeffreys
 (1967, p. 8) put it, to "tidy up" the process, so too might
 Bayesian methods improve what advisors to policy mak-
 ers do informally. In principle, the paradigm is simple
 and, in its ability to accommodate a variety of beliefs, it
 is comprehensive. Yet the Bayesian approach has its dif-

 ficulties, for while it is surely desirable to express beliefs
 explicitly, in particular through models, it is often difficult
 to do so accurately. Lurking beside each analysis are the
 interrelated dangers of oversimplification, overstated
 precision, and neglect of beliefs other than the analyst's.

 In the authors' model (3.2), the normal exchangeable
 prior on 8 is probably the most important cause for con-
 cern. Interspecies comparisons begin with the assump-
 tion that results among different species and toxic agents
 are somehow related, and that the data carry information
 about the relationships. The normal exchangeable prior,
 however, represents a firm belief in a very simple situ-

 ation; its use entails a strong statement about the behavior
 of the interactions. It is plausible that some groups of
 species are sufficiently similar with respect to the toxic
 action of some groups of agents, that, within those
 groups, model (3.2) would not be grossly inaccurate. In

 principle, the model could be modified to allow for group-

 ing and, in Section 5, the authors provide an illustration
 of this sort of modification. However, it is not clear how
 Table 1 should be refined so as to improve the accuracy
 of the model. Thus, there is a serious complication as-
 sociated with missing information as to group member-

 ship, and I would hesitate to apply the model without
 additional theoretical or empirical knowledge.

 Overstated precision is a potential problem in the au-
 thors' model. Not only does each estimate "shrink" to-
 ward others in its row and column, but its variance is

 reduced, as well. If there is doubt about the accuracy of

 * Robert E. Kass is Assistant Professor, Department of Statistics,
 Carnegie-Mellon University, Pittsburgh, PA 15213.

 the model, then the resulting variance is inappropriately
 small. Consider, for example, the value c* = 1.02 for
 roofing tar in Table 2. My own reaction to that number
 is that it is too small and, to interpret it, I crudely but
 quickly modify model (3.2) by mixing it with the model
 that assumes no relationship among the entries in Table
 1. In addition, since the original data come from an ob-
 servational study, the standard deviation of 1.41 might be
 considered too small, and, before mixing, it could be re-
 placed with a value considered more realistic. Thus, my
 modified posterior, based on viewing Table 2, would be
 roughly equal to a mixture of the reported posterior and
 the variance-inflated original (normally distributed) data.

 Even greater overstated precision results from the
 model selection described in Section 6. Evaluation of pre-
 cision is worrisome whenever the same data are used both
 to select the model and to make inferences. Here, the
 problem is compounded. Not only is each estimate af-
 fected by the selection of entries in its row and column,
 but both the estimate and its variance are affected by
 increased homogeneity of the interactions. In particular,
 I would not agree with the conclusion that knowledge of
 the human roofing tar log slope may be summarized by
 a Normal( 1.53, (.74)2) distribution.

 The concern expressed here about difficulties in ap-
 plying the authors' methodology raises a general question
 of policy analysis: how much inferential and decision-
 theoretic formalism should be used? A second issue that
 arises in this and many other policy problems is, at what
 stage in the process should enter the desire for adequate
 caution with regard to human risk? In arriving at a policy
 decision, scientific evidence must be assessed and social
 values must be evaluated and considered. Some argue
 that it is important to distinguish, as much as possible,
 the assessment phase from the evaluation and decision-
 making phase of policy formulation. A thorough assess-
 ment would then include descriptions of the conse-
 quences of proposed actions, the likelihoods of their oc-
 currence, and the actions that should be taken under each
 possible set of assignments of value to the consequences.
 The use of Bayesian decision theory in this context is
 described in detail by Keeney and Raiffa (1976). A com-
 plication is that probabilities under various assumptions
 may differ widely (as they usually do for dose-response
 models). While, in principle, the probability of an out-
 come may be expressed as a mixture over the assump-
 tions, in practice the probabilities of the validity of the
 assumptions may be extremely difficult to obtain. One
 solution to this problem would further complicate an al-
 ready elaborate scheme by providing assessments ac-
 cording to each of the many possible combinations of
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 assumptions that could reasonably be entertained. This
 seems to me to be the best way of facing the dangers
 mentioned above when sufficient time and resources are
 available. (Other, non-Bayesian, methodologies for ex-
 pressing belief attempt to deal with some of these prob-
 lems in the inferential context; see, e.g., Shafer 1982.)

