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Abstract

High-dimensional neural recordings across multiple brain regions can be used to
establish functional connectivity with good spatial and temporal resolution. We
designed and implemented a novel method, Latent Dynamic Factor Analysis of
High-dimensional time series (LDFA-H), which combines (a) a new approach to
estimating the covariance structure among high-dimensional time series (for the
observed variables) and (b) a new extension of probabilistic CCA to dynamic time
series (for the latent variables). Our interest is in the cross-correlations among the
latent variables which, in neural recordings, may capture the flow of information
from one brain region to another. Simulations show that LDFA-H outperforms
existing methods in the sense that it captures target factors even when within-region
correlation due to noise dominates cross-region correlation. We applied our method
to local field potential (LFP) recordings from 192 electrodes in Prefrontal Cortex
(PFC) and visual area V4 during a memory-guided saccade task. The results
capture time-varying lead-lag dependencies between PFC and V4, and display the
associated spatial distribution of the signals.

1 Introduction

New electrode arrays for recording electrical activity generated by large networks of neurons have
created great opportunities, but also great challenges for statistical machine learning (e.g., Steinmetz
et al., 2018). For example, Local Field Potentials (LFPs) are signals that represent the bulk activity in
relatively small volumes of tissue (Buzsáki et al., 2012; Einevoll et al., 2013), and they have been
shown to correlate substantially with the BOLD fMRI brain imaging signal (Logothetis et al., 2001;
Magri et al., 2012). Typical LFP data sets may have dozens to hundreds of time series in each of
two or more brain regions, recorded simultaneously across many experimental trials. A motivating
example in this paper is LFP recordings from a prefrontal cortex (PFC) and visual area V4 during a
visual working memory task. V4 has been reported to retain higher-order information (e.g., color and
shape) and attention in visual processing (Fries et al., 2001; Orban, 2008), while PFC is considered to
exert cognitive control in working memory (Miller and Cohen, 2001). Despite their spatial distance
and functional difference, these regions have been presumed to cooperate during visual working
memory tasks. Various approaches have been used to track the interaction among brain regions
Adhikari et al. (2010); Buesing et al. (2014); Gallagher et al. (2017); Hultman et al. (2018); Jiang
et al. (2015). In particular, delay-specific theta synchrony led by PFC has been discovered during
visual memory tasks (Liebe et al., 2012; Sarnthein et al., 1998).
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Because many functional interactions among brain regions are transient, it is highly desirable to
have methods that accommodate non-stationary behavior in the multivariate time series recorded
in each region. We report here an extension of Gaussian process factor analysis (GPFA, Yu et al.,
2009) to two or more groups of time series, where the main interest is non-stationary cross-group
interaction; furthermore, the multivariate noise within groups can have both spatial covariation and
non-stationary temporal covariation. Here, spatial covariation refers to dependence among the time
series and, in the neural context, this results from the spatial arrangement of the electrodes, each
of which records one of the time series. Our approach uses probabilistic CCA, but the framework
allows rich spatiotemporal dependencies. These generalizations come at a cost: we now have a
high-dimensional time series problem within each brain region together with a high-dimensional
covariance structure. We solve these high-dimensional problems by imposing sparsity of the dominant
effects, building on Bong et al. (2020), which treats the high-dimensional covariance structure in the
context of observational white noise, and by incorporating banded covariance structure as in Bickel
and Levina (2008). We thus call our method Latent Dynamic Factor Analysis of High-dimensional
time series, LDFA-H.

In a simulation study, based on realistic synthetic time series, we verify the recovery of cross-region
structure even when some of our assumptions are violated, and even in the presence of high noise. We
then apply the method to 192 LFP time series recorded simultaneously from both Prefrontal Cortex
(PFC) and visual area V4, during a memory task, and find time-varying cross-region dependencies.

2 Latent Dynamic Factor Analysis of High-dimensional time series

We treat the case of two groups of time series observed, repeatedly, N times. Let X1
:,t ∈ Rp1 and

X2
:,t ∈ Rp2 be p1 and p2 recordings at time t in each of the two groups, for t = 1, . . . , T . As in Yu

et al. (2009), we assume that a q-dimensional latent factor Zk:,t ∈ Rq drives each group, here, each
brain region, according to the linear relationship

Xk
:,t | Zk:,t = µk:,t + βk · Zk:,t + εk:,t, (1)

for brain region k = 1, 2, where µk:,t ∈ Rpk are mean vectors, βk ∈ Rpk×q are matrices of constant
factor loadings, and εk:,t ∈ Rpk are errors centered at zero (independently of the latent vectors Z).
We are interested in the pairwise cross-group dependencies of the latent vectors Z1

f,: and Z2
f,:, for

f = 1, . . . , q. As in (Bong et al., 2020), we assume that the time series of these latent vectors follows
a multivariate normal distribution(

Z1
f,:

Z2
f,:

)
∼ MVN(0,Σf ), f = 1, . . . , q, (2)

where Σf describes all of their simultaneous and lagged dependencies, both within and between
the two vectors. We assume the N sets of random vectors (ε, Z) are independent and identically
distributed. Fig. 1a illustrates the dependence structure of this model. We let Pf be the correlation
matrix corresponding to Σf , and write its inverse as

