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Several authors have previously discussed the use of log-linear models,
often called maximum entropy models, for analyzing spike train data to
detect synchrony. The usual log-linear modeling techniques, however,
do not allow time-varying firing rates that typically appear in stimulus-
driven (or action-driven) neurons, nor do they incorporate non-Poisson
history effects or covariate effects. We generalize the usual approach,
combining point-process regression models of individual neuron activ-
ity with log-linear models of multiway synchronous interaction. The
methods are illustrated with results found in spike trains recorded si-
multaneously from primary visual cortex. We then assess the amount of
data needed to reliably detect multiway spiking.

1 Introduction

Synchrony is widely believed to play a fundamental role in neural compu-
tation (e.g., Uhlhaas et al., 2009), but its statistical assessment is subtle (for
reviews, see Grün, 2009, and Harrison, Amarasingham, & Kass, in press).
To analyze multiway synchrony among simultaneously recorded multiple
spike trains that are represented as binary time series, across many trials,
it is natural to consider well-established log-linear modeling technology
(Gütig & Aertsen, 2003; Martignon et al., 2000; Nakahara & Amari, 2002;
Schneidman, Berry, Segev, & Bialek, 2006). The standard approach, however,
has two shortcomings. First, it assumes stationarity of firing rates across
suitable time intervals. Second, it does not incorporate spiking history or
other covariates, and therefore it effectively assumes Poisson spiking. While
previous authors have been aware of these issues (Martignon et al., 2000),
they have not offered specific methods for dealing with them. In addition,
the standard approach ignores the inherent relative sparsity of two-way
and higher-order synchronous spiking. Here we provide a modification of
the usual log-linear modeling methodology to deal with the case of inho-
mogeneous non-Poisson firing rates that result from stimulus-driven (or
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action-driven) recordings, and we give a straightforward procedure for pa-
rameter estimation, which is a variant of maximum likelihood via iterative
proportional fitting. Tests for pairwise and multiway synchrony may then
be based on the bootstrap.

To explain more fully the problem we are trying to solve and the idea
behind our proposed solution, let us suppose we have simultaneously
recorded spike trains from three neurons that we label (1, 2, 3), for which
spiking patterns take the form (a, b, c), where a, b, c ∈ {0, 1} so that, for in-
stance, (1, 1, 0) would signify that the first two neurons fired but the third
did not. The probability of obtaining the pattern (a, b, c) at some time t on
trial r may depend on the history Ht,r of spiking patterns prior to time t,
and it may also depend on some other covariates, such as a measurement of
network activity, as in Kass, Kelly, and Loh (2011) or variables representing
trial-to-trial variation, as in Ventura, Cai, and Kass (2005a), which we here
take to be a vector ut,r. We then write the probability of pattern (a, b, c) at
time t on trial r as p123

abc,r(t|Ht,r, ut,r). If we were to treat the spike trains as
jointly stationary and ignore history, covariates, and additional sources of
trial-to-trial variation, we could omit t and r and write the usual model for
two-way, but not three-way, interaction as

log pabc =α + aβ1
a + bβ2

b + cβ3
c + abβ12

ab + acβ13
ac + bcβ23

bc , (1.1)

where the parameters satisfy certain constraints (e.g.,
∑

pabc = 1,
∑

β1
a = 0).

In computer science and physics, models such as equation 1.1 are often
called maximum entropy models (Schneidman et al., 2006). In the statistics
literature, the parameters are usually standardized by subtracting means
(Agresti, 2002). Using equation 1.1, for a given set of data the log-likelihood
function may be maximized iteratively to produce fitted parameters and
probabilities. The problem we solve here is introducing a variant of equa-
tion 1.1 that allows both nonstationarity and the use of history and other
covariates.

1.1 Overview of Approach. Suppose we have spike trains from n neu-
rons recorded simultaneously over a time interval of length T, across R
trials. We consider spiking patterns at a relatively fine time resolution, de-
noted by δ. In section 3, we report an analysis of simultaneous spiking data
recorded from primary visual cortex where we took δ to be 5 milliseconds.
The spike train data may be represented as binary arrays with dimension-
ality (T/δ) × R × n. For the data analysis reported in section 3 we used
arrays of dimension 200 × 120 × 3 to estimate 200 × 120 × 8 probabilities
p123

abc,r(t|Ht,r, ut,r). In full generality there are more parameters than data val-
ues. Furthermore, nonstationarity and history dependence could, in their
most general conception, be very complicated. The approach we take here
simplifies the situation greatly by making these assumptions:
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1. For every neuron i, the firing probability varies smoothly across time
and depends on spiking history Ht,r only through the history Hi

t,r for
neuron i, together with the covariate vector ut,r.

2. Excess joint pairwise spiking, above that expected under indepen-
dence, does not depend on either spiking history or the covariate
vector.

Importantly, the second assumption defines excess synchrony relative to
“independence,” which here means independence conditionally on all his-
tory and covariate effects mentioned in the first assumption. In specifying
these assumptions, we aim to emphasize the way synchrony is judged
against a backdrop of explanatory covariates. For example, it is widely ap-
preciated that a pair of neurons may exhibit excess pairwise spiking relative
to what might be expected from their time-averaged firing rates because
they respond to given stimuli with roughly similar temporal profiles; this
would be synchrony due to their individual firing rate functions, as seen
through overlapping peristimulus time histograms (PSTHs). Various meth-
ods may be used to adjust or “normalize” pairwise spiking to account for the
individual time-varying firing rate functions (Aertsen, Gerstein, Habib, &
Palm, 1989). Many other possible sources of pairwise spiking may be present
in particular cases, including global network activity. One of our purposes
here is to introduce a general framework for quantifying the contributions of
alternative sources of pairwise spiking while assessing statistical evidence
and uncertainty. A second purpose is to examine excess multiway spiking
relative to that expected from pairwise spiking. The approach we develop
melds log-linear modeling, as in equation 1.1, together with point-process
regression modeling (which usually comes under the rubric of generalized
linear models) as in numerous articles (Kass & Ventura, 2001; Kass, Ventura,
& Brown, 2005; Kelly, Smith, Kass, & Lee, 2010a; Okatan, Wilson, & Brown,
2005; Pillow et al., 2008; Stevenson et al., 2009; Truccolo, Eden, Fellows,
Donoghue, & Brown, 2005; Zhao et al., 2011). We use point-process regres-
sion to model the behavior of each individual neuron; we then overlay the
structure of log-linear models to account for synchronous connections.

For notational simplicity, we concatenate the history and covariate vec-
tors as a single vector:

xt,r = (Ht,r, ut,r).

When we consider only the spiking history Hi
t,r of neuron i at time t on trial

r, we write

xi
t,r = (Hi

t,r, ut,r).

Let pi
1,r(t|xt,r) be the probability of neuron i spiking at time t on trial r. The

central object in the point-process framework is the conditional intensity
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function, λi(t|xi
t,r), which is the firing rate function in continuous time, and

the relationship between the continuous and discrete time representations
is summarized by

pi(t|xi
t,r) ≈ λi(t|xi

t,r)δ, (1.2)

the approximation being justified by passage to the limit as δ → 0. The cor-
responding key statistical result is that the likelihood function based on the
continuous-time representation, in terms of the conditional intensity func-
tion, is approximately equal to the likelihood function based on the binary
data and the probability of spiking pi(t|xi

t,r). We use x in the notation xi
t,r

to connote regression-style modeling of probability in terms of explanatory
covariates, including history.

