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 Standard large-sample maximum likelihood and Bayesian inference,
 based on limiting multivariate normal distributions, may be dubious when

 applied with small or moderate sample sizes. We define and discuss several
 measures of nonnormality of MLE and posterior distributions that may be
 used as diagnostics and can indicate whether reparameterization will be ef-
 fective in improving inferences. We begin by showing how the nonlinearity

 measures introduced by Beale and Bates and Watts for nonlinear regres-

 sion may be generalized to exponential family nonlinear models. We replace
 the exponential family regression surface with another surface defined in
 terms of the parameterization in which the third derivatives of the loglikeli-
 hood function vanish at the MLE, and then we compute "curvatures" of the
 latter surface. This generalization effectively replaces the normal-theory
 Euclidean geometry with an a-connection geometry of Amari identified by

 Kass, yet it may be understood and implemented without reference to that

 foundational argument.
 We also discuss alternative diagnostics based on the observed third

 derivatives of the loglikelihood function, or the third derivatives of a log
 posterior density. These may be viewed as multiparameter generalizations
 of a nonnormality measure proposed by Sprott. We show how one of these
 diagnostics may be quickly and easily computed using approximations of
 Tierney, Kass and Kadane.

 1. Introduction. In both maximum likelihood and Bayesian inference it
 is desirable to have sufficiently large samples that inferences may be based on
 limiting normal distributions. For any given data set, however, a data
 analyst needs some guidance as to whether or not the normal approximation
 is adequate. In this paper we define diagnostics that can be used to assess
 joint normality of an MLE or posterior distribution. We begin with the notion
 that in well-behaved problems reparameterization can bring the distribution
 to an approximately normal form, and we base the diagnostics on measures of
 departure from "optimal" parameterizations, which are defined in several ways.

 Let ?(O) and T(O) denote the loglikelihood and log posterior density functions;
 let 0 and 0 denote the MLE and posterior mode; and let S = [-D2O(A)-1 and

 = [-D2e(o)]-1 be the inverse negative Hessian matrices of e and eat O and
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 LIKELIHOOD AND POSTERIOR NONNORMALITY 669

 H. (Here D2 denotes the second-derivative operator with respect to the vector
 0.) Assume e1 is m-dimensional. Then the usual large-sample maximum likeli-
 hood inferences are based on the asymptotic standard m-variate normality of
 -1/2(0 - 0) or on its expected-information counterpart (in which the expected
 information evaluated at the MLE replaces the observed information u-1). Sim-
 ilarly, large-sample Bayesian inferences are based on the asymptotic standard
 m-variate normality of Z-1/2(0 - 0). In the case of maximum likelihood we will
 emphasize the "quadratic loglikelihood" parameterization, so called because it
 produces an approximately quadratic loglikelihood in the sense that the expec-
 tations of the third derivatives of the loglikelihood vanish. In the Bayesian case,
 we will say that a parameterization produces an approximately quadratic log
 posterior if the "observed" third derivatives of the log posterior, evaluated at the
 mode, vanish. Since these derivatives become the observed third derivatives of
 the loglikelihood evaluated at the MLE when the prior is uniform, the latter
 may be of use in non-Bayesian inference as well.

 Our approach builds on methods that have been used to diagnose nonnor-
 mality of least-squares estimators in nonlinear regression. In that context, ap-
 proximate inference is based on linear approximation to the regression surface
 at the least-squares fitted value, and the standard procedures perform poorly
 when the surface is highly nonlinear. To measure nonlinearity, Beale (1960)
 and Bates and Watts (1980) proposed summaries of second derivatives of the
 regression surface, which have the form of curvature measures. This general
 approach has received a fair amount of attention and has proved quite useful
 in practice [e.g. Ratkowsky (1983) and Seber and Wild (1989)]. Despite this
 success, however, there has been little attempt to generalize beyond nonlinear
 regression, one noteworthy exception being the paper by Cook and Tsai (1990).
 We describe here, in Section 2, what we consider to be a natural and direct
 generalization of the Bates and Watts (1980) methodology. Technically, it relies
 on the mathematical foundation of the a-connection geometries introduced by
 Amari (1982), exploiting an observation made by Kass (1984). From a practical
 point of view, however, it is easy to understand and compute the nonnormality
 diagnostics we describe without knowledge of the full-fledged foundation.

 The basic idea is to define an appropriate surface, analogous to a nonlinear
 regression surface, the curvature of which will yield information relevant to the
 adequacy of inferences based on the normal approximation to the distribution
 of the MLE. The approach is easiest to understand in the context of a simple
 example, which we will analyze in detail in Section 4.

 EXAMPLE 1. We consider a model (and in Section 4 a data set), taken from
 Feigl and Zelen (1965) and discussed by many authors including, as an acces-
 sible reference, Cook and Weisberg (1982). In this example, the outcome (Y) is
 survival time in weeks among leukemia patients, and the predictor is white
 blood cell count (WBC), with x = log(WBC) - mean(log(WBC)). The model is

 Yi Exponential((/p-),
 Hi =1 Sexp(-02Xi),
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 670 R. E. KASS AND E. H. SLATE

 independently, for i = 1,... , n, where E(Yi) = mus. We write p = 1, ,u,), not-
 ing that ,u = p(9) and, since m = 2 in this case, as 0 ranges over the parameter
 space e, ,u(9) traces a two-dimensional surface in Rn. This is an example of an
 exponential family nonlinear model, a class we focus on in Section 2. When we
 return to this example in Section 4 we will, like other authors, confine our atten-
 tion to the 17 AG-positive patients. Doing so, we have a sufficiently small data
 set that the loglikelihood function on 0 may not be approximately quadratic,
 and large-sample inferences may not be reliable. Indeed, the likelihood con-

 tours for (01, 02) shown in our Figure 3 are somewhat nonelliptical, whereas
 likelihood contours for an alternative parameterization (A1, A2) (defined in Sec-
 tion 4) are improved. The measures we study will help determine whether the
 loglikelihood for a particular parameterization is roughly quadratic.

 To assess nonlinearity in this example, one might, at first glance, be tempted

 to imitate the computation of curvatures of the response surface in nonlinear
 regression by computing curvatures of the surface J(G). The obvious difficulty,

 however, is that even for the linear model pi = 01 + 02xi the MLE of 0 will not
 be approximately normal except when the sample size n is quite large. Thus,
 this particular kind of nonlinearity is of limited relevance. Instead, we measure
 nonlinearity of a different surface.

 We begin by considering the individual exponential observations and intro-
 duce a transformation that makes this problem more like the normal nonlinear
 regression problem. For a single exponential distribution with mean parameter
 ,u, the loglikelihood function on the transformed parameter r = '-1/3 satisfies
 E(e .(T)) = 0 and e. (?) = 0. The likelihood function based on an i.i.d. sample of
 exponential observations might therefore be expected to be more nearly normal
 as a function of T than as a function of ,u, at least in the sense that its logarithm

 should on average be more nearly quadratic in r than in IL. [Beyond its intu-
 itive appeal, this "quadratic-loglikelihood" parameterization has the property
 that the skewness of the usual pivot is reduced to order O(n-3/2); see DiCiccio
 (1984).] As Slate (1992) shows in the context of natural exponential families
 having quadratic variance functions (NEF-QVF's), this transformation is re-
 markably effective in bringing the likelihood function to a more nearly normal
 form. In the case of the exponential distribution, the normal approximation
 may be judged adequate even for sample sizes as small as 1 or 2: as shown in
 Figure 1, for a sample size of n = 2, the likelihood function on ,u is skewed and
 the normal approximation deviates substantially from it, while the exact and
 approximate likelihoods on ir = ft-1/3 are, for practical purposes, identical. (In
 this example, the transformation is a special case of that due to Wilson and
 Hilferty 1931).] Thus, in Example 1, if we were to make the transformation
 1/3 1 13
 i = t , we would obtain n observations (i = Yi/, and the problem would

 now more closely resemble nonlinear regression. If the surface ( = ((O) turned
 out to be approximately linear, we would expect the likelihood function on 0 to be
 approximately normal.
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 FIG. 1. Likelihood (solid lines) and normal approximations (dashed lines) for jL and t-1/3 with
 n = 2 and x = 1 for the exponential model. The likelihoods have been scaled so that they match the
 value of the normal approximation at the MLE.

