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Abstract

In many cortical areas neural spike trains do not follow a Poisson process. In this study

we investigate a possible benefit of non-Poisson spiking for information transmission by

studying the minimal rate fluctuation that can be detected by a Bayesian estimator. The

idea is that an inhomogeneous Poisson process may make it difficult for downstream

decoders to resolve subtle changes in rate fluctuation, but by using a more regular non-

Poisson process the nervous system can make rate fluctuations easier to detect. We

evaluate the degree to which regular firing reduces the rate fluctuation detection thresh-

old. We find that the threshold for detection is reduced in proportion to the coefficient



of variation of interspike intervals.

1 Introduction

Neural coding has been central to computational neuroscience for more than 40 years

(see for instance, Perkel and Bullock, 1968). The earliest work on the physiological sig-

nificance of spike trains made clear the importance of rate coding, according to which

information about stimuli or actions is contained in fluctuating firing rates. Recently,

alternative coding schemes beyond the rate code were examined by decoding sensory

or behavior signals from recorded spike trains (Barbieri et al., 2001; Jacobs et al., 2009;

Pillow et al., 2005). These studies showed that if spike counts or fluctuating firing rates

were used as inputs, a Bayesian decoder could not sufficiently reproduce the signals,

but when more precise firing timing information was included, it could. In these anal-

yses, timing information was incorporated by non-Poisson spike train models. These

investigations raise the question, What are the neural coding advantages of non-Poisson

spiking? It could be that additional information is carried in non-Poisson characteristics

of a spike train (Burns and Pritchard, 1964; Davies et al., 2006; Lundstrom and Fairhall,

2006; Olypher et al., 2002; Ratliff et al., 1968). Alternatively, temporal variation of the

rate might be transmitted more accurately by using non-Poisson regular firing (Cun-

ningham et al., 2008, 2009; Shimokawa and Shinomoto, 2009; Grun, 2009; Omi and

Shinomoto, 2011). In the present study, we examine the latter possibility by testing the

detectability of the rate fluctuation in inhomogeneous non-Poisson spike trains.

In the problem of estimating the rate of an inhomogeneous Poisson spike train there

is a threshold of rate fluctuation below which rate estimators, such as an optimized

histogram with respect to minimizing the mean squared error, or a Bayesian rate esti-

mator cannot discern rate fluctuations (Koyama and Shinomoto, 2004; Koyama et al.,

2007). The Bayesian rate estimator in previous studies was based on an inhomoge-

neous Poisson process likelihood with a roughness-penalizing prior on the rate process,

where the hyperparameter was estimated by maximizing the marginal likelihood, or the

evidence. (See MacKay (1992); Kass and Raftery (1995) for use of the evidence in

model selection.) Based on this model, when the estimated hyperparameter suggests

a constant-rate process for a spike train derived from a temporally fluctuating rate, it
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would be concluded that the rate fluctuation is undetectable. In the present article we

re-formulate those known results, replacing the Poisson spike trains with non-Poisson

regular processes, and we evaluate the degree to which the threshold of undetectable

fluctuations is thereby reduced so that information transmission is improved. In or-

der to obtain analytical results, we assume that rate fluctuations have a long time scale

so that the firing rate in successive spikes does not change drastically. The analytical

results are then compared with numerical simulations.

2 Encoding an inhomogeneous rate

We first define the stochastic processes of generating spikes, starting from the homoge-

neous Poisson process, then by adding inhomogeneity and finally adding non-Poisson

response statistics. Note that throughout this paper, ‘inhomogeneity’ stands for spike

trains with a time-dependent firing rate λ(t), whereas ‘non-Poissonian’ means a depar-

ture from a Poisson process, which is characterized by the shape parameter κ of gamma

interspike interval (ISI) distribution introduced below.

(A) Homogeneous Poisson process.

The process of generating spikes randomly in time at a constant rate λ can be

realized by repeating Bernoulli trials with a small probability λδt(� 1) in every

small interval δt. The probability of having no spikes for the first n intervals and

finally having a spike at the (n+1)st interval is given by (1−λδt)nλδt. By taking

the infinitesimal limit of δt, fixing t = nδt finite, the probability is given by

p(t|λ)δt = lim
n→∞

(1 − λt/n)n λδt = exp (−λt)λδt. (1)

Thus this process is identical to a process of drawing ISIs independently from

an exponential distribution λ exp (−λt). If the ISIs are drawn from a distribu-

tion function different from the exponential function, the process is called the

homogeneous non-Poisson renewal process.

(B) Inhomogeneous Poisson process.

By allowing the occurrence rate to fluctuate in time as λ(t), the probability of

having no spike for the first n intervals and finally having a spike at the (n +
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1)st interval is given by
∏n

j=1(1 − λ(jδt)δt)λ(nδt)δt. By taking the limit of

infinitesimal interval δt, the probability of having an interspike interval t can be

obtained as

p(ti|{λ(t)})δt = lim
n→∞

n∏
j=1

(1 − λ(jt/n)t/n)λ(t)δt

= exp

(
−
∫ t

0

λ(t′)dt′
)
λ(t)δt. (2)

It follows from Eq. (2) that the inhomogeneous Poisson process can be mapped

to the homogeneous Poisson process if the time axis is suitably scaled (Ogata,

1988; Daley and Vere-Jones, 1988; Reich et al., 1998; Oram et al., 1999; Barbieri

et al., 2001; Brown et al., 2001; Smith and Brown, 2003; Koyama and Shinomoto,

2005) as

x = Λ(t) ≡
∫ t

0

λ(t′)dt′, (3)

or,

dx = λ(t)dt. (4)

(C) Inhomogeneous non-Poisson process.