Now let pi j
11,r(t|xt,r) be the probability that neurons i and j will both spike

at time t on trial r. Under assumption 1 above, we use the spike trains from
each neuron i to fit that neuron’s firing probabilities pi

1,r(t|xt,r) = pi
1,r(t|xi

t,r)

across time and trials. Let us write such fits as p̂i
1,r(t|xi

t,r). Under assumptions
1 and 2, we may define

pi j
11,r(t|xt,r) = pi

1,r(t|xi
t )pj

1,r(t|x j
t )ζ

i j
x (t), (1.3)

so that ζ
i j
x (t) represents the excess pairwise spiking above that predicted by

independence (as in Ventura, Cai, & Kass, 2005b). We have written ζ
i j
x (t)

with the argument t and subscript x to indicate that ζ
i j
x (t) is a function

only of time, but because it is defined through equation 1.3, it depends
indirectly on the covariates used in the individual neuron firing proba-
bilities pi

1,r(t|xt,r). For example, we may evaluate excess synchrony with
and without a covariate that measures network activity. Kass et al. (2011)
gave an example in which the data indicated that ζ

i j
x (t) = 1 when a covari-

ate for network activity was included in xt,r while ζ
i j
x (t) > 1 when it was

omitted. This suggested that excess synchrony above that expected from
time-varying firing rates, while present, was due to global network activity
rather than a local circuit that affected the particular pair of neurons.

We may now summarize the steps of the strategy we have implemented
for estimating multiway spiking probabilities based on all combinations of
excess pairwise spiking, thereby generalizing equation 1.1 to account for
nonstationarity, history, and covariates. We consider first the case of n = 3
neurons labeled i, j, k:

1. For all i and all t and for every trial r, fit pi
1,r(t|xi

t,r) to get p̂i
1,r(t|xi

t,r).

2. For all i, j estimate ζ
i j
x (t) to obtain ζ̂

i j
x (t).

3. Based on the (T/δ) × R sets of estimated values p̂i
1,r(t|xi

t,r), p̂ j
1,r(t|x j

t,r),

p̂k
1,r(t|xk

t,r), ζ̂
i j
x (t), ζ̂ ik

x (t), ζ̂
jk

x (t) from steps 1 and 2, use an iterative
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algorithm to obtain the complete set of (T/δ) × R × 8 estimates p̂i jk
abc,r

(t|xt,r) of pi jk
abc,r(t|xt,r).

Once we have all the fitted probabilities p̂i jk
abc,r(t|xt,r) we are able to use them

to estimate quantities defined in terms of the probabilities pi jk
abc,r(t|xt,r). We

can also use the set of fitted probabilities p̂i jk
abc,r(t|xt,r) to simulate artificial

spike trains that reflect all of the estimated multineuron dependence, and
we can thereby use bootstrap simulation to obtain confidence intervals for
estimated quantities. These confidence intervals incorporate the statistical
uncertainty from all three steps of the fitting procedure. Similarly, we can
test the null hypothesis of two-way interaction, but no three-way interac-
tion, against the alternative that also includes three-way interaction. The
bootstrap hypothesis tests also incorporate uncertainty from all the steps of
the fitting procedure.

The same steps may be followed for more than three neurons. For ex-
ample, for four neurons, we would again use the two-way probabilities in
equation 1.5 to fit probabilities of the form p̂i jkl

abcd,r(t|xt,r) and thereby test the
null hypothesis of pairwise interaction against both three-way and four-way
interaction. Thus, according to the approach described here, large numbers
of spiking probabilities having potentially complicated forms are estimated
by first fitting to each neuron a smooth conditional intensity function and
any relevant covariates, then fitting two-way excess synchronous spiking
terms, then finding multiway probabilities by iterative optimization.

To help fix these ideas, Figure 1 displays a simple situation involving
time-varying firing rates from three artificial neurons (the dotted lines in
panels A–C) where two-way synchronous spiking occurs more often than
predicted by independence (the dotted lines in panels D–F), and three-way
interaction occurs more often than that predicted by a two-way model.
We simulated a large number of trials from this model. When a two-way
interaction model was fitted to the simulated data, the one-way and two-
way firing rates were estimated accurately (the solid lines in panels A–F),
but the amount of three-way spiking was underestimated (the solid line in
panel G).

1.2 Overview of This Letter. In section 2 we provide methodological
details. We begin in section 2.1 by briefly summarizing the fitting meth-
ods for individual neuron probabilities, then go on to pairwise probabili-
ties in section 2.2, giving procedures for bootstrap confidence intervals in
section 2.3. In section 2.4 we present the algorithm for fitting multiway
probabilities under the assumption of pairwise interaction but not higher-
order interaction, in section 2.5 we discuss bootstrap confidence intervals
for functions of these probabilities, and in section 2.6 we describe boot-
strap hypothesis tests. In section 2.7 we review the essential motivation
for the three-step approach outlined in section 1.1 in terms of what we
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Figure 1: Time-varying two-way interaction model in the presence of three-
way spiking. In all panels, the dotted line is the simulated rate and the solid
line is the estimated rate based on the fitting algorithms discussed in section 2.
(A–C) Three simulated cells, each with a different firing rate profile. Each cell has
an elevation of the firing rate at a different point in the trials. (D–F) Coincidence
rates for pairwise synchronous events, which are uniformly elevated above
those predicted by independence. Panel D corresponds to coincidences between
neurons shown in panles A and B, panel C to coincidences between panels A
and C, and panel F to coincidences between panels B and C. (G) Three-way
coincidence rates. The pairwise model underestimates the number of three-way
synchronous events.

call hierarchical sparsity. In section 3 we provide a real-data illustration by
analyzing some simultaneous spiking data recorded from primary visual
cortex. We then, in section 4, use the framework described here to address
a fundamental question: How many data would be needed to distinguish
three-way interaction from the three-way spiking that occurs by chance
from pairwise interaction models? In section 5 we add remarks about the
utility of this method in practice.

2 Methodology

Here, and for the remainder of the letter, we omit explicit reference to the
trial r, leaving it implicit. We also omit the subscript x on ζ

i j
x (t).
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2.1 Fitting One-Way Probabilities. Individual neuron (one-way) fir-
ing probabilities may be fitted by invoking smooth point-process models,
where each neuron i has a firing rate governed by a conditional intensity
function λi(t|xi

t ). Kass and Ventura (2001) and Kass, Ventura, and Cai (2003)
discussed spline-based fitting of conditional intensity functions, and Pillow
et al. (2008) used an alternative set of smooth basis functions that incor-
porate both rate variation and history dependence. Sometimes history and
covariate effects may be ignored, and then the PSTH may be smoothed
by gaussian filters (kernel smoothers), fixed-knot splines, or more sophis-
ticated methods such as BARS (DiMatteo, Genovese, & Kass, 2001). The
first step of the approach suggested here is to apply one of these individual
neuron models in order to obtain estimates p̂i

1(t|xi
t ) for all t.