 In essence then, our method is to compute curvatures of the surface ( = (0)
 following Bates and Watts (1980), except that we insert the Fisher information
 matrix into the formulas, to account for the inhomogeneity of the variances of

 the quantities (j. In Section 2.1 we provide necessary background on nonlinear
 regression; in Section 2.2 we describe the generalization to exponential family
 nonlinear regression models; in Section 2.3 we give the mathematical founda-
 tion based on a-connections (which provides extension of the methodology to
 any regular parametric family); and in Section 2.4 we give explicit formulae for
 the curvature measures.

 What we have outlined so far concerns the use of expected third derivatives
 of the loglikelihood function: although for all regular exponential families the
 parameterization we begin with satisfies e. (F) = 0, for other families this no
 longer holds. Thus, one might wish to consider diagnostics based directly on the
 observed third derivatives of the loglikelihood function or, in the Bayesian case,
 the log posterior. This we do in Section 3. The idea there is to generalize the one-
 dimensional standardized third derivative suggested by Sprott (1973) to higher
 dimensions. We do so by direct analogy with the diagnostics in Section 2, noting
 that, first, the curvature measures in nonlinear regression may be considered
 algebraically as summaries of the three-way array of second derivatives of the
 regression surface and, second, the third derivatives of the loglikelihood func-
 tion again form a three-way array. Thus, we apply analogous three-way array
 summaries to obtain diagnostics based on the third derivatives.
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 672 R. E. KASS AND E. H. SLATE

 One worry is that, in practice, at least in certain problems, it may be difficult
 or time-consuming to compute the third derivatives correctly. We show that
 one of our diagnostic third-derivative summaries may be computed approxi-
 mately, with error of order O(n-2), using "derivative-free" posterior expectation
 approximations described by Tierney, Kass and Kadane (1989) and available
 in LISP-STAT [Tierney (1990)].

 In Section 4 we illustrate the approach, first returning to Example 1 and then
 analyzing a nonlinear binary response model as a second example. In Section 5
 we discuss the methodology and our results.

 2. General curvature measures. In this section we show how curvature
 measures of nonlinearity applied in normal nonlinear regression may be gen-
 eralized to nonlinear models having other error structures. We begin with a
 review of pertinent results from normal nonlinear regression theory in Sec-
 tion 2.1, then present generalizations to exponential family nonlinear models
 in Section 2.2. In Section 2.3 we provide the mathematical foundation for the
 approach (which may be skipped by readers not wishing to wade through it),
 and in Section 2.4 we give the resulting curvature measures.

 NOTATION. In writing components of parameters we will distinguish m-
 dimensional parameters, such as 0, from n-dimensional parameters, such as ,
 by using as subscripts Latin letters at the beginning of the alphabet a, b, c, ....
 for the former, and letters occurring later in the alphabet i, j, k,... for the latter.
 For arrays we will similarly distinguish components ranging from 1 to m from
 those ranging from 1 to n, but will also use Greek letters for those components
 that might range from either 1 to m, m + 1 to n or 1 to n depending on the context.

 2.1. Nonlinear regression. The usual normal nonlinear regression model
 begins with a model function f(O, x) for 0 E E) C Rm and then

 Yi = (0)+ ix

 with qih(0) = f(0, xi) and ei N(0, a2), independently, for i = 1,... , n. Normality
 of the errors is not always assumed, but for the development of the general-
 ization below we must begin with it here. The vector Y = (Y1,..., Yn) then
 has a distribution belonging to the n-dimensional multivariate normal family
 N(aq, a2 In), where iq = (q, .. ., rn) is restricted to lie on an m-dimensional sur-
 face specified by ij = 77(0). Thus, for each fixed a, this family is the subfamily
 of the n-dimensional normal location family that consists of distributions with
 location parameter restricted by 7 = 77(0), that is, with location parameter re-
 stricted by the nonlinear mapping 0 77(0). Approximate inference is carried
 out through linear approximation of this nonlinear mapping, and diagnostics
 of poor performance of asymptotic inference procedures have been based on
 measures of the mapping's nonlinearity.

 The starting point in assessing the accuracy of the linear approximation has

 been to examine the second derivatives of the model function q1 (0) = f(0, xi).
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 LIKELIHOOD AND POSTERIOR NONNORMALITY 673

 Beale (1960) made the geometrically elementary yet statistically interesting
 observation that the parameterization-invariant nonlinearity is associated
 with the normal components of the second derivatives. This implies that the
 three-way array of normal second-derivative components may be reduced to a
 parameterization-invariant scalar. As discussed by Kass [(1989), Section 3.5.51,
 there are two fairly natural such single-number summaries that have been
 studied in differential geometry and, as noted below, Beale used a linear com-
 bination of these as his measure of parameterization-invariant nonlinearity.

 This leaves the parameterization-dependent nonlinearity to be assessed us-
 ing the tangential components of the second-derivative array. Working by anal-
 ogy with the normal components, this three-way array of tangential compo-
 nents may also be reduced to two different scalars. These are, of course, not
 fully parameterization-invariant, but they are invariant to affine transforma-
 tions of the parameter space (i.e., transformations of the form 0 -* AO + B,
 where A is a full-rank m x m matrix and B is an m x 1 vector). Affine invariance
 is desirable geometrically because affine transformations preserve linearity (or
 nonlinearity), and it is desirable statistically because they preserve normal-
 ity (or nonnormality); that is, a diagnostic of nonnormality of the MLE (the
 least-squares estimator in the case of nonlinear regression) should not be af-
 fected by affine transformations, since these do not affect the degree to which
 the distribution of the MLE may be approximated by a normal distribution.
 The tangential components of the second derivatives are of primary interest
 here, and there is some evidence that they are the main concern in applications
 [Bates and Watts (1980) and Ratkowsky (1990), palge 24].

 We will now give several definitions, based mainly on the work of Beale
 (1960) and Bates and Watts (1980), that are relevant to the development in Sec-
 tions 2.2 and 2.3. We first review the analysis used to assess parameterization-
 invariant nonlinearity, beginning with root-mean-squared curvature, and its
 calculation using a standardized array of normal components of second deriva-
 tives; summary of this second-derivative array is central to our motivation. We
 then present the analogous methods based on tangential, rather than normal,
 components of the second-derivative array, and we mention the interpretation
 of the array itself. We will generalize this array in Section 2.3 and interpret it
 in an example in Section 4.

 Let 0 be the least-squares estimator of 0. The measure of parameterization-
 invariant nonlinearity proposed by Beale (1960) is an average curvature among
 certain curves that slice through the regression surface at the least-squares fit-

 ted value r(9). The curves have the form c,(t) = ,(0 + tv) with c,(0) = q(0), where
 v is a nonzero vector in Rm, and have been called lifted lines by Bates and Watts
 (1980). Each such curve has a second-derivative vector which decomposes into
 normal and tangential components c'(0) = c/'(O)N + CU(O)T, and the curvature of
 the curve is

 (2.1) $N(V) = IlCI(0)1I21IC"(0)N ||.