Using the time-scaling transformation (Eq. (4)), the homogeneous non-Poisson

renewal process given by a non-exponential ISI distribution can be transformed

into an inhomogeneous non-Poisson process. Given a time-dependent rate pro-

cess λ(t) with spike aftereffects specified by a non-exponential ISI distribution

function f(x), the probability of having an event in a small time interval [x, x +

dx] given a preceding event at 0 can be represented as

f(x)dx = f(Λ(t) − Λ(t0))λ(t)dt. (5)

Here we have assumed that the shape of the ISI distribution f(x), which defines

the firing irregularity, is unchanged in time. This is in agreement with the empiri-

cal fact that the degree of irregularity of neuronal firing is generally maintained in

vivo (Shinomoto et al., 2003, 2005, 2009), while the firing rate λ(t) is changing

in time.

On the basis of the above-mentioned time-rescaling theory, an inhomogeneous non-

Poisson spike train can be generated by the following two-step process.
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(1) Generating a uniform non-Poisson (renewal) sequence.

Draw ISIs {x1, x2, . . . , xn} independently from a given distribution function f(x),

and arrange them sequentially to form a spike train. Here the ith spike time is

given by summation of the previous ISIs as yi =
∑i

j=1 xj .

(2) Rescaling the time axis to conform to given rate λ(t).

Transform the original sequence {y1, y2, . . . , yn} into another sequence {t1, t2, . . . , tn}
according to ti = Λ−1(yi), where Λ−1(y) is the inverse of the function Λ(t) de-

fined by Eq. (3).

Given time dependent rate λ(t) with aftereffects specified by non-exponential ISI dis-

tribution function f(x), the probability density for the occurrence of spikes at {ti} =

{t1, t2, . . . , tn} can be represented in the form

p({ti}|{λ(t)}) =
n−1∏
i=1

λ(ti+1)f(Λ(ti+1) − Λ(ti)). (6)

where ti is the time of ith spike. Note that this manner of representing the non-Poisson

spiking is similar to that of inhomogeneous Markov interval processes (Kass and Ven-

tura, 2001; Koyama and Kass, 2008), in that both models confine the non-Poisson char-

acteristics within an interspike correlation between two consecutive spikes.

The ISI distribution used in this study is a parametric family of gamma distribution

functions

f(x) = fκ(x) = κ(κx)κ−1 exp(−κx)/Γ(κ), (7)

where Γ(κ) =
∫∞

0
xκ−1 exp(−x)dx is the gamma function. Accordingly, the shape of

the ISI distribution can be controlled by κ, keeping the scale factor or the mean ISI to

be unity,
∫∞
0
xfκ(x) = 1; the shape factors κ > 1, = 1, and < 1 represent regular,

(Poisson) random, and bursty firings, respectively.

3 Decoding the rate from a spike train

Next, we construct an algorithm to decode the rate from a spike train. The inverse prob-

ability of time dependent rate λ(t) given the spike train {ti} can be obtained according
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to Bayes’ theorem

p({λ(t)}|{ti}) =
p({ti}|{λ(t)})p({λ(t)})

p({ti}) . (8)

We employ the maximum a posteriori (MAP) estimate for inference of the firing rate1.

The prior distribution of the latent rate process is chosen such that the large gradients

of λ(t) are penalized with

p({λ(t)}) = pγ({λ(t)}) =
1

Z(γ)
exp

(
− 1

2γ2

∫ T

0

(dλ/dt)2dt

)
. (9)

Here, Z(γ) is the normalization constant given by

Z(γ) =

∫
D{λ(t)} exp

(
− 1

2γ2

∫ T

0

(dλ/dt)2dt

)

=
1√

2πγ2T
exp

[
− {λ(T ) − λ(0)}2

2γ2T

]
, (10)

where
∫
D{λ(t)} represents integration over all possible latent rate processes, or the

Wiener integral over all paths of λ(t) (Karatzas and Shreve, 1997). Eq. (9), which de-

fines a Gaussian process whose covariance function is cov[λ(t), λ(s)] = γ2 min(t, s)

(i.e., a Brownian motion), can be called the “roughness-penalizing prior”, the log of

which is the same as the smoothing-spline penalization with the first-order derivative

(Ramsay and Silverman, 2010). The MAP estimate, then, corresponds to the penal-

ized maximum likelihood estimate. Here, the roughness hyperparameter γ controls the

smoothness of the time-dependent rate λ(t); with small values of γ, the model requires

the smooth rate process and vice versa. Note that γ has units of s−3/2 if λ(t) has units

of s−1.