2.2 Fitting Pairwise Probabilities. We now move on to pairwise prob-
abilities, considering neurons i and j as in equation 1.3. While we could
incorporate time-varying excess spiking effects as in equation 1.3 here, in-
stead we further specialize by assuming that the excess pairwise spiking
probability effects are constant across time. We therefore take ζ i j(t) = ζ i j

and define

pi j
11(t|xt ) = pi

1(t|xi
t )pj

1(t|x j
t )ζ

i j. (2.1)

This is helpful when there are not large numbers of joint spikes, and it
also allows us to use a simple and intuitive estimator ζ̂ i j of ζ i j given in
equation 2.6. By inserting the estimates p̂i

1(t|xi
t ), p̂ j

1(t|x j
t ), and ζ̂ i j into the

right-hand side of equation 2.1, we obtain estimates of the two-way proba-
bilities pi j

ab(t|xt ) as follows:

p̂i j
11(t|xt )= p̂i

1(t|xi
t )p̂ j

1(t|x j
t )ζ̂

i j,

p̂i j
10(t|xt )= p̂i

1(t|xi
t ) − p̂i j

11(t|xt ),

p̂i j
01(t|xt )= p̂ j

1(t|x j
t ) − p̂i j

11(t|xt ),

p̂i j
00(t|xt )= 1 − p̂i j

11(t|xt ) − p̂i j
10(t|xt ) − p̂i j

01(t|xt ). (2.2)

These estimates, for i, j = 1, 2, 3, give us all of the two-way probabili-
ties needed to fit a two-way interaction model analogous to equation 1.1
that instead incorporates time-varying, history-dependent, and covariate-
dependent firing probabilities.

To estimate ζ i j, we fix the values of pi
1(t|xi

t ) to be pi
1(t|xi

t ) = p̂i
1(t|xi

t ). Using
the point-process representation of joint spiking for neurons i and j derived
by Kass et al. (2011), we replace ζ i j with ξ i j and write the synchronous-spike
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likelihood function as

log L(ξ i j) = −
∫

λi j(t|xt )dt +
∑

ti j

log λi j(ti j|xti j
), (2.3)

where tij are the times of the joint (synchronous) spikes and

λi j(t|xt ) = λi(t|xi
t )λ

j(t|x j
t )ξ

i j. (2.4)

Equation 2.4 is the conditional-intensity analogue of equation 2.1. Setting
the derivative of log L(ξ i j) to zero and solving gives the maximum likeli-
hood estimate

ξ̂ i j = Ni j∫
λi(t|xi

t )λ
j(t|x j

t )dt
, (2.5)

where Nij is the total number of joint spikes for neurons i and j and the
denominator is the expected number of joint spikes under independence,
after taking account of the covariate x. This corresponds to equation 22 of
Kass et al. (2011). The formula we use in practice replaces the integral in
equation 2.5 with

ζ̂ i j = Ni j∑
t p̂i

1(t|xi
t )p̂ j

1(t|x j
t )

. (2.6)

To interpret equation 2.6, let us reemphasize the covariate x by restoring its
use as a subscript: on the left-hand side of equation 2.6, we replace ζ̂ i j by ζ̂

i j
x .

If ζ̂
i j
x ≥ 1, the value of ζ̂

i j
x represents the proportionate excess synchronous

spiking beyond that explained by the covariate x, while if ζ̂
i j
x < 1, the value

of ζ̂
i j
x is the proportionate diminution of synchrony, below that explained

by x. When ζ̂
i j
x ≥ 1, it is helpful to consider the reciprocal,

Ex = 1

ζ̂
i j
x

, (2.7)

which ranges from 0 to 1 and represents the proportion of synchronous
spikes explained by the covariate vector x (including its time-varying, trial-
averaged firing rate). For example, if ζ̂

i j
x = 2 when x contains only the

time-varying, trial-averaged firing rate, then Ex = .5, and we would say
the time-varying, trial-averaged firing rate explains half the synchronous
spikes. This gives us a way of interpreting the relative effects of various



Evaluating Synchrony 2015

alternative covariate vectors x, as we illustrate in section 3. If ζ̂
i j
x < 1, we can

define the inhibitory measure Ix = ζ̂
i j
x , which then represents the proportion

of observed spikes relative to the number predicted by x.

2.3 Confidence Intervals for Pairwise Effects. Standard errors and con-
fidence intervals associated with the pairwise estimates in equation 2.6 may
be obtained by a parametric bootstrap using equation 2.2. That is, equations
2.2 specify a set of multinomial spiking probabilities at each time t (and for
each trial, separately, due to separate spiking history or covariate effects)
for every spiking pattern (1,1),(1,0),(0,1),(0,0). It is straightforward to gen-
erate G complete sets of pseudo-data pairwise spike trains based on these
probabilities, each set of pseudo-data replicating the layout of the original
data (a typical value of G being 500). Let us use g = 1, . . . , G to index the sets
of pseudo-data. If we wish to obtain a 95% bootstrap confidence interval
for a parameter φ (such as φ = ζ i j), we use the pseudo-data set g to obtain
φ̂(g) for g = 1, . . . , G; that is, for every g, we obtain φ̂(g), by applying equa-
tion 2.6 to the pseudo-data, where all the terms p̂i

1(t|xt ) are computed from
the pseudo-data. We then order the values of φ̂(g), find the .025 and .975
percentiles, and use them as end points of the 95% confidence interval. A
standard error is similarly obtained as the standard deviation of the values
of φ̂(g). When summarizing results with estimates and standard errors, we
prefer to work with φ = log ζ i j rather than φ = ζ i j because the log transform
tends to symmetrize the distribution (and thus make it closer to normal, as
it should be when one interprets standard errors). Because we include the
refitting of p̂i

1(t|xt ) to the pseudo-data, the bootstrap confidence intervals
account for the uncertainty in that first step of the fitting procedure.

2.4 Fitting Higher-Order Probabilities. For n = 2 neurons, equations
2.2 completely determine the estimated probabilities we need for statisti-
cal analysis. For n = 3 neurons, pairwise interaction models do not pro-
vide analogous closed-form expressions for all the necessary probabilities
p123

abc (t|xt ), and the same is true for n > 3. Even in the simpler stationary
Poisson setting, where the data become counts aggregated across time and
model 1.1 may be applied, it is well known (Agresti, 2002) that maximum
likelihood estimation of the two-way interaction model requires iterative
methods. The standard algorithm in that context is iterative proportional
fitting (IPF; Agresti, 2002; Schneidman et al., 2006).