Πf = P−1
f =

(
Π11
f Π12

f

Π12>
f Π22

f

)
(3)

where Π11
f and Π22

f are the scaled auto-precision matrices and Π12
f is the scaled cross-precision

matrix. We now assume finite-range partial auto-correlation and cross-correlation for (Z1
f,t, Z

2
f,t),

so that Π11
f , Π22

f and Π12
f in Equation (3) have a banded structure. Specifically, for k, l = 1, 2, we

assume there is a value hklf such that Πkl
f is a (2hklf + 1)-diagonal matrix. Because our goal is to

address the cross-region connectivity and lead-lag relationship, we are particularly interested in
the estimation of Π12

f for each latent factor f = 1, . . . , q. Note that the non-zero elements Π12
f,(t,s),

depicted as the red star in the expanded display within Fig. 1b, determine associations between the
latent pair Z1

f,: and Z2
f,:, which are simultaneous when t = s and lagged when t 6= s.

Finally, we model the noise in Eq. (1) as a Gaussian random vector

Vec(εk) = (εk:,1; εk:,2; . . . ; εk:,T ) ∼ MVN(0,Φk), k = 1, 2, (4)
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(a)

(b)

Figure 1: LDFA-H model. (a) Dynamic associations between vectors X1
:,t and X2

:,s are summarized
by the dynamic associations between their associated 1D latent variables Z1

:,t and Z2
:,s. (b) When

a significant cross-precision entry is identified, e.g., the red star in the expanded view of Π12
f , its

coordinates and distance from the diagonal indicate at what time in the experiment connectivity
between two brain areas occurs, and at what lead or lag. Here the red star is in the upper diagonal
of Π12

f , which means that, at this particular time, region 1 leads region 2, or Z1
f → Z2

f in short (a
non-zero entry in the lower diagonal would mean Z2

f → Z1
f ). We represent this association by the

red arrow on the right-most plot, with a lag of two units of time for illustration.

where we allow Φk to have non-zero off-diagonal elements to account for within-group spatiotemporal
dependence. We assume Φk can be written in Kronecker product form

Φk = ΦkT ⊗ ΦkS , k = 1, 2, (5)

where ΦkT and ΦkS are the temporal and spatial components of Φk, as is often assumed for spa-
tiotemporal matrix-normal distributions, e.g., (Dawid, 1981). Although this is a strong assumption,
implying, for instance, that the auto-correlation of every Xk

i,: is proportional to ΦkT , we regard Φk as
a nuisance parameter: our primary interest is Σf in Eq. (2). We also assume an auto-regressive order
at most hkε , so that ΓkT =

(
ΦkT
)−1

is a (2hkε + 1)-diagonal matrix. In our simulation we show that
we can recover Σf accurately even when the Kronecker product and bandedness assumptions fail to
hold.

The model in Equations (1)-(5) generalizes other known models. First, when q = 1, and Z1 = Z2

remains constant over time, in the noiseless case (εk = 0), it reduces to the probabilistic CCA model
of Bach and Jordan (2005); see Theorem 2.2 of Bong et al. (2020) Thus, model (1)-(5) can be viewed
as a denoising, multi-level and dynamic version of probabilistic CCA. Second, when k = 1, the
Gaussian processes are stationary, and the ε vectors are white noise, (1)-(5) reduces to GPFA (Yu et al.,
2009). Thus, (1)-(5) is a two-group, nonstationary extension of GPFA that allows for within-group
spatio-temporal dependence.

Identifiability and sparsity constraints Despite the structure imposed on Φk in Eq. (5), parameter
identifiability issues remain. Our model in Eqs. (1), (2) and (4) induces the marginal distribution of
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the observed data (X1, X2):(
X1

:,1;X1
:,2; . . . ;X2

:,T

)
∼ N

(
(µ1

:,1;µ1
:,2; . . . ;µ2

:,T ), S
)

(6)

where S is the marginal covariance matrix given by:

S =

[
Φ1
T ⊗ Φ1

S 0
0 Φ2

T ⊗ Φ2
S

]
+

q∑
f=1

[
Σ11
f ⊗ (β1

fβ
1>
f ) Σ12

f ⊗ (β1
fβ

2>
f )

Σ12>
f ⊗ (β2

fβ
1>
f ) Σ22

f ⊗ (β2
fβ

2>
f )

]
. (7)

The family of parameters

θ{α
1,α2} =


Σ
{α1

1,α
2
1}

1 , . . . ,Σ
{α1

q,α
2
q}

q , Φ1
S −

q∑
f=1

α1
fβ

1
fβ

1>
f , Φ2

S −
q∑

f=1

α2
fβ

2
fβ

2>
f ,

Φ1
T , Φ2

T , β
1, β2, µ1, µ2

 , (8)

where Σ
{α1

f ,α
2
f}

f =

{
Σf +

[
α1
fΦ1
T 0

0 α2
fΦ2
T

]}
, induce the same marginal distribution in Eq. (6),

for all α1, α2 ∈ Rq (notice that θ = θ{0,0} = {Σ1, . . . ,Σq, Φ1
S , Φ2

S , Φ1
T , Φ2

T , β
1, β2, µ1, µ2}

is the original parameter). Preliminary analysis of LFP data indicated that strong cross-region
dependence occurs relatively rarely. We therefore resolve this lack of identifiability by choosing the
solution given by maximizing the likelihood with an L1 penalty, under the assumption that the inverse
cross-correlation matrix Π12

f is a sparse (2h12
f + 1)-diagonal matrix.