We may construct a Bayesian rate decoder based on the non-Poisson spike afteref-

fects by adopting the non-Poisson spike generation process (Eq. (6)) as

p({ti}|{λ(t)}) = pκ({ti}|{λ(t)}) =
n−1∏
i=1

λ(ti+1)fκ(Λ(ti+1) − Λ(ti)). (11)

1The MAP estimate does not involve a loss function, with respect to which a posterior estimate is opti-

mized, but instead, is chosen so that the posterior probability is maximized. However, when the posterior

distribution is unimodal and has a sharp peak, as in the case of our analysis below, the MAP estimate

provides a good approximation to the posterior expectation (Koyama et al., 2010b), which minimizes the

mean squared loss between the true and estimated firing rates.
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into the Bayesian formula (Eq. (8)), while the denominator of the Bayesian formula is

given by marginalizing the joint probability over all possible paths of λ(t),

p({ti}) = pκ,γ({ti}) =

∫
D{λ(t)}pκ({ti}|{λ(t)})pγ({λ(t)}). (12)

Upon applying the empirical Bayes method (MacKay, 1992; Bruce and Saad, 1994;

Carlin and Louis, 2000; Rasmussen and Williams, 2006), the hyperparameters γ and

κ can be determined so that this “marginal likelihood” or the “evidence” is maximized

according to:

(γ̂, κ̂) = arg max
γ,κ

pκ,γ({ti}). (13)

In Bayesian analysis, in principle the hyperparameters may be determined by maxi-

mizing the posterior probability of them, which is computed by combining the prior

probability over the hyperparameters with the evidence via Bayes’ theorem. Having no

basis on which to formulate a prior distribution, we instead maximize the marginal like-

lihood. As pointed out by MacKay (1992) and Kass and Raftery (1995), the marginal

likelihood, or evidence, naturally embodies Occam’s razor.

The posterior distribution Eq. (8) can be continuously extended to γ = 0, in which

case the posterior probability for the rate process, pκ,γ({λ(t)}|{ti}), consequently in-

dicates a constant rate, dλ(t)/dt = 0. When analyzing a train of an infinite number of

spikes, the distribution of the constant rate λ(t) = λ becomes a delta function located

at a value of the mean firing rate. Thus if the optimized roughness hyperparameter

vanishes, γ̂ = 0, it should be interpreted that the Bayesian rate decoder has uniquely

selected a constant rate process.

4 Performing the marginalizing integration

For the inhomogeneous Poisson process, the marginalizing integration over all possible

latent rate paths
∫
D{λ(t)} in Eq. (12) was solved for some given rate processes using

the path integral method (Koyama et al., 2007). Here we re-formulate the analytical

method and extend the marginalizing integration method to make it applicable to non-

Poisson processes.
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4.1 Evaluation of the log-likelihood function

From Eqs. (7) and (11), the log-likelihood is explicitly given by

log pκ({ti}|{λ(t)}) =
∑

i

[
log λ(ti) + κ log κ+ (κ− 1) log(Λ(ti) − Λ(ti−1))

− κ(Λ(ti) − Λ(ti−1)) − log Γ(κ)
]

=
∑

i

[
log λ(ti) + (κ− 1) log(Λ(ti) − Λ(ti−1))

]

+ nκ log κ− κ

∫ T

0

λ(t)dt− n log Γ(κ). (14)

By introducing the “averaged” firing rate in the ith ISI:

λ̄i ≡ Λ(ti) − Λ(ti−1)

ti − ti−1

, (15)

the rate fluctuation and the ISI in the term log(Λ(ti) − Λ(ti−1)) are separated as

log(Λ(ti) − Λ(ti−1)) = log λ̄i + log(ti − ti−1). (16)

Assuming that the time scale of the rate fluctuation is longer than the mean ISI so that

λ̄i is approximated to λ(ti),2 the log-likelihood (14) is rewritten as

log pκ({ti}|{λ(t)}) = κ
∑

i

log λ(ti) + nκ log κ− n log Γ(κ)

− κ

∫ T

0

λ(t)dt+ (κ− 1)
∑

i

log(ti − ti−1). (17)

We decompose the rate λ(t) into the mean μ and fluctuation x(t), as

λ(t) = μ+ x(t). (18)

Accordingly, the log-likelihood function is decomposed into two parts, as

log pκ({ti}|{λ(t)}) = L + I, (19)

2Suppose that the time scale of rate fluctuation λ(t) is given by τ . Then,

λ(ti) = λ(ti−1) +
dλ(ti−1)
d(ti−1/τ)

ti − ti−1

τ
+ O

((
ti − ti−1

τ

)2)
,

from which the error is estimated as λ(ti) − λ̂i ∼ (ti − ti−1)/τ . Our analysis is hence valid under the

condition in which τ is large enough compared with the mean ISI so that this error is negligible.
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where L is the log-likelihood function of the gamma interval distribution,

L = −Tκμ+ nκ log μ+ nκ log κ− n log Γ(κ) + (κ− 1)
∑

i

log(ti − ti−1), (20)

whereas I is given by

I = −
∫ T

0

[
κx(t) − κ

∑
i

δ(t− ti) log

(
1 +

x(t)

μ

)]
dt. (21)

L and I represent the components of mean rate and fluctuation around the mean rate,

respectively.