Before reviewing IPF and the modification of it we employ here, we wish
to make sure it is clear what model we are referring to as the “two-way in-
teraction model” that we are fitting to the spike train data. It is helpful to
return to the simpler model, equation 1.1, and explain how our approach
would apply in that setting. The complete model for three-way probabilities
pabc, including three-way interactions (in statistics, it is often called “satu-
rated”), has 8 − 1 = 7 free parameters: the 8 values pabc must satisfy the
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constraint
∑

pabc = 1. The two-way interaction model, equation, 1.1, omits
the three-way interaction and has six free parameters. (In equation 1.1 there
are seven parameters with nonzero multipliers α, β1

1 , β2
1 , β3

1 , β12
11 , β13

11 , β23
11

and, again, there is the constraint
∑

pabc = 1.)1 In our approach, we do
not need to use the parameters that appear in equation 1.1. Instead, we
effectively use a different set of six free parameters. We define

p1
1 =

∑
b,c

p1bc,

p2
1 =

∑
a,c

pa1c,

p3
1 =

∑
a,b

pab1,

ζ 12 =
∑

c p11c

p1
1 p2

1

,

ζ 13 =
∑

b p1b1

p1
1 p3

1

,

ζ 23 =
∑

a pa11

p2
1 p3

1

, (2.8)

and then parameterize equation 1.1 using (p1
1, p2

1, p3
1, ζ

12, ζ 13, ζ 23). We are
not able to write a closed-form expression for pabc in terms of the parameter
vector (p1

1, p2
1, p3

1, ζ
12, ζ 13, ζ 23) for the same reason that we are unable to

write closed-form maximum likelihood estimates for pabc in equation 1.1.
However, any particular value of the vector (p1

1, p2
1, p3

1, ζ
12, ζ 13, ζ 23) does

define a particular set of values of pabc according to equation 1.1 based on
the nonlinear equations in equation 2.8. In the general case we are con-
cerned with here, we similarly use (p1

1(t|x1
t ), p2

1(t|x2
t ), p3

1(t|x3
t ), ζ

12, ζ 13, ζ 23)

to define, for every t, a two-way interaction model of the form 1.1 that we
are fitting to the data.

Now, to explain the modified IPF that achieves the desired fitting, let us
begin with IPF in the standard setting involving counts, with nabc being the
number of time bins in which the pattern (a, b, c) occurred and mabc being the
expected number according to the two-way interaction model, 1.1, where
mabc = npabc and n = ∑

nabc is the total number of spikes. IPF produces
estimates m̂abc of mabc. With nab+ being the number of bins in which the first
two neurons have the pattern (a, b), and na+c, and n+bc defined similarly,

1In the usual way equation 1.1 is presented in the statistics literature, there are 19
parameters and 13 constraints.
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the first cycle of the IPF algorithm, as in Agresti (2002), involves three
steps:

m̂(1)

abc = m̂(0)

abc

(
nab+
m̂(0)

ab+

)
,

m̂(2)

abc = m̂(1)

abc

(
na+c

m̂(1)
a+c

)
,

m̂(3)

abc = m̂(2)

abc

(
n+bc

m̂(2)

+bc

)
.

Iterating these steps produces convergence to the maximum likelihood
estimates under very general conditions (Haberman, 1974).

To fit our general time-varying and/or history-dependent and/or
covariate-dependent two-way interaction model, we replace the counts
in the standard IPF above with the probability estimates given by
equation 2.2 and the expected values by the probabilities pi jk

abc(t|xt ). Here,
IPF will produce a set of estimates p̂i jk

abc(t|xt ), which we write as

p̂i jk,2way
abc (t|xt ) = p̂i jk

abc(t|xt ).

Let

p̂i j
ab(t|xt ) =

∑
c

p̂i jk
abc(t|xt ),

and let p̂ik
ab(t|xt ) and p̂ jk

ab(t|xt ) be defined analogously. Given values p̂i jk(g)

abc (t|xt )

at iteration g, we obtain the next three updates as

p̂i jk(g+1)

abc (t|xt ) = p̂i jk(g)

abc (t|xt )

(
p̂i j

ab(t|xt )

p̂i j(g)

ab (t|xt )

)
,

p̂i jk(g+2)

abc (t|xt ) = p̂i jk(g+1)

abc (t|xt )

(
p̂ik

ac(t|xt )

p̂ik(g+1)
ac (t|xt )

)
,

p̂i jk(g+3)

abc (t|xt ) = p̂i jk(g+2)

abc (t|xt )

(
p̂ jk

bc(t|xt )

p̂ jk(g+2)

bc (t|xt )

)
. (2.9)
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For iteration g, the values of the form p̂i j(g)

ab (t|xt ) are obtained from

p̂i j(g)

ab (t|xt ) =
∑

c

p̂i jk(g)

abc (t|xt ).

Because there are T/δ time values and R trials, equation 2.9 produces RT/δ

sets of three equations—for example, for each of the data analyses in
section 3, there were 24,000 sets of three equations, which were iterated
to convergence. There are many ways to initialize the algorithm, includ-
ing taking p̂i jk(0)

abc (t|xt ) = 1
8 . We have found in practice that the algorithm

converges in only a few iterated sets of the three steps in equation 2.9. We
summarize the fitting algorithm next.

Algorithm for Fitting the Generalized Two-Way Interaction Model

1. For all i and all t, and for every trial, fit pi
1(t|xi

t ) to get p̂i
1(t|xi

t ).
2. For all i, j, use equation 2.6 to obtain ζ̂ i j.
3. Initialize; then iterate equation 2.9 to convergence.

The output of this algorithm is the complete set of T/δ × R × 8 estimated
probabilities p̂i jk,2way

abc (t|xt ).

When there are n > 3 neurons we may apply the same method for fitting
the two-way interaction model, thereby obtaining T/δ × R × 2n estimated
probabilities. Clearly as n grows, it quickly becomes infeasible to compute
a multiple of 2n quantities. We mention this again in section 5.

2.5 Estimates and Confidence Intervals for Functions of Probabilities.
Once we have these fitted probabilities p̂i jk,2way

abc (t|xt ), we may also estimate
any quantity φ that may be written as a function of them,

φ = φ({pi jk,2way
abc (t|xt ), for all t, (a, b, c)}),

simply by plugging in the probability estimates:

φ̂ = φ({ p̂i jk,2way
abc (t|xt ), for all t, (a, b, c)}).

We may then compute standard errors and confidence intervals using a
parametric bootstrap as in the n = 2 case, outlined following equation
equation 2.6, using the probabilities p̂i jk,2way

abc (t|xt ) to generate the three-way
pseudo-data spike trains.

One of the benefits of two-way models such as equation 1.1 is that the
two-way interaction coefficients may be used to provide definitions of the
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specific functional connectivity between two neurons after taking account
of a third neuron (Martignon et al., 2000). For this purpose, let us define

pi jk
1+0(t|xt ) = pi jk

110(t|xt ) + pi jk
100(t|xt ), (2.10)

and denote other marginal probabilities by analogous notations, then con-
sider φ = ζ

i j
|k=∅ defined by

pi jk,2way
110 (t|xt ) = pi jk,2way

1+0 (t|xt )pi jk,2way
+10 (t|xt )ζ

i j
|k=∅, (2.11)

which we estimate with

ζ̂
i j
|k=∅ =

Ni j
|k=∅∑

t p̂i jk,2way
1+0 (t|xt )p̂i jk,2way

+10 (t|xt )
, (2.12)

where Ni j
|k=∅ is the total number of (1, 1, 0) spike patterns. The estimator

ζ̂
i j
|k=∅ gives us a measure of the excess spiking activity of neurons i and

j that is unrelated to the activity of neuron k. We do not mean to sug-
gest that this particular measure has some special stature—others might be
envisioned—but it is intuitive and easily computed within the framework
we are describing here.