 This curvature may be considered a measure of curvature of the surface at 71(0)
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 674 R. E. KASS AND E. H. SLATE

 in the direction of the tangent vector c' (0). Beale's measure is then

 (2.2) 2RMS = AmJS(IN(V)) dS,

 where the integral is over the sphere {v: Ic'(0)II = 1}, and Am = 7rm/2/F(m/2) is
 the surface area of the unit sphere in Rm. [As Bates and Watts (1980) showed,
 Beale's No is actually equal to 12YRMS]

 Computationally it is easiest to perform this integration by taking advantage
 of a standardization, introduced by Bates and Watts (1980), which is convenient
 for many calculations. There are three steps involved. Let TM be the tangent
 plane to the surface 77(0) at 0, and let V = D77(0) so that the columns of V
 span TM. Geometrically, the first step is to rotate the n-dimensional Euclidean
 coordinate system so that the first m coordinates span TM, and the last n--m are
 orthogonal to it. Algebraically, this is accomplished via the QR-decomposition,
 with QR = V. The second step is to introduce a linear transformation of the
 parameter 0 such that the vector derivatives of r1 with respect to the components
 of the new parameter o coincide with the orthonormal basis for TM in the
 rotated coordinate system. This transformation is

 (2.3) = R1(0 - 0),

 where R1 is the m x m upper portion of the n x m matrix R. (The rotation here
 is not unique; one possibility is to choose R1 to have positive diagonal elements,
 but the choice is inconsequential for what follows.) Finally, the surface in these
 new coordinates and parameterization becomes

 - QT(77( + R 1X) -()

 and the second-derivative array A is defined by its components

 (2.4) aAab = 0 ,

 with the index A ranging over the m tangential components followed by the
 n - m normal components as indicated in the notation A = AT I AN. Note that
 this definition does not include the normalizing factor s in1/2, where s is the
 residual root-mean-square, used by Bates and Watts. The computation of the
 array may be carried out most conveniently using

 (2.5) A= [QT] [LTD277)L]

 where L = R' and the brackets indicate multiplication of three-way-arrays, as
 in Bates and Watts (1980). Specifically, A = [B][C] when the components satisfy
 AAab = Y- 1iB,\iCjab.
 The elements of the three-way arrayAN could be examined for diagnostic pur-

 poses, but it is most convenient to consider invariant one-number summaries.
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 LIKELIHOOD AND POSTERIOR NONNORMALITY 675

 There are two such scalars that play an important role in the geometry of sur-
 faces. They are analogous to two forms of squared trace for a matrix h, tr(hhT)
 and tr(h)2. Including a factor of a2 in their definition, they are

 n

 (2.6) =2 =2 E (aAbc)
 X=m+l b,c

 and

 n 2

 (2.7) 2 -2 m22 aAbb)
 A=m+l b

 where A is summed over the n - m normal components. Here we should perhaps
 remark that the use of the factor m in the definition of ;y but not aY occurs
 as a notational quirk because the latter is a times what is usually called the
 mean curvature of the surface, while -y is the statistical curvature [see Kass
 (1989), Sections 3.5.5 and 3.5.6). The root-mean-squared curvature may now
 be rewritten in terms of these summaries oftheA array according to the relation

 (2.8) m(m + 2)-&MS = m2;72 + 2y2.

 This corrects the corresponding equation in Kass (1989), which omitted the
 factor m(m + 2).

 The tangential-component analogues begin with

 (2.9) KT(V) = IIcv(O)IK2|(CV(O))T||

 which may be averaged over the unit sphere, as in (2.2),

 (2.10) WpS h(Am JT)dS.

 As in (2.6) and (2.7), we define

 m

 (2.11) w2 a2 E (aAbc)
 A=1 b,c

 and

 m 2

 (2.12) -2 m-2 2 E E(aAbb)
 A A=1 b

 where A is now summed over the m tangential components. We then have the
 tangential-component analogue of (2.8),

 (2.13) m(m + 2)wRMS = m2 2 + 2w2.
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 The quantities w, w and WRMS, which are computed using (2.5), are invariant
 to affine transformations of the parameter space. They are not standard ge-
 ometrical objects, and KrT(V) is not a curvature in the usual sense. Instead of
 indicating nonlinearity inherent to the surface r1(O) sitting in Rn, they indicate
 nonlinearity due to the parameterization of the surface. For instance, in ordi-
 nary linear regression the regression surface is an m-dimensional plane in Rn.
 If the regression coefficients were replaced by new parameters arising from a
 nonlinear transformation (as would occur if the original regression coefficients
 were rewritten in terms of certain of their ratios and products), the surface
 would remain flat within Rn but would become nonlinear in these new param-
 eters. Thus, the quantities A, A and ARMS would remain zero but w, 0 and WRMS
 typically would become nonzero.

 Bates and Watts (1981) emphasized the value of examining the AT array
 and its summaries to assess the effects of reparameterization. Referring to
 the ideal parameterization as providing a "uniform coordinate system" for the
 surface, they interpreted elements of the AT array as indicating departures
 from uniformity. In particular, they mentioned what they called compansion,
 arcing and fanning entries and illustrated their effects graphically using a two-
 dimensional example. In Section 4 we provide a similar interpretation for the
 exponential regression model described in the Introduction.

 2.2. Generalization to exponential family nonlinear regression. Consider a
 set of densities

 p() (z I v, a) = exp{ [zi(O) _ p(V)] /a2 + b(z, a)}

 that, for fixed a, form a one-dimensional regular exponential family with nat-
 ural parameter v. Allowing a to vary produces a family that may be called a
 regular exponential dispersion model [Jorgensen (1987)]. Taking n copies of
 such a family and writing y = (Y1,. .. ,Yn) with Yi replacing z, for i = 1, .. ., n,
 and i7 = (71, .., r.n) with qi replacing v, for i = 1, . . . , n, the product family of
 densities p(yl 7,a) = ap(')(yi 77i,a) is, for fixed a, a regular exponential fam-
 ily of order n. We let the natural parameter space of this family be denoted by
 N. When iji = f(O;xi) for some function f, parameter vector 0 and values of an
 explanatory variable or vector xi, i = 1,.. . ., n, we obtain an exponential family
 nonlinear model, which will have densities of the form

 n

 (2.14) p(y I, a) = I7 exp{ [yiqi(0) - '(?77)] /a2 + b(yi, a)}

 Generalized linear models [McCullagh and Nelder (1989)] are exponential fam-
 ily nonlinear models, and when the dispersion parameter a is known, exponen-
 tial family nonlinear models become curved exponential families. We assume
 the parameter space e is an open subset of R' and 0 -- 7(0) is an embedding
 (i.e., the mapping from E into N is one-to-one and infinitely differentiable, with
 full-rank Jacobian and an infinitely differentiable inverse mapping).
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 As in the case of nonlinear regression, geometrical analysis of these models

 may be based on the embedding 0 -- q(9), ignoring the presence of the pa-
 rameter a and effectively treating it as if it were known. We therefore write

 QO = {p( (0), a): 0 E E} and take Q = {p( -o7, a): 77 E N} to be the unrestricted
 exponential dispersion model, speaking of 0 and rq as parameterizations for
 these models, ignoring a. (In applications, when a is needed for some formula
 an estimator of it may be substituted.) By construction, Q is an n-fold product of
 a one-dimensional regular exponential family with itself, and we let Q(1) denote
 this one-dimensional exponential family.