Latent Dynamic Factor Analysis of High-dimensional time series (LDFA-H) Given N simul-
taneously recorded pairs of neural time series {X1[n], X2[n]}n=1,...,N , the maximum penalized
likelihood estimator (MPLE) of the inverse correlation matrix of the latent variables solves(

Π̂1, . . . , Π̂q

)
= argmin − 1

N

N∑
n=1

l
(
θ;X1[n], X2[n]

)
+

q∑
f=1

2∑
k,l=1

∥∥Λklf �Πkl
f

∥∥
1

s.t. ΓkT is (2hkε + 1)-diagonal,

(9)

where the log-likelihood is

l
(
θ;X1, X2

)
= − log detS − (X1

:,1 − µ1
:,1; . . . ;X2

:,T − µ2
:,T )>S−1(X1

:,1 − µ1
:,1; . . . ;X2

:,T − µ2
:,T ),
(10)

with S defined in Eq. (7), and the constraints are

Λklf,(t,s) =


∞, (t, s) : |t− s| > hklf ,

λf , (t, s) : 0 < |t− s| ≤ hklf , k 6= l,

0, otherwise.
(11)

for factor f = 1, . . . , q and brain region k = 1, 2. The first constraint forces the corresponding
Πkl
f,(t,s) to zero and thus imposes a banded structure for Πkl

f , and the second assigns the same sparsity
constraint λf on the off-diagonal elements of Π12

f . Finally, to make calibration of tuning parameters
computationally feasible, we set the bandwidth for the latent precisions and the noise precisions
within each region to a single value hauto, we set the bandwidth for the latent precisions across regions
to a value hcross, and we set the sparsity parameters to a value λcross, i.e.,

hkkf = hkε = hauto, h
12
f = hcross and λf = λcross,

for each factor f = 1, . . . , q and region k = 1, 2. The bandwidths are chosen using domain
knowledge and preliminary data analyses. We determine the remaining parameters λcross and q by
5-fold cross-validation (CV).

Solving Eq. (9) requires S−1. Because it is not available analytically and a numerical approximation
is computationally prohibitive, we solve Eq. (9) using an EM algorithm (Dempster et al., 1977). Let
θ(r) be the parameter estimate at the r-th iteration. We consider the data {X1[n], X2[n]}n=1,...,N

to be incomplete observations of {X1[n], Z1[n], X2[n], Z2[n]}n=1,...,N . In the E-step, we estimate
the conditional mean and covariance matrix of each {Z1[n], Z2[n]} with respect to {X1[n], X2[n]}
and θ(r). Given these sufficient statistics, the problem of computing the MPLE decomposes into two
separate minimizations of
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1. the negative log-likelihood of Σf , w.r.t. the latent factor model (Eq. (2)) and

2. the negative log-likelihood of Φ1
S , Φ2

S , Φ1
T , Φ2

T , β
1, β2, µ1, µ2 w.r.t. the observation

model (Eqs. (1) and (4)).

With the noise correlation and latent factor correlation disentangled, the M-step reduces to easy
sub-problems. For example, the minimization with respect to Σf is a graphical Lasso problem
(Friedman et al., 2007) and the minimization with respect to ΦkS and ΦkT is a maximum likelihood
estimation of a matrix-variate distribution (Dawid, 1981). We thus obtain an affordable M-step, and
alternating E and M-steps produces a solution to the MPLE problem.

We derive the full formulations in Appendix A. Its computational cost is inexpensive: a single iteration
of E and M-steps on our cluster server (with 11 Intel(R) Xeon(R) CPU 2.90GHz processors) took in
average less than 45 seconds, applied to the experimental data in Section 3.2. A single fit on the same
data took 42 iterations for around 30 minutes until P and {β1, β2} converged under threshold 1e-3
and 1e-5, respectively. The code is provided at https://github.com/HeejongBong/ldfa.

3 Results

One major novelty of our method is its accounting for auto-correlated noise in neural time series to
better estimate cross-region associations in CCA type analysis. This is illustrated in Section 3.1 based
on simulated data. In Section 3.2, we apply LDFA-H to experimental data to examine the lead-lag
relationships across two brain areas and the spatial distribution of factor loadings.

3.1 LDFA-H retrieves cross-correlations even when noise auto-correlations dominate

We simulated N = 1000 i.i.d. neural time series Xk of duration T = 50 from Eq. (1) for brain
regions k = 1, 2. The latent time series Zk were generated from Eq. (2) with q = 1 pair of factors
and correlation matrix P1 depicted in Fig. 2a. The noise εk was taken to be the N = 1000 trials of the
experimental data analyzed in Section 3.2, first permuted to remove cross-region correlations, then
contaminated with white noise to modulate the strength of noise correlation relative to cross-region
correlations. The resulting temporal noise correlation matrices, found by averaging correlations over
all pairs of simulated time series, are shown in Fig. 2b, for four levels of white noise contamination.
The magnitudes of cross-region correlation and within-region noise auto-correlation are quantified by
the determinant of each matrix, known as the generalized variance (Wilks, 1932); their logarithms
are provided atop the panels in Fig. 2a and Fig. 2b. Generalized variance ranges from 0 (identical
signals) to 1 (independent signals). Thus, larger negative values indicate stronger within-region noise
correlation (see B). Other simulation details are in B.