4.2 The path integral method

Substituting Eqs. (9) and (19) into Eq. (12) and taking into account the change of vari-

able from λ(t) to x(t) in Eq. (18), the marginal likelihood function is written as

pγ,κ({ti}) =

∫
D{x(t)} exp(L + I)

1

Z(γ)
exp

(
− 1

2γ2

∫ T

0

ẋ2dt

)

=
1

Z(γ)
eLF . (22)

Here, the contribution of rate fluctuation can be represented in the form of a path integral

(Feynman and Hibbs, 1965; Kleinert, 2009),

F =

∫
exp

[
−
∫ T

0

L(ẋ, x)dt

]
D{x(t)}, (23)

where L(ẋ, x) is a “Lagrangian” of the form,

L(ẋ, x) =
1

2γ2
ẋ2 + κx(t) − κ

∑
i

δ(t− ti) log

(
1 +

x(t)

μ

)
. (24)

The MAP estimate of the rate fluctuation x̂(t) is obtained by taking the minimum of

the action integral S[x(t)] ≡ ∫ T

0
L(ẋ, x)dt in Eq. (23). The extremum condition for S

is expressed by the variational equation δS = 0, and an integration by part in δS with

fixed boundary values leads to the Euler-Lagrange equation:

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0. (25)

Note that it can also be shown that the quadratic form of the action integral δ2S is

nonnegative (Schulman, 2005), and thus the solution of Eq. (25) is guaranteed to be the
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MAP estimate x̂(t). In the following analysis, we consider a long spike train T � 1, so

that the boundary effect, which may be caused by a particular choice of the boundary

values in deriving the Euler-Lagrange equation (25), is negligible.

By considering the deviation from the MAP path as x(t) = x̂(t) + η(t), (η(0) =

η(T ) = 0), and approximating the action integral to a range of the second-order terms

with respect to the deviation η(t),∫ T

0

L(ẋ, x)dt

≈
∫ T

0

L( ˙̂x, x̂)dt+
1

2

∫ T

0

(
∂2L

∂ẋ2
η̇2 + 2

∂2L

∂ẋ∂x
η̇η +

∂2L

∂x2
η2

)
dt, (26)

where we ignored the terms in O(η3), the path integral can be performed analytically as

F = Re−S[x̂(t)], (27)

where exp{−S[x̂(t)]} represents the contribution of the mode to the path integral,

whereas R represents that of quadratic derivation:

R =

∫
exp

[
− 1

2

∫ T

0

(
∂2L

∂ẋ2
η̇2 + 2

∂2L

∂ẋ∂x
η̇η +

∂2L

∂x2
η2

)
dt

]
D{η(t)}. (28)

The path integral method presented here can be regarded as a functional version of the

Laplace approximation used in the field of statistics and machine learning (Kass et al.,

1991; Rasmussen and Williams, 2006).

4.3 Evaluation of the marginal likelihood

We formulate a method for computing a marginal likelihood function averaged over the

ensemble of event sequences derived from a given underlying rate,

λ(t) = μ+ σg(t) (29)

where μ is the mean rate and σg(t) represents a rate fluctuation characterized by the

amplitude σ, 〈g(t)〉 = 0 and 〈g(t)g(t′)〉 = φ(t − t′). We suppose that event sequences

are generated from a time rescaled gamma interval process with the shape parameter

κ∗.

The fluctuation in the apparent spike count is given by the variance to mean ratio as

represented by the Fano factor (Fano, 1947). For the renewal process in which ISIs are
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drawn from a given distribution function, it is proven that the Fano factor is related to

the ISI variability with F ≈ C2
V , where CV is the coefficient of variation defined as the

standard deviation of the ISIs divided by the mean (Cox, 1962). Though this approxima-

tion is proven to hold in the long interval limit, it was found that the relation practically

holds in a short interval that contains only a few spikes (Fig.4 in Omi and Shinomoto,

2011). The ISI variability of the gamma distribution is given by CV = 1/
√
κ∗. Thus,

in each realization of a spike generation, the occurrence of events fluctuates around the

underlying rate, and
∑

i δ(t− ti) in Eq. (24) can be represented as a stochastic process,

∑
i

δ(t− ti) ≈ λ(t) +

√
λ(t)

κ∗
ξ(t), (30)

where ξ(t) is a white noise characterized by the ensemble averages 〈ξ(t)〉 = 0 and

〈ξ(t)ξ(t′)〉 = δ(t − t′). Note that this approximation Eq. (30) holds only for a long

time scale fluctuation in the rate in which a serial correlation of spikes is negligible. As

the rate is non-negative, the path integral defined by Eq. (23) should be carried out in

the range of λ ≥ 0. Under the condition that the rate fluctuation is small, σ/μ � 1,

however, the orbits passing through λ < 0 practically do not contribute to the integral,

and we can ignore the case of λ < 0.