 In the exponential regression model described in the Introduction, Q(1) is the
 Exponential(p-1) family. In general, as noted at the end of Section 2.3, there ex-
 ists a parameterization T of Q(1), which we will call the quadratic loglikelihood
 parameterization, for which the loglikelihood function satisfies E(i3"'(T)) = 0 and
 f"'M = 0 [see Hougaard (1982)]. We can use this parameterization for each of
 the n copies of Q(1) comprising Q to define a parameterization C = (l, ... , (n) for
 Q ((i replacing r, for i = 1,. . ., n). We then obtain an m-dimensional surface ((0)
 in Rn that represents QO. In this setting we will now be more explicit about the
 idea, motivated in the Introduction, of computing curvatures of the surface ((0).

 The curvature measures in nonlinear regression are computed from the A

 array of (2.5). We carry out the steps leading to (2.5) using ( in place of i7, with
 one modification. In the full exponential family model Q, the variances of the
 components 1, ... (n may be inhomogeneous. To accommodate this, we weight
 the observations according to the Fisher information matrix i((). Thus, letting
 G = i(((O)), we begin with the decomposition

 (2.15) QR = G"2D(M)

 and take R1 to be the upper m x m part of R. We then define q using (2.3) with
 this new definition of R1, and we write the surface in the rotated coordinate
 system as

 =w = QTG112 (((O+ R71q) -

 As in (2.4), if we define

 (2.16) aAab =
 i9O)a 90Xb

 we arrive at the computational formula

 (2.17) AC = [QTGl/2] [LTD2O(0)L],

 where L = RT, the brackets again indicating multiplication of the three-way
 arrays, and the subscript C being used to indicate explicit dependence on the
 parameterization (. This newA array may be decomposed according to the first

 m and last n - m values of the index A as A( = A<T I A, representing tangential
 and normal components with respect to the inner product based on the Fisher
 information matrix G.
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 We state the method in terms of an arbitrary parameterization ( = (4i, ,Q
 constructed similarly from components that are each a particular parameteri-
 zation of Q(1), but not necessarily the one for which the expected third derivative
 of the loglikelihood vanishes. For instance, we might take the asymptotic vari-

 ance stabilizing parameterization of Q(1) to define the components of C. To be
 more precise, if r is a parameterization of Q(1), we may consider the parameter
 mapping t: Q(1) -* R defined by the operation on densities (elements of Q(1)) as
 t(p(l),( lJ(T) a)) = r. Then, rewriting each element of Q according to its product
 form p(. Jq, a) = ll% =p'(l)( 1rRi, a), where the subscript on p(') indicates, of course,
 the i-th instance of the density, we define a parameterization ( = (, .. ., () of
 Q from (i = t(p(.1)( r1i, a)), for i = 1, .. ., n. We will call ( the product parameter-
 ization of Q defined from r.

 METHOD FOR EXPONENTIAL FAMILY NONLINEAR MODELS. For the product

 parameterization C of Q constructed as described above from a parameterization
 r of Q(1), we consider the array AC to be the generalization of the A array.

 Once AC is substituted for A, the calculation of curvatures proceeds exactly
 as in the nonlinear regression setting. Explicit formulae are given in Section
 2.4. We think of r as the quadratic loglikelihood parameterization, but we left it
 unspecified in the procedural statement above because other choices may be of
 interest as well. Expressions for the quadratic loglikelihood parameterization
 in the NEF-QVF families may be found in Slate (1994).

 2.3. Foundation using a-connections. In Section 2.2 we described a gen-
 eralization to exponential family nonlinear models of the normalized second-
 derivative array A = AT IAN in nonlinear regression. In this section we provide
 a foundation for the calculations using the a-connections introduced by Amari
 (1982). For simplicity, and because the parameter-effects portion of the array
 are of primary interest in practice, we confine ourselves to a discussion of pa-
 rameter effects. We begin by pointing out that the array AT may be considered
 a special case of a connection coefficient array. We then review relevant defi-
 nitions and results from Amari (1982) and indicate the way the a-connection
 coefficient arrays provide generalizations of the AT array defined in Section 2.1.

 To a reader not knowledgeable about differential geometry, we try to give a
 rough idea of the way connection coefficients enter into derivative calculations
 on ap-dimensional smooth manifold M. For us,p could be either the sample size

 n or the dimension of the parameter space m. If E1,. . , EP are the p-coordinate
 basis tangent vectors in the tangent space of M at Q and if VA = VE, is the co-
 variant derivative (specified by the affine connection on M) in the Ath coordinate
 direction, then

 VAES = PH(O) EM

 that is, rI, (O) is the vth component of the covariant derivative of the pth co-
 ordinate tangent vector in the direction of the Ath coordinate. For rectangular
 coordinates in Euclidean space V X is the usual Ath partial derivative operator,
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 LIKELIHOOD AND POSTERIOR NONNORMALITY 679

 the basis vectors are constant throughout RP and the connection coefficients
 vanish. For curvilinear coordinates, however, the basis tangent vectors vary
 from point to point and the coefficients do not vanish. The reader may recall
 that for polar coordinates (r, 0) in R2 the gradient of a real-valued function f
 is the vector (&f/&r, (1/r)(Of/S0)), the appearance of the coefficient l/r being
 a consequence of the curvilinearity. Connection coefficients enter analogously
 for curvilinear coordinates when vector fields are differentiated, as they are
 implicitly in the calculation of curvatures. Thus, the connection coefficients of
 the Euclidean connection vanish in rectangular coordinates but not in polar
 coordinates. When Mo is a submanifold of M, there is a "natural" manner in
 which a connection is inherited on Mo from that on M; the most familiar case is
 when Mo is an m-dimensional smooth surface in M = Rn. This latter case is that
 which occurs in nonlinear regression, with the regression surface being Mo.

 Having given this description we may return to the AT array for nonlinear
 regression (Section 2.1) and note that

 (2.18) acab = rab(?)'

 where o is defined in (2.3) and rab(? are the connection coefficients in X coordi-
 nates for the connection inherited on the regression surface from the Euclidean
 connection on Rn. This observation is of interest because it indicates the role
 that connection coefficients play in determining the effects of parameterization.

 2.3.1. General method. We will now define the a-connection coefficients and
 use them to obtain another version of (2.16). Our purpose is to understand the
 method for exponential family models (Section 2.2) more deeply and thereby
 generalize it. In this section we use (2.18) to provide a sense in which certain a-
 connection coefficients may be considered generalizations of the AT array, and
 in the next section we show that this does indeed produce a generalization of
 the method of Section 2.2.

 In general, if a is a parameterization of a regular parametric family of densi-
 ties T and d(f) is the loglikelihood function, then the information metric has the
 Fisher information matrix i(O) as its :-coordinate expression and we will write

 (2.19) , , = E a 3M )

 The elements of the inverse of this matrix will be written

 g / =

 We use (.,.)i and II IIi(p) to denote the information inner product and its norm,

 so that, for a vector u in the f-space IIuII2(0 = S2,gA,1uAu). The a-connection
 coefficients are defined by

 rP ru(f) = E(AN? e E
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 and

 ai 1-a -i 1+a 1
 rF,,(O) = 2 F rAj(/) + n2a ,).

 1 -1

 Note that rPwv and rp ),correspond to a = 1 and a = -1, respectively;
 these are the exponential and mixture connection coefficients. The r.Fi coeffi-
 cients are in covariant form. An alternative form includes one contravariant
 (or "raised") index and is defined by

 ak a

 rv (0) =enVrA()-

 Now, by virtue of the very special structure of normal location models, in
 normal-family nonlinear regression it happens that the a-connection coeffi-
 cients are equal to the Euclidean connection coefficients, for all a. Thus, in the
 usual nonlinear regression setting we have,

 a

 (2.20) acab = rab(A

 for all a [cf (2.16)]. Geometrically, (2.20) provides a sense in which the a-

 connection coefficients in terms of 0 may be considered generalizations of the
 AT array.