We note that the simulation does not satisfy some of the model assumptions in Section 2. The noise
vectors εk are not matrix-variate distributed as in Eqs. (4) and (5) and the derived ΓkT does not satisfy
a banded structure as in Eq. (9). Also, the latent partial auto-correlations (Fig. 2) are not banded as
assumed in Eq. (9).

We applied LDFA-H with q = 1 factor, hcross = 10, hauto equal to the maximum order of the auto-
correlations in the 2000 observed simulated time series, and λcross determined by 5-fold CV. Fig. 3
shows LDFA-H cross-precision matrix estimates corresponding to the four level of noise correlation
shown in Fig. 2b. They closely match the true Π12

1 shown in the right most panel of Fig. 2a.

We also applied five other methods to estimate cross-region connections in the simulated data. They
include the popular averaged pairwise correlation (APC); correlation of averaged signals (CAS);
and CCA (Hotelling, 1936), applied to the NT observed pairs of multivariate random vectors
{X1

:,t, X
2
:,t}n,t∈[N ]×[T ] to estimate the cross-correlation matrix between the canonical variables; as

well as DKCCA (Rodu et al., 2018) and LaDynS (Bong et al. (2020)). The first four methods do
not explicitly provide cross-precision matrix estimates, so we display their cross-correlation matrix
estimates in Fig. 4, along with LDFA-H cross-correlation estimates in the last row. It is clear that
only LDFA-H successfully recovered the true cross-correlations shown in the second panel of Fig. 2a,
at all auto-correlated noise levels.
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(a)

(b)

Figure 2: Simulation settings. (a) (Left to right panels) True correlation matrix P1 for latent factors
Z1

1,: and Z2
1,: from model in Eq. (2); close-up of the cross-correlation matrix; corresponding precision

matrix Π1 = P−1
1 ; and close-up of cross-precision matrix Π12

1 (Eq. (3)). Matrix axes represent
the duration, T = 50 ms, of the time series. Factors Z1 and Z2 are associated in two epochs: Z2

precedes Z1 by 7ms from t = 13 to 19ms, and Z1 precedes Z2 by 7ms from t = 33 to 42ms. (b)
Noise auto-correlation matrices (Eq. (5)) for pairs of simulated time series at four strength levels.
log det in (a) and (b) measure correlation strengths.

Figure 3: Simulation results: LDFA-H cross-precision matrix estimates. Estimates of Π12
1 ,

shown in the right-most panel of Fig. 2a, using LDFA-H, for the four noise auto-correlation strengths
shown in Fig. 2b. LDFA-H identified the true cross-area connections at all noise strengths.

3.2 Experimental Data Analysis from Memory-Guided Saccade Task

We now report the analysis of LFP data in areas PFC and V4 of a monkey during a saccade task,
provided by Khanna et al. (2020). One trial of the experiment consisted of four stages: (i) fixation:
the animal fixated at the center of the screen; (ii) cue: a cue appeared on the screen randomly at one
of eight locations; (iii) delay: the animal had to remember the cue location while maintaining eye
fixation; (iv) choice: the monkey made a saccade to the remembered cue location. We focused our
analysis on the 500 ms delay period, when the animal both processed cue information and prepared a
saccade. LFP data were recorded for N = 1000 trials by two 96-electrode Utah arrays implanted in
PFC and V4, β band-passed filtered, down-sampled from 1 kHz to 100 Hz.

We applied LDFA-H using hauto = hcross = 10, corresponding to 100 ms (at 100 Hz); the LFP
β-power envelopes have frequencies between 12.5Hz to 30Hz, and hauto = 10 enables the slowest
filtered signal to complete one full oscillation period. The other tuning parameters were determined by
5-fold CV over λcross ∈ {0.0002, 0.002, 0.02, 0.2} and q ∈ {5, 10, 15, 20, 25, 30}, yielding optimal
values λcross = 0.02 and q = 10. We also regularize the diagonal elements, due to the otherwise
excessively smooth β-power envelopes (see our code or Bong et al. (2020) for details). The fitted
factors were ranked based on the Frobenius norms of their covariance matrices ‖Σf‖2F ; norms
are plotted versus f in decreasing order in Fig. C.1, and log10 ‖Σf‖2F of the top three factors are
provided above each panel in Fig. 5a. The estimated cross-precison matrices between two brain
regions corresponding to the top three factors are shown in Fig. 5a. Note that a positive entry in
the precision matrix represents negative association between two regions. We also summarized, for
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: Simulation results: cross-correlation matrix estimates. Estimates of Σ12
1 under four

noise correlation levels using (a) averaged pairwise correlation (APC), (b) correlation of averaged
signal (CAS), (c) canonical correlation analysis (CCA, Hotelling (1936)), (d) dynamic kernel CCA
(DKCCA, Rodu et al. (2018)), (e) LaDynS (Bong et al. (2020)), and (f) LDFA-H. Only LDFA-H
successfully recovered the true cross-correlation at all noise auto-correlation strengths.