Under the same condition σ/μ � 1 and a large time interval T � 1, the “free

energy” or the negative log marginal likelihood function is derived by evaluating each

factor in Eq. (22) as

F (γ, κ) ≡ − 1

T
log pγ,κ({ti})

= − 1

T

(
logR− logZ(γ) −

∫ T

0

L( ˙̂x, x̂)dt+ L
)

=
γ

4

√
κ

μ

{
2 − κ

κ∗

(
1 + 2β

∫ ∞

0

φ(u)e
−γ
√

κ
μ

u
du

)}

− μ

{
log μ− κ+ κ log κ− log Γ(κ)

+ (κ− 1)

[
ψ(κ∗) − log κ∗ − σ2φ(0)

2μ2

]}
, (31)

where β = κ∗σ2/μ represents the effective degree of fluctuation andψ(κ) ≡ d log Γ(κ)/dκ

is the digamma function. The derivation is given in the Appendix. The hyperparameters
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(γ, κ) are selected so that the marginal likelihood is maximized (Eq. (13)), or the free

energy is minimized.

5 Applying the decoding methods to non-Poisson data

We apply this method of analysis to the time rescaled gamma interval processes, in

which the rate fluctuation is given by specific processes. Note that the free energy

Eq. (31) depends on the rate process via its correlation function φ(u). We use two rate

processes fluctuating according to the sinusoidal and Ornstein-Uhlenbeck processes;

these are the simplest processes whose correlation function is periodic or decaying with

a given correlation time scale, respectively.

5.1 Sinusoidally modulated gamma interval process

First we consider detecting rate fluctuation from the gamma interval process in which

the underlying rate is modulated sinusoidally in time:

λ(t) = μ+ σ sin t/τ. (32)

Inserting the correlation function of this process, φ(u) = 1
2
cos u

τ
, into Eq. (31), the free

energy for this case is obtained as

F (γ, κ) =
γ

4

√
κ

μ

(
2 − κ

κ∗

)
− βκ

4κ∗
τ 2γ2κ

μ+ τ 2γ2κ

− μ

{
log μ− κ+ κ log κ− log Γ(κ)

+ (κ− 1)

[
ψ(κ∗) − log κ∗ − σ2

4μ2

]}
. (33)

A vanishing hyperparameter γ = 0 indicates a constant rate. This free energy defined

for γ ≥ 0 always has a minimum at (γ, κ) = (0, κ̂c), where κ̂c = κ∗ − σ2φ(0)
2μ2I(κ∗)

,

I(κ∗) = ψ̇(κ∗) − 1/κ∗ being the Fisher information, as ∂F/∂γ|(γ,κ)=(0,κ̂c) > 0 and

∂F/∂κ|(γ,κ)=(0,κ̂c) = 0. As the rate fluctuation is increased from zero to βτ ≡ κ∗σ2τ/μ >

2, the minimum at a finite γ becomes lower than the minimum at γ = 0, implying

that the event sequence should be interpreted as being derived from a fluctuating rate.

It should be noted that the critical amplitude of the rate fluctuation σc is scaled with
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1/
√
κ∗ (Figure 1A, top panel), demonstrating that the smallest amplitude of detectable

fluctuation reduces in proportion with the coefficient of variation of ISIs, CV .

A Poissonian decoder is obtained by simply setting κ = 1 instead of optimizing

κ. By putting κ = 1 in Eq. (31) and deriving the condition under which F (γ, 1) takes

its minimum at γ = 0, the detection limit for the Poisson decoder is given by βτ ≡
κ∗σ2τ/μ = 2(2κ∗ − 1). In the regular domain, κ∗ > 1 or CV < 1, the detection

limit amplitude for the Poisson decoder is larger than that of the non-Poisson decoder,

implying the information transmission efficiency is dependent not only on the regularity

of the spike train, but also on whether or not the decoder takes account of the non-

Poisson firing.

The analytical results are compared with numerical simulations in Figure 1. Here we

generated a number of spike trains from inhomogeneous non-Poisson processes, Eq. (6),

and attempted to estimate the rate with the Bayes decoder Eq. (8). The maximization of

the marginal likelihood Eq. (13) was carried out by the Expectation and Maximization

(EM) method prescribed in Koyama and Shinomoto (2005). A sample spike train (b)

in Figure 1 demonstrates the situation in which a rate fluctuation was detected using a

non-Poisson decoder, while the rate estimator that does not take account of non-Poisson

firing cannot capture rate fluctuation.

To compare the non-Poisson and Poisson decoders in their performances in estimat-

ing the underlying rate, we have plotted ISEs computed for data derived from detectable

rate fluctuations (Figure 2A). The result indicates that the non-Poisson decoder has im-

proved the fitting performance from the Poisson decoder.

Note that the relationship is reversed in the bursty domain, κ∗ < 1 or CV > 1;

the Poisson decoder yields the detection of the rate fluctuation even for an amplitude

smaller than the lower bound amplitude for the non-Poisson decoder (Figure 1A). If we

assess the integrated squared error (ISE) of the estimated rate from the true rate, the

Poisson decoder gives larger error than the non-Poisson decoder. This implies that the

Poisson decoder (mis)interpreted the bursty firing as signal rather than noise. A sample

spike train (a) in Figure 1 demonstrates the situation in which a rate fluctuation was

not detected using a non-Poisson decoder, while the Poisson decoder detected spurious

fluctuation.
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5.2 OUP modulated gamma interval process