 To obtain statistical motivation for the use of a-connection coefficient arrays,
 we consider the equations

 c'k
 rkJ(O - 0,

 i = 1 ... ,p; j = 1,... ,p; k = 1, ... ,p. Reinterpreting a formula discussed by
 Hougaard (1982), Kass (1984) observed that these equations characterize var-
 ious parameterizations. If the equations hold for a = 1, 0, -3, -1, then / is,
 respectively, the natural parameterization, the variance-stabilizing parame-
 terization, the asymptotic skewness-reducing parameterization and the mean-
 value parameterization. These values of a occur in the work of Amari (1982,
 1985). In addition, and more important for the methodology described here,
 if the equations hold for a = 3, then ,B is the parameterization in which the
 expected third derivatives of the loglikelihood function vanish. Thus, the lat-
 ter parameterization provides a "uniform coordinate system" in the sense of

 Bates and Watts (1981) with respect to the a = 3 geometry. Departures from
 uniformity in this geometry therefore correspond to deviations away from the
 "quadratic loglikelihood parameterization."

 With this motivation, we specify the general method. In doing so, although
 a = 3 deserves special attention, we allow the value of a to remain arbitrary.
 For any given parameterization 0 we take

 (2.21) ) - i(O)12(O - ),
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 LIKELIHOOD AND POSTERIOR NONNORMALITY 681

 where i(O) is the Fisher information in 0, and 0 is the MLE. In this parameter-
 ization the information matrix at the MLE X = 0 becomes the identity and

 (2.22) rab(4)) = Fabc(?)

 Notice, however, that since 0 is a full-rank linear transformation of X, rcb() = 0

 if and only if jab(o) = 0. As in the nonlinear regression setting, it is convenient
 to assess the parameterization 0 by using its linearly standardized version q5.

 GENERAL METHOD. We interpret and compute curvatures from Pab(q) by
 analogy with the interpretation of, and curvatures based on, AT.

 2.3.2. Method for exponential family nonlinear models. We now show that
 the method of Section 2.2 is a special case of that given in Section 2.3.1.

 In nonlinear regression the model of interest, which is determined by the

 restrictions 7qi(O) = f(O, xi), is considered an m-dimensional submodel of the
 unrestricted n-dimensional multivariate Normal(O, u2In) model. As indicated
 in Section 2.3.1, its geometry is thereby inherited from the Euclidean geometry
 of the unrestricted normal family, for which the connection coefficients vanish.
 Correspondingly, in general, if we have a subfamily Qo of a larger family Q,
 the a-connection coefficients on Qo may be determined by inheritance formulas
 from the a-connection coefficients on Q. This assumes the regularity condition
 that Qo is an imbedded submanifold [see, e.g., Kass (1989)].

 PROPOSITION 1. If( is aparameterization of a family Q such that aijk(() = O,
 for i, j, k = 1,.. ., n, and if 0 is a parameterization of Qo, then, with v satisfying
 (2.21), the a-connection coefficients on Q0o satisfy

 (2.23) rabc () = (Oab (, &c )ji(?()) = Egij 9ab &i CcX

 where the derivatives are evaluated at 0.

 PROOF. This is an immediate consequence of Theorem 3 and equation (4.15)
 of Amari (1982). 0

 Now suppose Qo is an exponential family nonlinear model, constructed as a
 subfamily of Q = Q(1) x ...x Q().

 PROPOSITION 2. For each a there exists a parameterization r of Q('), unique
 up to an affine transformation, such that the product parameterization C of Q
 defined from r satisfies rijk( ) = 0, for i,j, k = 1, .. ., n.

 PROOF. As shown in Kass (1984), for any regular one-dimensional expo-

 nential family Q('), r satisfies r,11(r) = 0 if and only if it is the solution of a
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 second-order differential equation discussed in Hougaard (1982). Such solu-
 tions exist and are unique up to an affine transformation. The result follows
 from the product-structure of Q. o

 EXAMPLE 1 (Continued). In the exponential regression example described
 in the Introduction, if Q(') is the Exponential(r-1) family, then r= ,u-1/3 satisfies

 ri(,r) = 0 for Ol = a , this being the only coefficient since the family is one-
 dimensional. We may parameterize Q = x ... x Q(1) by ,u = (p1,... ,U /in); but
 if we instead use 4' = (,u 1/3..., ,u'1/3), then rijk(4) =0, for a = ( . (Note that it
 is a coincidence of no apparent importance that the transformation for a =

 involves the power - 1 in this example.)

 We now consider the nonlinear surface in the (-space, defined by 0 -((0),
 rather than in the natural parameter space of (2.14) defined by 0 -> q(9) [and
 rather than in the mean-value parameter space defined by 0 -. y(O), with which
 we began Example 1]. Doing so, we recognize (2.23) as a computation of the
 tangential components of the second derivatives of 4, with respect to Q. This is
 precisely the way the AT array was defined in (2.4), except that the information
 inner product has been used in (2.23).

 It is straightforward to verify that i(0) = RTR1 as defined from (2.15) so that
 (2.21) is satisfied when X is defined from (2.3). Since the contravariant and
 covariant forms of the connections coincide at Q as in (2.22), Proposition 1 and
 (2.16) give

 Fab() = acab

 Together with Proposition 2, this shows that when 4 is a product parameteriza-

 tion defined from r with r111(r) = 0, the method of Section 2.2 may be applied
 (essentially uniquely) and becomes a special case of the general method of Sec-
 tion 2.3.1.

 2.4. Curvature measures. As we have already indicated, the curvature mea-
 sures we will use are analogous to those of Section 2.1. In this section we
 will write specific formulae for the case of an exponential family nonlinear
 model QO and, as in Section 2.2, will work with the product parameterization
 4 determined from an arbitrary parameterization i- of Q('). Three choices of r
 will be highlighted. First, and most important, there is the quadratic loglike-
 lihood parameterization. The curvatures based on this parameterization will
 be subscripted by Q. In addition, when the natural parameterization and the
 mean-value parameterization of Q(') are used, the curvatures will carry the
 subscripts of E and M, respectively. These latter two come from the names "ex-
 ponential" and "mixture," which are part of the general terminology used in the
 geometrical foundation discussed in Section 2.3. In terms of that foundation,

 we would be defining r from a to obtain the characterization on Q, Fik(4) = 0
 for all i, j, k, and the subscripts of Q, E and M correspond to a = 1, 1 and -1.
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 Another possible choice of T is the MLE skewness-reducing parameterization,
 which corresponds to a = - 3. However, in assessing skewness the usual asymp-
 totic pivot I(0)1/2(0 - 0), where I(0) is either observed or expected information,
 may be considered more relevant (since inferences are based on the pivot);
 its skewness is reduced [to order O(n-3/2)] when the quadratic loglikelihood
 parameterization is chosen [Hougaard (1982) and DiCiccio (1984)].

 Using the subscript X generically to indicate E, Q, or M (or any other of the
 infinitely many possible choices of r or a used to determine C), we define the
 following:

 (2.24) X = jgacgbdg . ((&ab )N)i((&cd )N)j

 (2.25) ~ ;72= Egabgcdg0. (2 .25) M27 X j ab.di ((Ab (O;N) i ((A3d( N)j

 (2.26) w2 = E gacgbdg,j, ((aab )T)i((Ocd )T)j
 (2.27) M2w2 = j:gabgcdgj. ((9abc )T)i((&cd9)T)j

 where g0 is the n x n information matrix in terms of C at ((0); g ab is the inverse
 of the m x m information matrix in terms of 0 at 0; (')N and (')T signify normal
 and tangential components with respect to the information matrix (gij); and the
 summations are over all indices.