We may also define the excess three-way spiking and estimate it. For this
purpose, let pi jk

111(t|xt ) denote the three-way spiking probability under the
general three-way model, which includes three-way interaction. We define
ζ i jk by

pi jk
111(t|xt ) = pi jk,2way

111 (t|xt )ζ
i jk (2.13)

and estimate it with

ζ̂ i jk = Ni jk∑
t p̂i jk,2way

111 (t|xt )
, (2.14)

where Nijk is the total number of triplet joint spikes for neurons i, j, k, and
p̂i jk,2way

111 (t|xt ) obtained from fitting the two-way interaction model. Formula
2.14 is analogous to formula 2.6 and may be derived by an analogous
argument.2 Once again, standard errors and confidence intervals may be

2Formula 2.14 is asymptotically equivalent, as δ → 0, to equation 23 of Kass et al.
(2011), but it may differ in practice and seems preferable because of the direct connection
between equations 2.13 and 1.1.
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obtained from the parametric bootstrap, but now the three-way interaction
term is included in the model. Specifically, the spike trains are generated
from the p̂i jk

abc(t|xt ) estimates obtained from using equation 2.14:

p̂i jk
111(t|xt ) = p̂i jk,2way

111 (t|xt )ζ̂
i jk,

p̂i jk
110(t|xt ) = p̂i j

11(t|xt ) − p̂i jk
111(t|xt ),

p̂i jk
101(t|xt ) = p̂ik

11(t|xt ) − p̂i jk
111(t|xt ),

p̂i jk
011(t|xt ) = p̂ jk

11(t|xt ) − p̂i jk
111(t|xt ),

p̂i jk
100(t|xt ) = p̂i

1(t|xt ) − p̂i jk
111(t|xt ) − p̂i jk

110(t|xt ) − p̂i jk
101(t|xt ),

p̂i jk
010(t|xt ) = p̂ j

1(t|xt ) − p̂i jk
111(t|xt ) − p̂i jk

110(t|xt ) − p̂i jk
011(t|xt ),

p̂i jk
001(t|xt ) = p̂k

1(t|xt ) − p̂i jk
111(t|xt ) − p̂i jk

101(t|xt ) − p̂i jk
011(t|xt ),

p̂i jk
000(t|xt ) = 1 −

∑
(a,b,c) �=(0,0,0)

p̂i jk
abc(t|xt ). (2.15)

We illustrate by applying equations 2.12 and 2.14, together with bootstrap
confidence intervals, in section 3.

2.6 Hypothesis Tests. When n = 2, the null hypothesis concerning ζ i j

in equation 2.1 is that of independence, H0 : ζ i j = 1. To test H0, we may use
a parametric bootstrap, with spike trains generated by the fitted indepen-
dence model,

p̂i j|ζ=1
ab (t|xt ) = p̂i

a(t|xi
t )p̂ j

b(t|x
j
t ), (2.16)

which simply requires that we generate the neuron i and neuron j spike
trains independently using p̂i

1(t|xi
t ) and p̂ j

1(t|x j
t ). There are several choices

for the test statistic. Let us suppose we use Nij, and let Ni j
obs denote the value

computed from the data. We generate bootstrap pseudo-data, with the same
number of trials as the real data, based on p̂i

1(t|xi
t ) and p̂ j

1(t|x j
t ), and repeat

this procedure G times (e.g., we might take G = 10, 000). We let g = 1, . . . , G
label the pseudo-data, and for set g of pseudo-data we compute Nij and label
its value Ni j(g). The bootstrap p-value is then

p = number of values g such that Ni j(g) ≥ Ni j
obs

G
. (2.17)

This p-value satisfies the usual properties of the parametric bootstrap, that
is, it furnishes approximately the correct probability of rejecting H0 under
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the assumed null model. In practice, if the numerator is 0, we do not report
p = 0 but rather say p < 1/G. Some authors prefer to add 1 to both the
numerator and denominator of equation 2.17.

When n = 3, to test whether the two-way interaction model is adequate
to explain all the three-way spikes, we take the general two-way interaction
model as H0. We may then use a parametric bootstrap by generating pseudo-
data spike trains according to the probabilities p̂i jk,2way

abc (t|xt ) of section 2.4
and can use the total number of three-way spikes Nijk as the test statistic. If
we again label the sets of pseudo-data with g = 1, . . . , G and the data-based
value of Nijk with Ni jk

obs, we obtain the p-value by replacing the numerator in

equation 2.17 with the number of values of g such that Ni jk(g) ≥ Ni jk
obs.

When n > 3, we may apply the bootstrap test not only to the triplet spikes
from all combinations of three neurons using Nijk, but also the quadruplet
spikes from all combinations of four neurons using Nijkl, and so forth, in
principle up to Ni jk···n.

The p-value in equation 2.17 is one-sided in the sense that only excess
joint spiking is being assessed. To check for either excess joint spiking or
diminished joint spiking, we could instead use ζ̂ i j as the test statistic. Then,
with ζ̂ i j(g) being the value computed from set g of the pseudo-data and ζ̂

i j
obs

being the value computed from the real data, we would define

p = number of values g such that | log ζ̂ i j(g)| ≥ | log ζ̂
i j
obs|

G
(2.18)

as a p-value for the two-sided test. When ζ̂
i j
obs > 1, equation 2.18 finds the

proportion of sets of pseudo-data for which either ζ̂ i j(g) ≥ ζ̂
i j
obs or 1/ζ̂ i j(g) ≤

1/ζ̂
i j
obs. Higher-order tests may be modified similarly.

2.7 Motivation from Hierarchical Sparsity. Central to the strategy in
sections 2.1 to 2.5 is the idea that we may perform fitting hierarchically
using the three steps articulated in section 1.1 and realized in the algorithm
of section 2.5. The main justification for this procedure is based on the rate
at which pairwise and multiway spikes occur.

For small bin width δ (e.g., δ = .005 seconds), each firing probability
pi

1(t|xt ), is also small and, as δ → 0 we have

pi
1(t|xt ) = O(δ). (2.19)

According to equation 2.1, we then have

pi j
11(t|xt ) = O(δ2). (2.20)
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Equations 2.19 and 2.20, together with higher-order counterparts such as

pi jk
111(t|xt ) = O(δ3),

provide a formal expression of hierarchical sparsity. Kass et al. (2011) ap-
plied hierarchical sparsity in deriving point-process representations that
approximate discrete-time models, analogous to equation 1.2. We use the
idea here to motivate our hierarchical fitting procedure. Under hierarchical
sparsity, there is likely to be good information (many spikes) available to
estimate one-way probabilities, but as we move up the hierarchy of inter-
actions, the information degrades: there are many fewer two-way spikes,
and then even fewer three-way spikes, and so on. Although we do not offer
a more precise theoretical statement, it is apparent that under hierarchical
sparsity, the hierarchical fitting procedure should produce estimates of the
multiway probabilities that capture well the available information in the
data.