In the second example, we consider the case, in which the rate fluctuation is fluctuating

with the Ornstein-Uhlenbeck process,

dλ

dt
= −λ− μ

τ
+ σ

√
2

τ
ξ(t), (34)

where ξ(t) is a Gaussian white noise. Substituting the correlation function of this pro-

cess, φ(u) = e−|u|/τ , into Eq. (31), the free energy for this case is derived as

F (γ, κ) =
γ

4

√
κ

μ

(
2 − κ

κ∗

)
− βκ

2κ∗
τγ

√
κ√

μ+ τγ
√
κ

− μ

{
log μ− κ+ κ log κ− log Γ(κ)

+ (κ− 1)

[
ψ(κ∗) − log κ∗ − σ2

2μ2

]}
. (35)

In contrast to the case of sinusoidal rate fluctuation, this free energy never has multiple

minima. The minimum of this function stays at (γ, κ) = (0, κ̂c) until βτ ≡ κ∗σ2τ/μ

exceeds 1/2. By setting κ = 1 instead of estimating κ by the full optimization, the

detection limit for the Poisson decoder can also be obtained as βτ ≡ κ∗σ2τ/μ =

(2κ∗ − 1)/2. The critical amplitude of the rate fluctuation σc for the OUP modulated

process is scaled with 1/
√
κ∗, which is the same as the case of sinusoidally modulated

process (Figure 1B, top panel). The analytical results are also compared with numerical

simulations in Figure 1 B. The numerical results are subject to a larger fluctuation than

the sinusoidally modulated cases, because the rate itself fluctuates greatly according to

the stochastic process. The improvement in the estimation by replacing the Poissonian

decoder by the non-Poissonian decoder can be seen from their ISEs (Figure 2B). The

conditions are similar to those for the sinusoidally modulated cases, including the higher

sensitivity of the non-Poisson decoder for regular spike trains (a sample spike train (d)

in Figure 1) and the misinterpretation of the Poisson decoder for bursty spike trains (a

sample spike train (c) in Figure 1.

6 Discussion

We have shown that the sensitivity for rate fluctuations is enhanced by encoding rate

with non-Poisson regular firing and decoding a spike train by taking account of non-
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Poisson firing characteristics. The smallest amplitude of detectable fluctuation de-

creases with 1/
√
κ∗ = CV of the ISI distribution. Because our derivation of the de-

tectable fluctuation is based on the estimation of the fluctuation of the spike count in

terms of the Fano factor, which is related to the coefficient of variation, or Eq. (30),

this scaling of the threshold fluctuation with 1/
√
κ∗ applies to any inhomogeneous non-

Poisson process including sinusoidally modulated and OUP modulated gamma interval

processes (Figure 1). Note that considerable care should be given to the use of the

coefficient of variation, because CV itself is fragile and tends to be biased upward in

the presence of rate fluctuation (Shinomoto et al., 2005). The intrinsic firing irreg-

ularity κ could be estimated after eliminating rate fluctuation by rescaling the time

axis (Reich et al., 1998; Oram et al., 1999; Koyama and Shinomoto, 2005; Nawrot

et al., 2008; Shimokawa and Shinomoto, 2009), or through the local variation LV in-

troduced in Shinomoto et al. (2003), which is robust against the rate fluctuation, as

1/
√
κ∗ =

√
2LV /(3 − LV ).

It should be emphasized that the information transmission efficiency is also depen-

dent on the capacity of the decoder for detecting the firing irregularity and utilizing the

knowledge in analyzing the spike train (Pillow et al., 2005). As has been demonstrated

in Figure 1, the Poissonian rate decoder is unable to lower the detection threshold even

if the sender is using non-Poisson regular spike trains. Our simulations show, for exam-

ple, that for a value of κ∗ = 2.5 consistent with the irregularity observed in the motor

cortex (Shinomoto et al., 2009), the non-Poisson decoder can detect rate fluctuations of

approximately 5 Hz while the Poisson decoder requires fluctuations as large as 10 Hz.

Furthermore, the Poisson decoder may detect spurious rate fluctuations when a bursty

spike train is used to encode the rate. Interpretation of this phenomenon in the bursty

case is not simple, because the encoder and decoder should have some protocol in trans-

mitting information when using bursty spikes, in which ISIs fluctuate greater than the

case of the Poisson process.

We point out that, although we treated single neurons in this article, our model

can also account for interneuronal correlations by incorporating a covariate of other

neuron’s activity into the intensity function (Truccolo et al., 2005; Pillow et al., 2008).

To derive the formula for the free energy (negative log marginal likelihood), Eq. (31),

we assumed that the time scale of the rate fluctuation is longer than the mean ISI so that

15



the firing rate in each ISI does not change drastically. The analytical results obtained

under this assumption were in good agreement with our numerical simulations (Fig-

ure 1A,B).