each factor f , the temporal information flow at time t from V4 to PFC and to V4 from PFC with
If,PFC→V 4(t) =

∑
t′>t

∣∣∣Π̂12
f,(t,t′)

∣∣∣ and If,V 4→PFC(t) = −
∑
t′<t

∣∣∣Π̂12
f,(t,t′)

∣∣∣, respectively, where

Π̂f is the inverse correlation matrix estimate in Eq. (9). Fig. 5d displays smoothed If,PFC→V 4(t)
and If,V 4→PFC(t) as functions of t for the top three factors. Lead-lag relationships between V4 and
PFC change dynamically over time, and the information flow tends to peak either early in the delay
period, when the animal must remember the cue, or later, when it must make a saccade decision.
The dominant first factor captures a flow from V4 to PFC centered around 200 milliseconds into the
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(a)

(b)

(c)

(d)

Figure 5: Experimental data results for the top 3 factors. (a) Cross-precision matrices. Blue
represents positive precision matrix entries, corresponding to negative association. Factors have
different connectivity patterns over the experimental trials. log10 ‖Σf‖2F , written atop the panels,
measures the strength of each factor. The first factor is more than 6 times larger than the second and
third, and displays activity in V4 leading PFC centered around 200 milliseconds and activity in PFC
leading V4 centered around 320 milliseconds post cue disappearance. This is also shown in panel (d).
(b,c) Factor loadings, smoothed and color coded, plotted on the electrode coordinates (µm). Here,
positivity is arbitrary, due to identifiability. Panels (b) and (c) display loadings for the V4 and PFC
arrays, respectively. The first factor has activity in V4 centered in two distinct subregions of the array,
while activity in PFC is more broadly distributed. (d) Dynamic information flow in the directions
V 4→ PFC (blue) and PFC → V 4 (orange).
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task and a flow from PFC to V4 centered around 320 milliseconds. Factor loadings (subsampled
over space) for the 96 V4 and PFC electrodes are shown in Fig. 5b and Fig. 5c, respectively, for the
top three factors (first three columns of the estimate of βk in Eq. (9), with area k = 1 being V4 and
k = 2 being PFC), arranged spatially according to electrode positions on the Utah array. The factors
have different spatial modes over the physical space of the Utah array. Confirmation of these patterns
would require additional data and analyses.

4 Conclusion

To identify dynamic interactions across brain regions we have developed LDFA-H, a nonstationary,
multi-group extension of GPFA that allows for within-group spatio-temporal dependence among
high-dimensional neural recordings. We applied the method to data during a memory task and found
interesting, intuitive results. Although we treated the two-group case, and applied it to interactions
across two brain regions, several groups can be handled with straightforward modifications. The
approach could, in principle, be applied to many different types of time series, but it has some special
features: first, like all methods based on sparsity, it assumes a small number of large effects are of
primary interest; second, it uses repetitions, here, repeated trials, to identify time-varying dependence;
third, because the within-group spatio-temporal structure is not of interest, the method can remain
useful even with some modest within-group model misspecification.

Several restrictive assumptions of LDFA-H, as defined, were helpful here but could be modified for
other applications. One is the Kronecker-product form of the noise process. In our simulation study,
using a realistic scenario, we showed that LDFA-H can be effective even when the Kronecker-product
assumption is violated, but in other cases it may be problematic. In some problems, space and/or time
can be decomposed into windows within which the assumption is more reasonable (see Leng and
Tang, 2012; Zhou, 2014). Another potentially bothersome assumption is independence between latent
factors. It would be possible to include covariance matrix parameters between the factors, but then
the model will get computationally prohibitive even with a moderate factor size. State-space models
(Buesing et al., 2014; Linderman et al., 2019; Yang et al., 2016) have potential but, to be comparable
to LDFA-H, they would have to accommodate nonstationary lead-lag behavior. Computationally
efficient methods for identifying time-varying relationships is a vital goal in the analysis of neural
data from multiple brain regions.

We applied LDFA-H to LFP data. In contrast, GPFA has been applied mainly to neural spike count
data, and it is of course possible to apply LDFA-H to spike counts, as well. However, we have been
struck by the strong attenuation of effects due to Poisson-like noise, as discussed in Vinci et al. (2018)
and references therein. A version of LDFA-H built for Poisson-like counts, or for point processes,
could be the subject of additional research. It may also be advantageous to model spatial dependence
explicitly, perhaps based on physical distance between electrodes, analogously to what was done in
Vinci et al. (2018), and there may be, in addition, important simplifications available in the temporal
structure. It would also be helpful to have additional statistical inference procedures for assessing
effects. In the future, we hope to pursue these possible directions, and refine the application of this
promising approach to the analysis of high-dimensional neural data.