3 Data Analysis

We illustrate the approach by analyzing two sets of three neurons recorded
from primary visual cortex, as described in Kelly, Smith, Kass, and Lee
(2010b) and Kass et al. (2011). In each case, the neural responses were
recorded from an anesthetized monkey while sinusoidal gratings were
moved across the visual field. The data in Figures 2 and 3 correspond to
1 second of the recordings, and there are 120 repeated trials. Both figures
display raster plots from three cells, with dark circles superimposed to
indicate triplet firing within 5 ms time bins. The three cells chosen for Figure
2 are different from the three chosen for Figure 3, except that cell three in
Figure 2 is the same as cell 2 in Figure 3. In Figure 2, there are 11 such
triplets in total, across the 120 trials, while in Figure 3, there are 12 triplets.
To implement step 1 of the fitting procedure, in which we fit time-varying
individual-neuron firing rate functions (see section 2.1), we used a gaussian
filter with bandwidth σ = 75 ms to smooth each PSTH, as shown at the
bottom of panels A, B, and C in Figures 2 and 3. Results were not sensitive
to choice of bandwidth. In related analyses, we used spline fits, including
BARS, but chose gaussian filters here for speed of implementation, which
was important for the simulation study reported in section 4. Panel D in
each figure shows the bootstrap distribution of the number of triplets ob-
tained under the null model using p̂i jk,2way

abc (t|xt ), as described in section 2.6.
(We used G = 500 bootstrap samples.) For the neurons corresponding to
Figure 2, N123

obs = 11 is in the extreme tail of the bootstrap distribution and,
applying equation 2.17, the test has a significant p-value with p = .002. On
the other hand, for the neurons corresponding to Figure 3, N123

obs = 12 is in
middle of the bootstrap distribution, and the test is not significant (p = .52).
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Figure 2: (A–C) Raster plots, with PSTHs shown below, for three neurons
recorded simultaneously from primary visual cortex. Dark circles indicate three-
way synchronous spikes. (D) Histogram of bootstrap values Ni jk(g). The value
Ni jk

obs = 11 is in the tail of this distribution.

For the neurons in Figure 2, applying equation 2.14 and then bootstrap-
ping based on eqaution 2.15, we obtained the estimate of ζ 123 is ζ̂ 123 = 2.9
with approximate 95% confidence interval (1.7,4.3). We also computed esti-
mates and confidence intervals for each ζ

i j
|k=∅ using equation 2.12 and then

again bootstrapping based on equation 2.15.3 We obtained

ζ̂ 12
|3=∅ = .68 (.31, 1.1),

ζ̂ 23
|1=∅ = 1.0 (.81, 1.3),

ζ̂ 12
|3=∅ = 1.0 (.86, 1.2).

Thus, interestingly, the estimates were all statistically indistinguishable
from the null value of 1. This indicates that once the three-way interac-
tions are considered, there are no longer any significant two-way effects.
We suspect the excess three-way spiking among these neurons is due to the

3We used equation 2.15 rather than the two-way model because the test of H0 : ζ 123 = 1
was significant.
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Figure 3: (A–D) Same as Figure 2, except the data are from three different neu-
rons. In this case the value Ni jk

obs = 12 is in the middle of the bootstrap histogram
in panel D.

slow-wave activity discussed by Kelly et al. (2010b) and Kass et al. (2011).
For the neurons in Figure 3, all the corresponding estimated effects and
confidence intervals were consistent with null values of 1.

The results given above did not include individual-neuron history terms.
When we included history, based on spike count in the preceding 100 mil-
liseconds, the three-way hypothesis test results were essentially unchanged:
individual-neuron history effects apparently picked up network activity so
that pairwise interactions became nonsignificant, but the three-way inter-
action for the neurons in Figure 2 remained highly significant. (This was
not sensitive to the width of history window.)

A related example of the approach presented here, focusing on two-way
interaction, was given in Kass et al. (2011). Two alternative pairs of neurons
were analyzed, with and without covariates xi

t that had two components:
the spike count for neuron i in the previous 100 ms and the total spike count
among all neurons k �= i, j in the previous 100 ms. Thus, xi

t represents the
recent network history, including that of neuron i itself but not including
that of neuron j. We summarize the results in terms of Ex = 1/ζ̂

i j
x , as in

equation 2.7, the proportion of synchronous spikes explained by covariates
x in Table 1. In the table, we have written ≈1 to indicate that the bootstrap



Evaluating Synchrony 2025

Table 1: Proportion Ex of Synchronous Spikes Explained by x.

Covariate x Pair 1 Pair 2

Average firing rate .52 .40
Time-varying firing rate .50 .42
Network history ≈1 .48

test of H0 : ζ i j = 1 was not rejected for pair 1 when the network history
covariates were included. The bootstrap 95% confidence intervals for ζ i j

were pair 1: (.79,1.4) and pair 2: (1.4,3.6). The main findings are, first, for
both pairs, there is highly significant synchronous activity beyond that due
to firing rate (p ≈ .001 for pair 1, p < .0001 for pair 2) with only about 50%
and 40% of the synchronous spikes explained by firing rate for the two
pairs.4 Second, for pair 1, network activity appears to explain synchronous
spiking, but for pair 2 it does not (p = .0002 from the bootstrap test of H0).
Indeed, from the pair 2 values of Ex, the network activity explains only a
very small additional proportion of spikes beyond the time-varying firing
rate. For pair 2, there is excess synchronous spiking that presumably is
associated with the stimulus.

For these two pairs of neurons, we have also examined whether there is
evidence of time-varying synchrony. The interesting case would be time-
varying synchrony within a particular stimulus epoch. We considered the
300 ms corresponding to each stimulus and decomposed these into the first
100 ms and the latter 200 ms, then used equation 2.6 within each of these
time intervals and computed confidence intervals for both the early part of
the time interval and the later part of the time interval. In every case, these
two confidence intervals strongly overlapped, indicating no evidence in
favor of time-varying synchrony. This may have been due to the relatively
small number of synchronous spikes available within these 300 ms stimulus
conditions across the 120 trials.

4 The Power of Tests for Three-Way Interaction

We next investigate the amount of data needed to reliably detect three-way
interaction. We chose four data-generating scenarios. For the first two, we
used a model representing individual-neuron contributions together with

4The values of Ex are similar for the overall time-averaged firing rate (a constant firing
rate) and for the time-varying firing rate; this depends on the “signal correlation,” that
is, the overlap of the PSTHs, with the latter typically being bigger than the former when
there is substantially shared time-varying response to the stimulus and, thus, relatively
large signal correlation.
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three-way interaction,

log pi jk
abc(t|xt ) =α(t|xt ) + aβ1

a (t|xt ) + bβ2
b (t|xt ) + cβ3

c (t|xt )

+ abcβ123
abc (t|xt ), (4.1)

while for the latter two, we used a model representing two-way interaction
together with three-way interaction:

log pi jk
abc(t|xt ) =α(t|xt ) + aβ1

a (t|xt )bβ
2
b (t|xt ) + cβ3

c (t|xt )

+ abβ12
ab (t|xt ) + acβ13

ac (t|xt ) + bcβ23
bc (t|xt )

+ abcβ123
abc (t|xt ). (4.2)

For each model, we simulated spike trains across 1 s, using bin width δ =
.005 (5 ms), with individual-neuron firing rates adjusted to be either 5 Hz
or 10 Hz. In equation 4.2, we then adjusted the coefficients β i j so that the
two-way excess firing would be ζ i j = 2. The combination of the two models
with the two firing rates constituted our four scenarios. For each scenario,
we chose a grid of values of excess three-way synchrony ζ 123 given by
equation 2.13 and a grid of values R for the number of trials. For each
combination of ζ 123 and R, we computed the probability of rejecting H0
after fixing the rejection cutoff so that the probability of rejection under H0
(the α-level) was .05, as is customary. The results are shown in Figure 4,
with black lines indicating the combinations of ζ 123 and R that produce the
customary minimally acceptable power values of .8. The figure is based on
1000 replications of each simulation. Specifically, for each ζ 123 and R, the
figure displays smoothed proportions, out of 1000, of the replications that
rejected H0.