Cortical neurons in vivo have been approximated as Poisson spike generators, but

a recent non-stationary analysis has revealed that individual neurons are signaling with

non-Poisson firing, whose characteristics are specific to individual neurons and appear

to depend on the function of the cortical area; the data examined indicated that neuronal

firing is regular in the primary and higher order motor areas, random in the visual areas,

and bursty in the prefrontal area (Shinomoto et al., 2009). This implies that firing pat-

terns may play an important role in function-specific computation. In accordance with

the present finding the regular firing in the motor related areas can be understood as

efficient in transmitting transient motor commands. The firing rate of neuronal popula-

tions in the motor area encodes motor commands, and information can be successfully

decoded by the population vector algorithm (Georgopoulos et al., 1986, 1989). The

decoding efficiency can be improved by incorporating the variability of neuronal firing

into decoders using a probabilistic framework (Brockwell et al., 2004, 2007; Koyama

et al., 2010a; Wu et al., 2006). Most of previous works, however, have assumed Pois-

son statistics for spiking variability. Using non-Poisson firing models could improve

decoding efficiency.

Ma et al. (2006) suggested a hypothesis that the Poisson-like statistics in the re-

sponses of populations of cortical neurons may represent probability distributions over

the stimulus, and a broad class of Bayesian inference can be implemented by simple

linear combinations of populations of neural activity. A crucial assumption made in

their hypothesis is that the covariance matrix of spike count is proportional to the mean

spike count, based on the mathematical fact that the variance is equal to the mean for

Poisson firings. It should be noted that their argument does not directly apply to real

neuronal spike trains, which are of a non-Poisson nature. However, if the firing irregu-

larity is maintained in individual neurons as has been exemplified by (C) time-rescaled

to a non-Poisson renewal process, their argument still applies to such neuronal firing,

in which the proportionality between the variance and mean holds, with a coefficient

different from unity.

There are many alternative methods for estimating fluctuating firing rates (Kass
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et al., 2005), including an optimized histogram and kernel density estimator chosen to

minimize mean squared error (Shimazaki and Shinomoto, 2007, 2010; Omi and Shi-

nomoto, 2011). Shintani and Shinomoto (2012) showed that the detectable limit of

rate fluctuations is given by an identical formula for the optimized histogram and the

Bayesian decoder if a spike train is derived from an inhomogeneous Poisson process.

It would be interesting to know whether this result can be generalized to an inhomoge-

neous non-Poisson spike trains.

We still do not know why random firings are used in the higher order cortical areas.

Though several hypotheses have been proposed for explaining the function of irregular

firing (van Vreeswijk and Sompolinsky, 1996; Roudi and Latham, 2007), it is open to

future research.

Appendix: Derivation of the free energy

In this appendix, we present the detail of derivation of the free energy (31). Under the

condition σ/μ � 1, the Lagrangian can be approximated to the range quadratic with

respect to x and ẋ as

L(ẋ, x) =
1

2γ2
ẋ2 + κx− κ{μ+ σg(t) +

√
[μ+ σg(t)]/κ∗ξ(t)} log

(
1 +

x

μ

)

≈ 1

2γ2
ẋ2 − κ

σg(t) +
√
μ/κ∗ξ(t)

μ
x+

κ

2μ
x2, (36)

where we have ignored the term of o((σ/μ)3/2). The solution of the Euler-Lagrange

equation (25), representing the MAP estimate of the rate fluctuation, is given by

x̂(t) =
γ

2

√
κ

μ

∫ T

0

e
−γ
√

κ
μ
|t−s|{

σg(s) +
√
μ/κ∗ξ(s)

}
ds. (37)

The action integral along the MAP path S[x̂(t)] and the contribution of the quadratic

derivation R in Eq. (27) are obtained analytically. Utilizing the Euler-Lagrange equa-

tion, S[x̂(t)] can be rewritten as

∫ T

0

L( ˙̂x, x̂)dt =

∫ T

0

{
1

2γ2
˙̂x2 − κ

σg(t) +
√
μ/κ∗ξ(t)

μ
x̂+

κ

2μ
x̂2

}
dt

=

∫ T

0

{
1

2γ2

d

dt
( ˙̂xx̂) − κ

σg(t) +
√
μ/κ∗ξ(t)

2μ
x̂

}
dt (38)
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The first term on the rhs representing the end point effect is negligible compared to the

second term whose contribution is of the order of T � 1. S[x̂(t)] can be obtained

explicitly by inserting the MAP solution (37) into the second term of equation (38) as

∫ T

0

L( ˙̂x, x̂)dt = −γ
4

√
κ

μ
T

{
κ

κ∗
+ 2

κσ2

μ

∫ ∞

0

φ(u)e
−γ
√

κ
μ

u
du

}
. (39)

Substituting the Lagrangian (36) into Eq. (28), R is obtained as

R =

∫
exp

[
− 1

2

∫ T

0

(
1

γ2
η̇2 +

κ

μ
η2

)
dt

]
D{η(t)}. (40)

An integration by part leads to∫ T

0

(
1

γ2
η̇2 +

κ

μ
η2

)
dt =

∫ T

0

η

(
− 1

γ2
∂2

t +
κ

μ

)
ηdt, (41)

where we have used the boundary condition η(0) = η(T ) = 0. Let {ϑi(t)} be a com-

plete set of orthogonal eigenfunctions of
( − 1

γ2∂
2
t + κ

μ

)
vanishing at the boundaries,

and {θi} be its eigenvalues. Then, η(t) can be expressed as η(t) =
∑

i aiϑi(t). Ac-

cordingly, the measure D{η(t)} is transformed to D{η(t)} = C
∏

i(2π)−
1
2dai, where

C is a constant chosen so that the integral over this measure corresponds to the Wiener

integral (10), and we find

R = C
∏

i

∫ ∞

−∞

dai√
2π

exp

(
− 1

2
θia

2
i

)