Broader Impact

While progress in understanding the brain is improving life through research, especially in mental
health and addiction, in no case is any brain disorder well understood mechanistically. Faced with
the reality that each promising discovery inevitably reveals new subtleties, one reasonable goal
is to be able to change behavior in desirable ways by modifying specific brain circuits and, in
animals, technologies exist for circuit disruptions that are precise in both space and time. However,
to determine the best location and time for such disruptions to occur, with minimal off-target effects,
will require far greater knowledge of circuits than currently exists: we need good characterizations
of interactions among brain regions, including their timing relative to behavior. The over-arching
aim of our research is to provide methods for describing the flow of information, based on evolving
neural activity, among multiple regions of the brain during behavioral tasks. Such methods can lead
to major advances in experimental design and, ultimately, to far better treatments than currently exist.
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A EM-algorithm to fit LDFA-H (Section 2)

Initialization Let θ̂(0) = {Σ̂(0)
1 , . . . , Σ̂

(0)
q , Φ̂

1,(0)
S , Φ̂

2,(0)
S , Φ̂

1,(0)
T , Φ̂

2,(0)
T , β̂1,(0), β̂2,(0), µ̂1,(0), µ̂2,(0)}

be the initial parameter value. Since the MPLE objective function for LDFA-H given in Eq. (9) is
not guaranteed convex, an EM-algorithm may find a local minimum according to a choice of the
initial value. Hence a good initialization is crucial to a successful estimation. Here we suggest an
initialization by a canonical correlation analysis (CCA).

Let {X1[n], X2[n]}n=1,...,N be N simultaneously recorded pairs of neural time series. We can view
them as NT recorded pairs of multivariate random vectors {X1

:,t[n], X2
:,t[n]}(n,t)∈[N ]×[T ]. We obtain

β̂
1,(0)
1 and β̂2,(0)

1 by CCA as follows:

β̂
1,(0)
1 , β̂

2,(0)
1 = argmax

β1
1∈Rp1 ,β2

1∈Rp2

β1>
1 S12β2

1√
β1>

1 S11β1
1

√
β2>

1 S22β2
1

(A.1)

where

S11 =
1

NT

∑
n,t

(X1
:,t[n]− 1

NT

∑
n,t

X1
:,t[n])(X1

:,t[n]− 1

NT

∑
n,t

X1
:,t[n])>

S22 =
1

NT

∑
n,t

(X2
:,t[n]− 1

NT

∑
n,t

X2
:,t[n])(X2

:,t[n]− 1

NT

∑
n,t

X2
:,t[n])>

S12 =
1

NT

∑
n,t

(X1
:,t[n]− 1

NT

∑
n,t

X1
:,t[n])(X2

:,t[n]− 1

NT

∑
n,t

X2
:,t[n])>.

(A.2)

According to the equivalence between CCA and probablistic CCA shown by A. Anonymous, it gives
an estimate of the first latent factors

Ẑ
k,(0)
1,: [n] = β̂

k,(0)
1 Xk[n] (A.3)

for n = 1, . . . , N and k = 1, 2. The initial second latent factors Ẑk,(0)
2 and the corresponding

factor loading β̂k,(0)
2 is similarly set by the second pair of canonical variables, and so on. Then we

assign the empirical covariance matrix of {Ẑ1,(0)
f [n], Ẑ

2,(0)
f [n]}n∈[N ] to the initial latent covariance

matrix Σ̂
(0)
f for f = 1, . . . , q and the matrix-variate normal estimate (Zhou, 2014) on {ε̂k,(0)[n] :=

Xk[n]− β̂k,(0)Ẑk,(0)[n]}n∈[N ] to Φ̂
k,(0)
T and Φ̂

k,(0)
S for k = 1, 2. Along µ̂k,(0) := 1

N

∑N
n=1X

k[n],
the above parameters comprises the initial parameter set θ̂(0).

However, we cannot run an E-step on the above parameter set because Φ̂k,(0) is not invertible. We
instead pick one of its unidentifiable parameter sets θ̂(0),{α1,α2}, defined in Eq. (8), with all Φ̂k,(0)’s
and Σ̂

(0)
f ’s invertible. Specifically, we take

αkf =
1

2
λmin

(
Σ

1/2
f

[
Φ1
T 0
0 Φ2

T

]−1

Σ
1/2
f

)
(A.4)

for f = 1, . . . , q and k = 1, 2 where λmin(A) is the smallest eigenvalue of symmetric matrix A.
Henceforth, we notate θ̂(0),{α1,α2} by θ̂(0). For t = 1, 2, . . . , we iterate the following E-step and
M-step until convergence.

Another promising initialization is by finding time (t, s) on which the canonical correlation between
X1

:,t and X2
:,s maximizes. i.e., we initialize β̂1,(0)

1 and β̂2,(0)
1 by

β̂
1,(0)
1 , β̂

2,(0)
1 = argmax

β1
1∈Rp1 ,β2

1∈Rp2

β1>
1 S12

(t,s)β
2
1√

β1>
1 S11

(t,t)β
1
1

√
β2>

1 S22
(s,s)β

2
1

such that |t− s| < hcross. (A.5)
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where

S11
(t,t) =

1

N

∑
n,t

(X1
:,t[n]− 1

N

∑
n

X1
:,t[n])(X1

:,t[n]− 1

N

∑
n

X1
:,t[n])>

S22
(s,s) =

1

N

∑
n,s

(X2
:,s[n]− 1

N

∑
n

X2
:,t[n])(X2

:,s[n]− 1

N

∑
n

X2
:,s[n])>

S12
(t,s) =

1

N

∑
n,t

(X1
:,t[n]− 1

N

∑
n

X1
:,t[n])(X2

:,s[n]− 1

N

∑
n

X2
:,s[n])>.