The plots in Figure 4 indicate that in order to have a substantial proba-
bility of detecting three-way interaction, one needs either a large value of
ζ 123 or a large number of trials R, or both. For example, when there are,
on average, twice as many triplets as would occur under H0 (ζ 123 = 2), in
order to reject H0 with power .8 in the 5 Hz scenario of panel A, one would
need more than 700 trials (of 1 s duration). For values of ζ 123 clearly below
2, which could be realistic, it becomes extremely difficult to reliably reject
H0. More than 1000 trials would be needed, and the extrapolation of the
power curves indicates the number grows quickly as ζ 123 decreases. When
the number of three-way spikes is larger, the situation is more favorable.
When the firing rates are higher for the 10 Hz scenario of panel B, even there
one needs about 150 trials to reliably reject H0 when ζ 123 = 2. Panels C and
D show the same two firing rates but with injected pairwise correlation. The
pairwise correlation effectively increases the number of three-way spikes,
and thus the power is larger when pairwise correlation is present. For the
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Figure 4: Power analysis for detecting three-way interaction. Results for four
scenarios are given in the four plots. Model 4.1 was used for panels A and
B, while model 4.2 was used for panels C and D. For panels A and C, the
individual-neuron firing rates were set to 5 Hz, and for panels B and D, they
were set to 10 Hz. The pairwise synchrony coefficient for panels C and D is 2.
In each panel, the x-axis is the value of the excess three-way firing rate ζ 123, for
example, ζ 123 = 2 indicates twice as many triplet spikes as would be observed
under the null model. The y-axis is the number of trials R. The bold lines indicate
the values of ζ 123 and R for which the power was .8.

scenario in panel C, 200 trials are need to reliably reject H0, and in the most
favorable situation of panel D, 75 trials are needed.

5 Discussion

Our main purpose has been to generalize statistical assessment of syn-
chrony based on log-linear modeling (using maximum entropy models)
so that it can accommodate time-varying firing rates or non-Poisson his-
tory effects or time-varying covariates. We have presented methodolog-
ical details to supplement the theoretical treatment of Kass et al. (2011),
which served to provide a point-process foundation for discrete-time
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modeling. The hierarchical approach described here is sufficiently simple
that the generalized two-way model, together with multiway estimates and
hypothesis tests, can be implemented relatively easily and effectively. We
have produced Matlab code that may be accessed at http://www.cnbc
.cmu.edu/∼rkelly/code/synchrony. The code includes inputs for user-
defined history and covariate effects.

The chief theoretical novelty in our approach is to recognize the strong
heuristic of hierarchical sparsity, as articulated in section 2.7: if multiway
spikes are relatively rare compared to individual-neuron spikes, then it
should be useful to conceptualize excess spiking as involving multiway gain
factors and to combine these with individual-neuron firing probabilities de-
scribed by point-process regression models. The strategy adopted here is
different from other statistical treatments of multiple binary time series,
such as in Liang and Zeger (1989), which are not aimed at point processes
and do not consider the special circumstance, and opportunity, presented
by hierarchical sparsity; they would be considerably more cumbersome in
this setting. On the other hand, hierarchical sparsity is not universally valid.
It may happen that population-level activity produces substantial bursts of
multiway spiking, as illustrated in panel C of Figure 5. The data in this figure
come from the same experiment as the data used in section 3. Our approach
assumes the individual-neuron conditional intensity functions account for
this kind of shared activity. If conditional intensity functions failed to in-
clude appropriate covariates to identify population activity, then multiway
spiking might no longer be rare compared with individual-neuron spiking
and hierarchical sparsity might no longer be applicable. Also, network ac-
tivity such as that in Figure 5 would be an example source of trial-to-trial
variation; in our approach, all important sources of trial-to-trial variation
must be included by defining suitable covariates. It would be interesting
to consider incorporating into the framework described here latent vari-
ables to accommodate network bursting (Chen, Vijayan, Barbieri, Wilson,
& Brown, 2009; Tokdar, Xi, Kelly, & Kass, 2010; Wu, Kulkarni, Hatsopou-
los, & Paninski, 2009), but that is a topic for future research. Kass et al.
(2011) used a covariate based on population spike counts in point-process
regression models to analyze synchrony, following the approach specified
in greater detail here.

The usual parameters in equation 1.1 have some statistical virtues, as do
the orthogonalized parameters discussed by Amari (2009). We have worked
with a different parameterization, given in equation 2.8, with the ζ i j chosen
due to interpretability as a gain factor for increased synchronous firing rate.
This also led to our suggestion of ζ

i j
|k=∅ in equation 2.11 as a measure of

functional connectivity of neurons i and j in the presence of neuron k. One
could instead introduce a generalized version of the usual parameters β

i j
11

in equation 1.1 to account for time-varying firing rates, for example. In the
context of synchrony investigation, we find ζ

i j
|k=∅ more directly interpretable,

but this is a matter of taste and convenience.
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Figure 5: Neural spike train raster plots for repeated presentations of a drifting
sine wave grating stimulus (from Kass et al., 2011). Recordings were made
in V1. (A) Single-cell responses to 120 repeats of multiple sinusoidal grating
stimuli. At the top is a raster corresponding to the spike times, and below is
a peristimulus time histogram for the same data. (B) Same as panel A, for a
different cell. (C) Population responses to the same stimulus, for five repeats.
Each block, corresponding to a single trial, is the population raster for n = 125
units. On each trial, there are several dark bands, which constitute bursts of
network activity.

We also conducted a power study, the main conclusion of which is that
large numbers of trials are likely needed in order to detect realistic multi-
way spiking above that determined by two-way interactions. In the most
favorable case we examined, where cells fire at 10 Hz, approximately 75
1 s trials are needed to reliably detect excess three-way spiking that pro-
duces double the number of spikes expected under the two-way model
(and this assumed that diminished three-way spiking is not of interest so
that a one-sided test could be used; a two-sided test would require con-
siderably more data). When there are lower firing rates, or less dramatic
excess firing, the ability to reliably detect excess three-way spiking deteri-
orates, and very long recording sessions will be needed. With the code we
have made available, additional scenarios may be investigated so that the
power of new experiments to find excess three-way synchrony could be
considered carefully.