= C
∏

i

θ
− 1

2
i ≡ C det

(
− 1

γ2
∂2

t +
κ

μ

)− 1
2

. (42)

From Eqs. (10) and (42), we also obtain C det
(− 1

γ2∂
2
t

)− 1
2 = 1/

√
2πγ2T . Thus, R is

obtained as

R =
1√

2πγ2T

[
det
(− 1

γ2∂
2
t + κ

μ

)
det
(− 1

γ2∂2
t

)
]− 1

2

=
1√

2πγ2T

[
ϕ1(T )

ϕ2(T )

]− 1
2

. (43)

It has been proved that the determinants can be computed by solving the associated

differential equations (Coleman, 1988; Kleinert, 2009; Gelfand and Yaglom, 1960):(
− 1

γ2
∂2

t +
κ

μ

)
ϕ1(t) = 0, ϕ1(0) = 0,

dϕ1(0)

dt
= 1,

− 1

γ2
∂2

t ϕ2(t) = 0, ϕ2(0) = 0,
dϕ2(0)

dt
= 1. (44)
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These differential equations are solved as ϕ1(t) = 1
γ

√
μ
κ

sinh γ
√

κ
μ
t and ϕ2(t) = t,

from which R is obtained as

R =

(
πγ

√
μ

κ

)− 1
2

exp

(
− γ

2

√
κ

μ
T

)
, (45)

for T � 1.

In order to evaluate the likelihood function of the gamma distribution (20), we need

to evaluate 1
n

∑
i log(ti−ti−1). Let {t(λ)

i −t(λ)
i−1} be a set of ISIs derived from the gamma

distribution with the rate λ, and nλ be the number of the ISIs in this set. Then, we obtain

1

nλ

nλ∑
i=1

log(t
(λ)
i − t

(λ)
i−1) → ψ(κ∗) − log κ∗ − log λ, as nλ → ∞,

where ψ(κ) is the digamma function. On the other hand, nλ/n → λp(λ)dλ/μ as

n → ∞ from the law of large number, where p(λ) is a stationary distribution of λ(t).

Using these, we obtain

lim
n→∞

1

n

n∑
i=1

log(ti − ti−1) =

∫ ∞

0

[ψ(κ∗) − log κ∗ − log λ]
λp(λ)

μ
dλ.

By expanding up to the second-order with respect to σ/μ, the above equation can be

evaluated as

lim
n→∞

1

n

n∑
i=1

log(ti − ti−1) = ψ(κ∗) − log κ∗ − log μ− σ2φ(0)

2μ2
. (46)

Substituting Eq. (46) into Eq. (20), the log-likelihood of the gamma distribution is ob-

tained as

1

T
L = μ

{
log μ− κ+ κ log κ− log Γ(κ) + (κ− 1)

[
ψ(κ∗) − log κ∗ − σ2φ(0)

2μ2

]}
.(47)

Summing the action integral (39), contribution of the quadratic derivation (45) and

the likelihood function (47), we obtain the free energy (31).
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Figure 1: The smallest amplitudes of detectable rate fluctuations and estimation sam-

ples. (A) Sinusoidally modulated processes. (B) OUP modulated processes. (Top):

The ordinate represents the amplitude of the rate fluctuation σ, below which Bayesian

decoders cannot detect fluctuations. The abscissa represents the degree of non-Poisson

irregularity as represented by the shape factor of the gamma ISI distribution; κ > 1, = 1,

and < 1, represent regular, Poisson random, and bursty firing, respectively. Dashed and

solid lines depict the numerical detection limit of the non-Poisson and Poisson Empir-

ical Bayes estimators, respectively. Spike sequences were derived from the inhomoge-

neous gamma interval process either sinusoidally or OUP modulated with the mean rate

μ = 30Hz and the timescale of τ = 1s. Dot-dashed and dotted lines indicate theoretical

bounds obtained from the path integral marginalization integral based on non-Poisson

and Poisson assumptions, respectively. The analytical result for a non-Poisson decoder

is given by σc/
√
κ. (Bottom): Raster plots of sample spike trains and the estimated

rates. The solid lines and the shaded areas represent the underlying rates and the rates

estimated by the Poisson and non-Poisson Bayesian decoders. The parameters (κ, σ) of

(a), (b), (c) and (d) are (0.6,
√

60), (7,
√

60), (0.6,
√

15) and (7,
√

15), respectively.
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Figure 2: Estimation error of the non-Poisson and Poisson Bayesian decoders. (A)

Sinusoidally modulated processes (parameters: μ = 30Hz, τ = 1s, σ = 20Hz). (B)

OUP modulated processes (parameters: μ = 30Hz, τ = 1s, σ = 10Hz). The ordinate

represents integrated squared error (ISE) between the underlying rate and the estimated

rate, and abscissa represents the shape factor of the gamma ISI distribution κ. The mean

and standard deviation of ISEs are obtained from 50 samples computed for an interval

of T = 100s.
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