 Certain special cases, and combinations, of these measures have important
 statistical interpretations [Kass (1989), Section 3.5]. For instance, tE is a gen-
 eralization of what Efron (1975) called statistical curvature and is a measure
 of the insufficiency of the MLE. The quantity m2wM2/4 is the relative bias of the
 MLE, and -q2 + wM is the second-order risk of the MLE using a quadratic loss
 function defined by the information matrix. Also, when the curvatures here are
 defined in terms of any a-connection, in the special case of nonlinear regression
 they will reduce to curvatures defined in Section 2. 1.

 We now introduce generalizations of the root-mean-squared curvatures. We
 begin with a lifted line in the (-parameter space c,(t) = C(O + tv) at c(O) = ((0),
 where v is a vector in Rm, and define

 KX,N(V) = IIcV(O)II)I| (CV"(O))NIIi((())
 and

 IX, T() = IcV(O)II ,,))II (CV(?)) Ti((CO))

 exactly as in (2.1) and (2.9), except that the information inner product [defined

 following (2.19)] is used to define the norm Lw o We then have

 X RMS = .- j(/X,N(V)) dS
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 and

 WX,RMS = A j (8x,T(v))2dS,

 where the integrals are over the sphere {v: IIc'(0)lIi(C(o)) = 1}.
 All of these curvature measures may be easily computed by virtue of the

 following two propositions.

 PROPOSITION 3. Reparameterizing Qo by q defined by (2.3) via (2.15), the
 expressions for IYx77X,wx and Ox are given by (2.6), (2.7), (2.11) and (2.12),
 where the subscript X determines the choice of ( in (2.15) and where AC array is
 defined in (2.16) and (2.17).

 PROOF. Applying (2.24)-(2.27) in terms of X, this follows immediately from
 the simplification gab = 1 if a = b and gab = 0 otherwise, together with defini-
 tions (2.16) and (2.17). O

 PROPOSITION 4. For any choice of C, indicated by X,

 m(m + 2)wX RMS = m20X + 2wX,

 m(m + 2)7yx RMS = m2X2 + 2-yX

 PROOF. Applying Proposition 3, the argument follows that of Bates and
 Watts (1980), leading to their equation (2.29). 0

 Although it is simplest, and may be most desirable, to use the curvature
 measures -yx, jx' wx and wx (and the resulting root-mean-squared curvatures),
 another possibility would be to follow Bates and Watts (1980) and others
 by computing maximal curvatures over all directions in the parameter space.
 The method described by Bates and Watts (1980) is applicable here with
 obvious modifications.

 3. Summaries of the observed third-derivative array. In Section 2
 we emphasized curvature measures that would be zero if the third derivative
 of the loglikelihood function vanished in expectation. These should, in many
 problems, provide useful indications of whether the loglikelihood function is
 approximately quadratic. In this section, we instead summarize directly the
 "observed" third derivatives, that is, the third derivatives of the loglikelihood
 function ?(O) evaluated at the MLE 0 and the log posterior t(O) evaluated at
 the mode W. For reasons given earlier, in Section 2.1, it is desirable to obtain
 one-number summaries that are invariant to affine transformations of the pa-
 rameter space. We do so; then we note an interesting property of one of these
 measures of nonnormality, which provides an easy method of computing it.

 Since the third derivatives form three-way arrays, we work by analogy with
 the affine-invariant reduction of the three-way array of second derivatives of
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 (O) employed in Section 2.4, and we produce scalars that are analogous to w
 and w. Letting rTb be the c-component of (Wab4,)T [formally, the component of
 (aab()T multiplying a, in the 01,,.. a,,, basis of 0-coordinate tangent vectors],

 mw = S gabegcfrabT
 a, b, c, d,e,f

 and, using b3gabgbc = 1 if a = c and 0 otherwise, and tab = EdefTabd,

 m2 2 E= S] 9a gc'Tabcrdef
 a,b,c,d,e,f

 Letting the second and third partial derivatives be denoted by gab = -dabT(W)
 and 0abcT = (9abcT(O) we substitute &abce and &def e for Tabc and T&f, and also gab
 for gab, and so forth. We thereby obtain the summary we will define by

 B2= m2 5 kabkdecf aabcTedef
 aAb,c,d,e,f

 Similarly, we define

 B2 = e ?dbecf 9abcTedefT
 a, b, c, d, e,f

 If we take the prior to be uniform, then the above quantities are based on
 the MLE, the observed information and the observed third derivatives of the
 loglikelihood. In this case, both B and B may be considered generalizations of
 the normalized third derivative used by Sprott (1973) to measure nonnormality
 of the MLE in one-parameter problems.

 The quantity B may be given an additional interpretation in terms of the
 posterior bias of the mode, defined as 0 -0, where O is the posterior mean. Since
 the posterior bias is a vector, we consider the relative posterior bias defined by

 R = (0o)T( )

 where G is the matrix having components tab. This is an affine-invariant scalar.
 Now, from Kass, Tierney and Kadane [(1990), equation (2.6)],

 ?r - Or 2 E5 gr atusT
 s, t, u

 (where s, t and u are summed from 1 to m), with an error of order O(n 2) for
 any sequence of observationsy 1,Y2, . . . satisfying regularity conditions specified
 by those authors (as in that paper, the statement here concerns a specific se-
 quence and is not probabilistic, although under certain assumptions such data
 sequences will occur with probability 1). Thus, replacing t, u, s with a, b, c and
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 using v, w to index the quadratic-form multiplication in R (again summed from
 1 to m),

 R 4v E vcez9abJimiW af.
 a, b, c,d,e,f, v, w

 Since Ev,w vcif =icf,

 R l-' m2R2

 again with an error of order O(n-2).
 Thus, not only was the quantity B defined here via its formal analogy with w,

 but in fact it plays the same role in the leading term of the relative posterior bias
 of the mode as does 0 in the leading term of the relative bias of the MLE. [This
 remark was made in Kass (1989).] Furthermore, the result not only provides
 additional interpretation of B, it also gives a fast and convenient method of
 computing it, approximately. Letting 0* be a second-order approximation to the
 posterior mean 0, such as discussed in Tierney and Kadane (1986) and Tierney,

 Kass and Kadane (1989), we may define R* = (9 0*)TG(O -*) and obtain

 (3.1) m2B _4R*

 which once again holds with error of order O(n-2). We emphasize that this
 relationship may be used in either the Bayesian or non-Bayesian approach:
 by requiring only second derivatives it provides a relatively easy method of
 obtaining a general diagnostic based on the third derivatives of either the log-
 likelihood or the log posterior density. Existing computer code in LISP-STAT
 [Tierney (1990)] allows the user to avoid explicit calculation of derivatives and
 to specify only the loglikelihood function.

 To judge how small the quantity B should be in order to consider the nor-
 mal approximation adequate, Slate (1991) carried out detailed investigations
 in one-parameter problems and determined posterior distributions to be ade-
 quately normal according to a tail-probability criterion when B < 0.36. From

 the structure ofR* it seems reasonable to use the cutoff value m2B <2< (0.36)2
 (or, roughly, 0.15m) in m-parameter problems (since, for m identical indepen-
 dent posteriors, the joint value of R* would be m times its value for each of the
 m marginals evaluated separately). This seems to us conservative in the sense

 that substantially larger values of m2R2 would be worrisome but distributions
 having only somewhat larger values might still be adequately normal for many
 purposes.