 On the other hand, varying degrees of formal structure
 may be thought suitable: where precise expressions of
 knowledge are dubious, informal assessment may be pre-
 ferred. Furthermore, by anticipating value judgments, as-
 sessment may be simplified. A conservative strategy is
 often adopted: at each stage in modeling and analysis the
 route that leads to the greater estimate of human risk is
 taken. This approach is more restrictive than the Baye-
 sian decision-theoretic procedure referenced above, in
 which appropriate prudence would be applied during the
 evaluation phase of the process.

 The authors seem to have mixed sympathies with re-

 gard to conservativeness in analysis. Their methodology
 is developed as an alternative to the conservative pro-
 cedure that uses only the worst case among species for
 a particular agent (see Crouch and Wilson 1981). Mean-
 while, their analysis begins with the conservative as-
 sumption of linear dose-response curves and they con-

 sider some conservative features of their model
 appropriate (see Section 7).

 The paper by DuMouchel and Harris gives much in-

 sight into the problem of combining information about
 human cancer from different but related sources, and it

 offers an advance from the method recommended by
 Crouch and Wilson. Here, as elsewhere, the Bayesian
 approach is especially helpful in forming a conceptual
 foundation for inference and decision making. As data on
 interspecies comparisons accumulate, formal methods

 that utilize the available information will become increas-
 ingly useful. The scheme laid out and discussed by the

 authors will then provide a Bayesian path from cognitive
 framework to policy analysis.
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 Re joinder
 WILLIAM H. DuMOUCHEL and JEFFREY E. HARRIS

 We are grateful to Messrs. Krewski, Smith, and Kass
 for an insightful and stimulating discussion. Krewski's
 synopsis of the literature on carcinogenic risk assessment
 is especially welcome.

 Smith and Kass inquire whether our exchangeable

 prior for the species-agent interactions might be too
 strong an assumption. Smith suggests more general forms
 of exchangeability. Kass finds exchangeability itself to
 be an oversimplification and urges prior grouping of
 agents or species along the lines of our Section 5. Kass

 cautions, however, that prior information about group
 membership may be sparse.

 The exchangeability assumption treats distinctive ef-

 fects symmetrically. Thus, in an assessment of the rele-
 vance of laboratory experiments to humans, inconsistent
 responses among a battery of animal tests are just as in-
 formative as inconsistencies between human and animal
 responses. It may be desirable to refine the exchangea-

 bility assumption by reference to current knowledge of

 species differences in bioavailability, metabolism, ge-
 netic repair mechanisms, and the like. In terms of strategy

 of presentation, however, we regarded exchangeability
 as an appropriate starting point.

 In our illustrative example of Table 1, we could have
 assumed that whole animal experiments in mice were

 more relevant to humans than were inammalian cell ex-
 periments. But we recognized that the tumor initiation

 endpoint gauged in the Sencar mice studies might be no
 more relevant to the origin of human lung cancer from
 combustion mixtures than cell transformation or muta-
 genesis. Likewise, we had a vague inkling that cigarette
 smoke was less relevant to the other combustion mixtures
 because of its distinct chemical profile. But we were not
 sure if the presence of tobacco-specific nitrosamines or
 the relative paucity of polyaromatics in cigarette smoke
 were really critical factors. Our adoption of the naive
 exchangeability assumption, as well as our choice of a
 diffuse prior distribution for the relative potencies, re-
 flected our desire not to impose vague and controversial
 beliefs on the reader at the outset.

 Once the consequences of exchangeability were de-
 tailed, we were in a better position to study the effects
 of prior information in Section 5. In that section, we spe-
 cifically assumed that the diesel emissions had biologi-
 cally similar effects-a belief that we regarded as
 straightforward and uncontroversial. We showed how
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