(A.6)

for (t, s) ∈ [T ] × [T ]. Then the other parameters are initialized as above. We can even take an
ensemble approach in which we fit LDFA-H on different initialized values and pick the estimate with
the minimum cost function (Eq. (9)).

Now, for r = 1, 2, . . . , we alternate an E-step and an M-step until the target parameter Πf conver-
gences.

E-step Given θ̂ := θ̂(r−1) from the previous iteration, the conditional distribution of latent factors
Z1[n] and Z2[n] with respect to observed data X1[n] and X2[n] on trial n = 1, . . . , N follows(

Z1
1,:[n];Z2

1,:[n]; . . . ;Z2
q,:[n]

)
| X1[n], X2[n] ∼ MVN

(
m

(r)
~Z|X

[n], V
(r)
~Z|X

)
, (A.7)

where

V
(r)
~Z|X

=


V

(r)
Z1,Z1|X . . . V

(r)
Z1,Zq|X

...
. . .

...
V

(r)
Zq,Z1|X . . . V

(r)
Zq,Zq|X

 =


W

(r)
Z1,Z1|X . . . W

(r)
Z1,Zq|X

...
. . .

...
W

(r)
Zq,Z1|X . . . W

(r)
Zq,Zq|X


−1

(A.8)

and

m
(r)
~Z|X

[n] =
(
m

(r)

Z1
1 |X

;m
(r)

Z1
2 |X

; . . . ;m
(r)
Z2

q |X

)
= V

(r)
~Z|X

(
β̂1>

1 Γ̂1
SX

1[n]Γ̂1
T ; β̂2>

1 Γ̂2
SX

2[n]Γ̂2
T ; . . . ; β̂2>

q Γ̂2
SX

2[n]Γ̂2
T

) (A.9)

given

W
(r)
Zf ,Zg|X =

(
(β̂1>
f Γ̂1

S β̂
1
g) Γ̂1

T 0

0 (β̂2>
f Γ̂2

S β̂
2
g) Γ̂2

T

)
+ I{f=g} Ω̂f , I{f=g} =

{
1, f = g

0, o.w.
(A.10)

for f, g = 1, . . . , q.

M-step We find θ̂(r) which maximize the conditional expectation of the penalized likelihood under
the same constraints in Eq. (9), i.e.

θ̂(r) = argmin
1

N

N∑
n=1

EZ[n]|X[n],θ̂(r−1)

[
log p(X1[n], X2[n], Z1[n], Z2[n]; θ̂(r−1))

]
+

q∑
f=1

2∑
k,l=1

∥∥Λklf �Πkl
f

∥∥
1

s.t. Γ̂kT is (2hkε + 1)-diagonal

(A.11)

where p is the probability density function of our model in Eqs. (1), (4) and (5) and the expectation
EZ[n]|X[n],θ̂(r−1) follows the conditional distribution in Eq. (A.7). Taking a block coordinate descent
approach, we solve the optimization problem by alternating M1 - M4.

M1: With respect to latent precision matrices Ωf , Eq. (A.11) reduces to a graphical Lasso problem,

Ω̂
(r)
f = argmin

Ωf

− log det(Ωf ) + tr
(

Ωf

(
V

(r)
Zf |X + Ê[m

(r)
Zf |Xm

(r)>
Zf |X ]

))
+

2∑
k,l=1

∥∥Λklf �Πkl
f

∥∥
1


(A.12)
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for each f = 1, . . . , q where Ê[m
(r)
Zf |Xm

(r)>
Zf |X ] = 1

N

∑N
n=1m

(r)
Zf |X [n] m

(r)>
Zf |X [n]. The graphical

Lasso problem is solved by the P-GLASSO algorithm by Mazumder et al. (2010).

M2: With respect to Γk, Eq. (A.11) reduces to an estimation of matrix-variate normal model (Zhou,
2014). The estimation problem can be formulated as

Γ̂
k(r)
S =

1

T

Ê
[
m

(r)

εk|Xm
(r)>
εk|X

]
+

q∑
f,g=1

tr(V
(r)

Zk
f ,Z

k
g |X

)βkfβ
k>
g

 (A.13)

and

Γ̂
k(r)
T = argmin

Γk
T


− log det(ΓkT )

+
1

pk
tr
(

ΓkT

( q∑
f,g=1

(βk>f ΓkSβ
k
g ) V

(r)

Zk
f ,Z

k
g |X

+ Ê
[
m

(r)>
εk|XΓkSm

(r)

εk|X

]))


s.t. Γ̂kT is (2hkε + 1)-diagonal

(A.14)

for each k = 1, 2 where m(r)

εk|X = Xk −βkm(r)

Zk|X −µ
k and Ê[A] is the empirical mean of a random

matrix A. The estimation of ΓkT under the bandedness constraint is tractable with modified Cholesky
factor decomposition approach with bandwidth hkε using the procedure by Bickel and Levina (2008).