 An additional result connecting the present section to the previous one comes
 from viewing third derivatives as second derivatives of first derivatives: a new
 third-derivative summary may be derived as a curvature-like second-derivative
 summary of the first-derivative vector. For h E Rm we may consider the "lifted-
 line"

 Ch(t) = (91 i( + th), ...., 9me(6 + th))T
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 and compute its curvature. In doing so, we will use the inner product defined
 by the modal covariance matrix G-1 = S. Intuitively, the matrix G is here
 replaced by G-1 because G used previously was the inverse of the approximate
 covariance matrix of 0 and here G-1 is the approximate covariance matrix of

 (1e9l,..., Dm). Thus, we compute 8(h) = 11ChK(0)G-1/IIc1(O)IICh 1 and then take the
 spherical average to define

 BRMS = ; jr8(h)2 dS,
 AmS

 where the integral is over the sphere {h: 11Ch(0)IIG-1 = 1}. This quantity is anal-
 ogous to w2 RMS and might be considered a Bayesian version of the nonlinearity
 measure proposed by Beale (1960). By calculations like those leading to Propo-
 sition 4, we obtain

 B2 M2B2+ 2B2 RMS= m(m+2)

 This result emphasizes the formal similarity of the third derivative summaries
 proposed here to those examined in Section 2.

 4. Examples

 EXAMPLE 1 (Continued). We return to the leukemia data set and model of
 Feigl and Zelen (1965), introduced in Section 1, and consider the 17 AG-positive
 patients. Maximization of the loglikelihood produces the MLE 0 =(51, 1.11). Us-
 ing a uniform prior on (01, 02), this becomes the posterior mode as well. From
 the Hessian of the loglikelihood evaluated at the MLE we obtain approximate
 standard deviations for O1 and 02 (or posterior standard deviations for 01 and
 02) of 12 and 0.41, with an approximate correlation of 0.00. These quantities
 determine the large-sample normal approximations to the distribution of the
 MLE and the posterior distribution.

 In addition to 0, we also consider the parameterizations d and A given, re-

 spectively, by i = (31X7)12, where xi = exp(-xi), and pi = exp{A1 - A2Xil}
 We begin by interpreting the parameter-effects arrays AT based on three

 choices of C, shown in Table 1. We emphasize the array computed using the
 quadratic loglikelihood parameterization, labeled Q, although we include the
 arrays based on the natural parameterization (E) and the mean-value param-
 eterization (M) for completeness. First, note that all elements of the AT array
 for A are small while, for 0, al1l = 0.32 and, for 3, al1l = 0.30, a112 = -1.6 and
 a122 = 11.8. We may interpret these as in Bates and Watts (1981), noting that
 a substantial all, compansion element indicates that the 02-parameter curves
 will be nonuniformly spaced, a large a122 arcing element indicates that the
 b2-parameter curves will bend and a large negative a112 fanning element will
 cause convergence of the 02-parameter curves. We verify this interpretation by
 drawing tangent plane representations of the q-parameterization curves, again
 by analogy with Bates and Watts (1981). The pictures appear in Figure 2. It
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 TABLE 1

 The AT arrays corresponding to the Q (a = 3 ), M (a =-1) and E (a = 1) choices of C for Example 1

 Parameterization

 AT A 8

 0.0808 0.0000 0.3234 0.0000 0.2995 -1.6382
 0.0000 0.0808 0.0000 0.0808 -1.6382 11.7627

 Q
 0.0000 0.0808 0.0000 0.0808 0.0000 0.0808
 0.0808 0.0024 0.0808 0.0024 0.0808 0.0024

 -0.2425 0.0000 0.0000 0.0000 -0.0239 -1.6382
 0.0000 -0.2425 0.0000 -0.2425 -1.6382 11.4393

 M

 0.0000 -0.2425 0.0000 -0.2425 0.0000 -0.2425
 -0.2425 -0.0072 -0.2425 -0.0072 -0.2425 -0.0072

 0.2425 0.0000 0.4851 0.0000 0.4611 -1.6382
 0.0000 0.2425 0.0000 0.2425 -1.6382 11.9244

 E

 0.0000 0.2425 0.0000 0.2425 0.0000 0.2425
 0.2425 0.0072 0.2425 0.0072 0.2425 0.0072

 may be seen that the q2-parameter curves for / (holding q1 constant) do in-
 deed show extreme bending. This bending to some extent conceals the strong
 tendency of the o2-parameter curves to converge as 02 increases, and it also
 conceals the much smaller yet noticeable tendency for the 02-parameter curves
 to be unevenly spaced: they are somewhat closer together for q$1 negative and
 get further apart as q1 increases. This compansion may be seen more clearly in
 the 0 parameterization. It may be contrasted with the A parameterization, for
 which the grid is fairly uniform.

 To check the relevance of the overall conclusions, we display the contours of
 the likelihood in Figure 3, together with elliptical regions based on observed
 information that have approximate 95% confidence (and approximate 95% pos-
 terior probability). It may be seen that A does provide a quite good parameter-
 ization, as predicted from the A2 array, while 0 is worse and o3 is terrible.

 Turning to the curvature measures, in Table 2, the most important conclu-
 sions would be based on wQ and ZuQ (of Section 2.4) and on B and B. These
 indicate, appropriately, that A improves on 0 while / is disastrous. A similar
 conclusion is also obtained from WQ, RMS In addition to verification of these con-
 clusions by direct examination of the likelihood contours, we may also evaluate
 posterior probabilities for the approximate inference regions. We did so by tak-
 ing the prior to be uniform on the parameterization A and using Monte Carlo im-
 portance sampling for the computations. We found that the ellipsoids having pu-
 tative 95% probability actually had probability 0.930 (?0.003), 0.903 (?0.004)
 and 0.56 (?0.04) for the parameterizations A, 0 and /, respectively. Once again,
 these values are consistent with the indications of the diagnostics.
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 FIG. 2. Coordinate curves for the expectation surface projected onto the tangent plane for Example 1.

 The curves are shown for the three parameterizations and choices of ( of interest. The coordinates
 have been linearly tranformed so that their orthogonality with respect to the information metric

 appears in the plot as orthogonality in the usual Euclidean sense. The circle encloses the 95% region
 based on the linear approximation to the expectation surface.

 There are a few further observations we can make about this example.
 First, concerning the diagnostics of Section 2, although we have emphasized

 the quadratic loglikelihood-based curvatures, which may be viewed as haning
 been computed using the Ol = 3 connection, we also evaluated the skewness
 curvatures based on the a = - c connection and found them to have values
 similiar to WQ and WQ. Second, the equality of certain elements of Table 2 is not
 coincidental: analytical calculations show that the maE~ = PYE = m-YM = TYM and
 mtyQ = aQas a consequence of the partial linearity of the exponential model

 pi= O exp(-32x). Finally, it is of interest to notice that the "intrinsic" curva-
 tures oyx (= oYx) are small. This is consistent with the general experience in
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 FIG. 3. Loglikelihood contours for the three parameterizations studied in Example 1. The contours
 are labelled according to their difference from the maximum, the MLE's are marked by "+" and the
 dotted line is approximate 95% region.
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 TABLE 2

 Curvature diagnostics for Example 1

 Parameterization

 Diagnostic A 6 ,3

 m2WQ2 0.0261 0.1634 145.4948
 U)2 0.0261 0.1242 143.8304

 m2?Q 0.0077 0.0077 0.0077
 m2 0.0077 0.0077 0.0077 fQ

 m2 -SM2 0.2353 0.0589 130.3106
 Lo 2M 0.2353 0.1765 136.3428
 M 00695 0.0695 0.0695

 -y 2M 0.0695 0.0695 0.0695

 M2ZjE2 0.2353 0.5295 153.4008
 2E 0.2353 0.4118 147.8880

 m2q2 0.0695 0.0695 0.0695
 2E 0.0695 0.0695 0.0695

 SQ,RMS 0.0098 0.0515 54.1445 Q,RMS

 W M2, RMS 0.0883 0.0515 50.3745
 2E,RMS 0.0883 0.1691 56.1471 WE,RMS

 2Q,RMS 0.0029 0.0029 0.0029

 yM,RMS 0.0261 0.0261 0.0261

 2E,RMS 0.0261 0.0261 0.0261
 m2i2 0.2213 1.4332 174.9869

 B2 0.2140 1.0964 458.4332

 nonlinear regression that parameter effects tend to be more worrisome than
 "intrinsic" nonlinearity.