We have assumed that excess multiway spiking is constant in time. At
least in the case of two-way spiking, there will be opportunities to examine
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stimulus-related time-locked increases in synchrony, with modest amounts
of data, which could have important physiological relevance (Riehle, Grün,
Diesmann, & Aertsen, 1997). In our framework, this would require estimat-
ing ζ i j(t) in equation 1.3, and an illustration of such an estimate was given
by Ventura et al. (2005b) based on low-order spline fitting. An alternative
would be to apply formula 2.6 repeatedly across distinct time intervals,
and a continuous-time estimate could also be obtained by windowing or
smoothing the numerator and denominator of equation 2.6, analogous to
what was done in Kass et al. (2003). From our power results in section 4,
however, we would expect time-varying multiway interactions to require
either high firing rates or extended recording sessions. Indeed, when we
examined data from two pairs of neurons in section 3 and found no evi-
dence in favor of nonconstant ζ i j(t), we observed that we had relatively
few synchronous spikes to work with, and thus little statistical power to
detect nonconstant ζ i j(t). In the context of time-varying synchrony, it is also
worth pointing out that in the presence of time-varying individual-neuron
firing rates, alternative models of excess synchrony are not equivalent (Ito
& Tsuji, 2000). In particular, the assumption in equation 1.1 that β

i j
11 is con-

stant in time is not equivalent to the assumption that ζ i j(t) is constant in
time.

We have applied the IPF procedure of section 2.2 to triples of neurons.
It could be applied to larger sets of n > 3 neurons, but the number of
probabilities that must be fitted is 2n, so as n grows, the computation will
quickly become infeasible. We believe it remains possible to treat n neurons,
even when n is large, but this will require additional methods and is a
subject for future investigation. An important alternative to the parametric
bootstrap described here is based on spike jittering, as in Harrison and
Geman (2009). The jitter null hypothesis, however, is different from the
bootstrap null of section 2.3 (see Harrison et al., in press). In future work we
also plan to investigate the use of jitter in conjunction with the model-based
approach described here.

Finally, no discussion of synchrony is complete without some reference
to the problem of spike sorting, which undoubtedly can have an impact
on synchrony detection. Considerable effort went into the characteriza-
tion of spike waveforms in the data analyzed here (Kelly et al., 2007), but
the problem is difficult (Harris, Henze, Csicsvari, Hirase, & Buzsaki, 2000;
Ventura, 2009). We trust spike misclassification will be mitigated as record-
ing technologies advance.

References

Aertsen, A. M. H. J., Gerstein, G. L., Habib, M. K., & Palm, G. (1989). Dynamics of
neuronal firing correlation: Modulation of effective connectivity. J. Neurophys.,
61, 900–917.

Agresti, A. (2002). Categorical data analysis (2nd ed.). Hoboken, NJ: Wiley.



Evaluating Synchrony 2031

Amari, S.-I. (2009). Measure of correlation orthogonal to change in firing rate. Neural
Comput., 21, 960–972.

Chen, Z., Vijayan, S., Barbieri, R., Wilson, M. A., & Brown, E. N. (2009). Discrete-
and continuous-time probabilistic models and inference algorithms for neuronal
decoding of up and down states. Neural Comput., 21, 1797–1862.

DiMatteo, I., Genovese, C. R., & Kass, R. E. (2001). Bayesian curve-fitting with free-
knot splines. Biometrika, 88, 1055–1071.

Grün, S. (2009). Data-driven significance estimation for precise spike correlation. J.
Neurophysiol., 101, 1126–1140.

Gütig, R., & Aertsen, A. (2003). Analysis of higher-order neuronal interactions based
on conditional inference. Biol. Cybernetics, 88, 352–359.

Haberman, S. J. (1974). The analysis of frequency data. Chicago: University of Chicago
Press.

Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., & Buzsaki, G. (2000). Accu-
racy of tetrode spike separation as determined by simultaneous intracellular and
extracellular measurements. J. Neurophysiol., 84, 401–414.

Harrison, M. T., Amarasingham, A., & Kass, R. E. (in press). Statistical identifica-
tion of synchronous spiking. In P. Di Lorenzo & J. Victor (Eds.), Spike timing:
Mechanisms and function. London: Taylor and Francis.

Harrison, M. T., & Geman, S. (2009). A rate and history-preserving algorithm for
neural spike trains. Neural Comput., 21, 1244–1258.

Ito, H., & Tsuji, S. (2000) Model dependence in quantification of spike interdepen-
dency by joint peri-stimulus time histogram. Neural Comput., 12, 195–217.

Kass, R. E., Kelly, R. C., & Loh, W.-L. (2011). Assessment of synchrony in multiple
neural spike trains using loglinear point process models. Annals Appl. Statist., 5,
1262–1292.

Kass, R. E., & Ventura, V. (2001). A spike-train probability model. Neural Comput.,
13, 1713–1720.

Kass, R. E., Ventura, V., & Brown, E. N. (2005). Statistical issues in the analysis of
neuronal data. J. Neurophysiol., 94, 8–25.

Kass, R. E., Ventura, V., & Cai, C. (2003). Statistical smoothing of neuronal data.
Network: Comput. Neural Systems, 14, 5–15.

Kelly, R. C., Smith, M. A., Kass, R. E., & Lee, T.-S. (2010a). Accounting for net-
work effects in neuronal responses using L1 penalized point process models. In
J. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.),
Advances in neural information processing systems, 23. Red Hook, NY: Curran
Associates.

Kelly, R. C., Smith, M. A., Kass, R. E., & Lee, T.-S. (2010b). Local field potentials
indicate network state and account for neuronal response variability. J. Comput.
Neurosci., 29, 567–579.

Kelly, R. C., Smith, M. A., Samonds, J. M., Kohn, A., Bonds, A. B., Movshon, J. A.,
et al. (2007). Comparison of recordings from microelectrode arrays and single
electrodes in the visual cortex. J. Neurosci., 27, 261–264.

Liang, K. Y., & Zeger, S. L. (1989). A class of logistic regression models for multivariate
binary time series. J. Amer. Statist. Assoc., 84, 447–451.

Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., & Vaadia, E. (2000).
Neural coding: Higher-order temporal patterns in the neurostatistics of cell as-
semblies. Neural Comput., 12, 2621–2653.



2032 R. Kelly and R. Kass

Nakahara, H., & Amari, S. (2002). Information geometric measure for neural spikes.
Neural Comput., 14, 2269–2316.

Okatan, M., Wilson, M. A., & Brown, E. N. (2005). Analyzing functional connectivity
using a network likelihood model of ensemble neural spiking activity. Neural
Comput., 17, 1927–1961.

Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., et al.
(2008). Spatio-temporal correlations and visual signalling in a complete neuronal
population. Nature, 454, 995–999.

Riehle, A., Grün, S., Diesmann, M., & Aertsen, A. (1997). Spike synchronization and
rate modulation differentially involved in motor cortical function. Science, 278,
1950–1953.

Schneidman, E., Berry, M. J., Segev, R., & Bialek, W. (2006). Weak pairwise corre-
lations imply strongly correlated network states in a neural population. Nature,
440, 1007–1012.

Stevenson, I. H., Rebesco, J. M., Hatsopoulos, N. G., Haga, Z., Miller, L. E., & Körding,
K. P. (2009). Bayesian inference of functional connectivity and network structure
from spikes. IEEE Trans. Neural Systems and Rehabilitation, 17, 203–213.

Tokdar, S., Xi, P., Kelly, R. C., & Kass, R. E. (2010). Detection of bursts in extracelluar
spike trains using hidden semi-Markov point process models. J. Comput. Neurosci.,
29, 203–212.

Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A
point process framework for relating neural spiking activity to spiking history,
neural ensemble, and extrinsic covariate effects. J. Neurophys., 93, 1074–1089.

Uhlhaas, P. J., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D., et al.
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