 EXAMPLE 2. We consider now a nonlinear binary response model taken
 from McCullagh and Nelder [(1989), page 384]. The response is the number of
 grasshoppers killed when exposed to various dosages of the insecticide carbo-
 furan and the synergist piperonal butoxide, which enhances the toxicity of the
 insecticide. Out of a sample of size mi, the number of grasshoppers killed under
 the dosages x1i of insecticide and x2i of synergist is modeled as binomial with
 the probability that a grasshopper is killed 7ri satisfying

 7i =log (17ri) = a + 1 log(xli - 0) + 32X2i 1 - 7ri ~~~6 + X2i

 independently for i = 1,... , 15. The parameter 0 represents a threshold value
 for the insecticide.

 In addition to the original parameterization P1 = (ae, , /32, 6, 0) we investi-
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 TABLE 3

 Generalized curvature measures and approximate third-derivative summaries for Example 2

 Parameterization

 Diagnostic Pi P2 Ps

 M WQ 0.198 0.094 0.198
 W2 0.282 0.143 0.287 WQ

 W2 0.0218 0.0109 0.0221

 M2;a2 0.00354
 ?2 0.00473
 YQ,RMS 0.00037

 4R* 1.682 0.821 1.653

 gate two alternatives P2 = (a, o1, 01, q$, 0) and p3 = (a, i1, N ^Y2, 0), where 04 =
 02x*1(6 + x2) and 2 = 02x1/(6 + x2), ^ft = 0-1 and %Y2 = 60321. The values of x2
 and x? are design-dependent and are here taken to be 3.9 and 19.5, respec-

 tively. The parameterizations P2 and p3 only transform /32 and 6 of Pl, which
 appear exclusively in the last summand of the expression for rj. The parame-
 ters /1 and 42 have the form of "expected value" or "stable" parameters rec-
 ommended by Ross (1970) [treating 32x2/G5 + X2d) as an expectation function],
 while -yl and y2 were chosen so that the parameters of this abbreviated expec-
 tation function both appear in the denominator. We note that the MLE of Pi
 is Pj = (-2.90, 1.35, 1.71, 2.06, 1.67), with approximate standard deviations of
 (0.25,0.10,0.18, 1.09, 0.11).

 To compute the curvature measures WQ and zQ, we use the product param-
 eterization C defined from the quadratic loglikelihood parameterization r. For
 the binomial model, ir is defined in terms of the success probability ir by the

 incomplete beta function r = fo[u(1 - u)]-213 du. The resulting curvatures are
 given in Table 3. The intrinsic curvatures (y's) are once again quite small. The
 parameterization P2 yields markedly smaller parameter-effects curvatures (w's)
 than P1, while p3 offers no improvement at all.

 We also calculate the approximate third-derivative summary 4R* assuming

 the prior of Jeffreys' general rule, which has the form p(p) oc li(p)11/2, where i(p)
 is the Fisher information matrix for p. Computation of this prior is straight-
 forward for generalized linear models [see Ibrahim and Laud (1991) for discus-
 sion]; it was computed exactly for P1 and approximately for the other parame-
 terizations, using the numerical derivative capabilities in LISP-STAT. The 4R*
 measures, also given in Table 3, support the conclusion that P2 is better than
 P1 and is probably adequate according to our rough guideline. Of course, its
 interpretation is less immediate.

 5. Discussion. Our purpose here was to construct diagnostics that would
 indicate poor performance of large-sample normal approximations. The diag-
 nostics we sought had to be easily calculated so they could be computed on a
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 routine basis, for commonly used models of modest dimensionality, within an
 interactive statistical computing environment. The work in Section 2 provides
 a direct extension of nonlinear regression methodology to exponential family
 nonlinear models. On the other hand, in Section 3 we defined diagnostics that
 arise from a pure likelihood or Bayesian point of view. Particularly with our em-
 phasis on the quadratic-loglikelihood parameterization in Section 2, we do not
 see the approaches in Sections 2 and 3 as incompatible. Indeed, we would expect
 the methods of both sections to be of use regardless of whether a frequentist or
 Bayesian inferential framework were adopted.

 Our emphasis in Section 2 on diagnostics based on the quadratic-loglikelihood
 parameterization of exponential families is supported by work of Slate (1994),
 which shows the quadratic-loglikelihood parameterization to be very effective
 for NEF-QVF families (as was illustrated in our Figure 1). Furthermore, the
 close analogy of the methods for exponential family nonlinear models with those

 for nonlinear regression [simply substituting the A( array (2.17) for the A array
 (2.4)] allows extension of various computational and methodological enhance-
 ments. [It appears straightforward, for instance, to extend the methods of Bates
 and Watts (1981) and Cook and Goldberg (1986).] On the other hand, the
 foundation supplied in Section 2.3 shows that our approach is actually much
 more general.

 An important problem not discussed here is that of examining parameter
 subsets, that is, examining breakdown of normal approximations for inferences
 about a vector component 0j, where 0 = (01, 02). One possibility would be to ex-
 tend the methods of Cook and Goldberg (1986). It is, however, easy to solve this
 problem from a Bayesian point of view by modifying the quantity R* of Section

 3 to assess the marginal posterior distribution of 01: we simply partition G-1
 and then use R*= ( - 61)T(G-1)jll(01 - O). The case of one parameter of
 interest [or more generally a function g(0) of interest, such as a survival prob-
 ability in Example 1] was treated by Kass, Tierney and Kadane (1989) using
 a one-dimensional version of the quantity R*, and also using an approximate
 Pearson skewness. Kass and Slate (1992) apply a formula for posterior tail
 probabilities due to DiCiccio, Field and Fraser (1990) as an additional diag-
 nostic. Examples in these references [and in Cook and Tsai (1990)] show the
 importance of being able to examine parameter subsets. Indeed, further anal-
 ysis of Example 2 in Section 4 indicates that much of the nonnormality in the
 parameterization P2 comes from skewness in the component 0. Transformation
 from 0 to 02 reduces the squared curvature measures by nearly 50%: we obtain
 M U)Q =0.047,w2 =0.08 and wQ RMS=0.0059, while 4R* =0.535.

 Finally, we note two related outstanding problems. First, it would be useful
 to characterize parameterizations that tend to be preferable to alternatives and
 situations in which a particular parameterization would tend to work well. In
 particular, it would be good to know what sample sizes are needed for valid nor-
 mal approximations in standard models. We believe these could be determined
 using the work of Slate (1994). Second, it would be extremely valuable to have
 general procedures that produce useful reparameterization. One idea due to
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 Ross (1970) was illustrated in our Example 2, and others may be found in Hills
 and Smith (1992) and the reply to discussants by Kass and Slate (1994), but
 the complexity of miltidimensional distributions makes this problem difficult.

 Acknowledgments. We are grateful to Paul Vos, a referee and an Asso-
 ciate Editor for many useful comments.
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