M3: With respect to βk, Eq. (A.11) reduces to a quadratic program

β̂k(r) = arg maxβk


∑
t,s

ΓkT ,(t,s) tr
(
βk>ΓkSβk (V

(r)

Zk
:,t,Z

k
:,s|X

+ Ĉov[m
(r)

Zk
:,t|X

,m
(r)

Zk
:,s|X

])
)

− 2
∑
t,s

ΓkT ,(t,s) tr
(

ΓkSβ
kĈov[Xk

:,t,m
(r)

Zk
:,s|X

]
)


(A.15)

where ΓkT,(t,s) is the (t, s) entry in ΓkT and Ĉov(A,B) is the empirical covariance matrix between
random vectors A and B. The analytic form of the solution is given by

βk =

(∑
t,s

ΓkT ,(t,s)(V
(r)

Zk
:,t,Z

k
:,s|X

+ Ĉov[m
(r)

Zk
:,t|X

,m
(r)

Zk
:,s|X

])

)−1(∑
t,s

ΓkT ,(t,s)Ĉov[m
(r)

Zk
:,s|X

, Xk
:,t]

)
(A.16)

M4: With resepct to µk, it is straight-forward that Eq. (A.11) yields

µ̂k(r) = Ê

Xk −
q∑

f=1

βkfm
(r)>
Zk

f |X

 .
B Simulation details (Section 3)

We simulated realistic data with known cross-region connectivity as follows. Simulating q = 1
pair of latent time-series Zk from Equation (2), we introduced an exact ground-truth for the inverse
cross-correlation matrix Π12

1 by setting:

Π1 =

[
(P11

1,0)−1 0
0 (P22

1,0)−1

]
+

[
D1 Π12

1

Π12>
1 D2

]
(B.1)

where D1 and D2 are diagonal matrices with elements D1
(t,t) =

∑
s Π12

1,(t,s) and D2
(s,s) =∑

t Π12
1,(t,s), which ensures that the matrix on the right hand side is positive definite. The ma-

trix on the left hand side contains the auto-precision matrices of the two latent time series, with
elements simulated from the squared exponential function:

Pkk1,0 =
[
exp

(
−ck(t− s)2

)]
t,s

+ λIT , (B.2)

with c1 = 0.105 and c2 = 0.142, chosen to match the observed LFPs auto-correlations in the
experimental dataset (Section 3.2). We added the regularizer λIT , λ = 1, to render Pkk invertible.
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Figure C.1: Squared Frobenius norms of covariance matrix estimates, Σ̂f , for all factors f =
1, . . . , 10. Notice that the amplitudes of the top four factors dominate the others.

We designed the true inverse cross-correlation matrix Π12 to induce lead-lag relationship between Z1

and Z2 in two epochs as depicted in the right-most panel of Fig. 2a. Specifically, the elements of Π12

were set:

Π12
(t,s) =

{
−r, where Z1

1,t and Z2
1,s partially correlate,

0, elsewhere,
(B.3)

where the association intensity r = 0.6 was chosen to match our cross-correlation estimate in the
experimental data (Section 3.2). Finally, we rescaled P1 = Π−1

1 to have diagonal elements equal to
one. The corresponding factor loading vector βk1 was randomly generated from standard multivariate
normal distribution and then scaled to have ‖βk1‖2 = 1.

We generated the noise εk from the N = 1000 trials of the experimental data analyzed in Sec-
tion 3.2. First, we permuted the trials in one region to remove cross-region correlations. Let
{Y 1[n], Y 2[n]}n=1,...,N be the permuted dataset. Then we contaminated the dataset with white noise
to modulate the strength of noise correlation relative to cross-region correlations. i.e.

εk:,t = Y k:,t − µk:,t + ηk:,t, η
k
:,t

indep∼ MVN
(

0, λεĈov[Y k:,t]
)
, and µk:,t = Ê[Y k:,t] (B.4)

where Ê[Y k:,t] and Ĉov[Y k:,t] wer the empirical mean and covariance matrix of Y k:,t, respectively, for k =
1, 2, t = 1, . . . , T . The noise auto-correlation level was modulated by λε ∈ {2.78, 1.78, 0.44, 0.11}.
We also obtained Σ1 by scaling P1 so that Σkk1,(t,s) = βk>1 Skt β

k
1 . Putting all the pieces together, we

generated observed time series by Eq. (1).

C Experimental data analysis details (Section 3.2)

The strength of each factor, which is characterized by Σf , is shown in Fig. C.1.

We also examined an alternative definition of information flow, using non-stationary regresssion in
the spirit of Granger causality. For the latent factor f in V4 at time t, we use partial R2, effectively
comparing the full regression model using the full history of latent variables in both area,

Z1
f,t ∼ Z1

f,1:t−1 + Z2
f,1:t−1

with the reduced model using history of latent variables in V4 only,

Z1
f,t ∼ Z1

f,1:t−1.

The partial R2 for Z1
f,t on Z2

f,1:t−1 given Z1
f,1:t−1 summarizes the contribution of PFC history to V4,

after taking account of the autocorrelation in V4, and thus can be viewed as information flow from
V4 to PFC at time t. Dynamic information flow from V4 to PFC is defined similarly. The results
shown in Fig. C.2 are consistent with those in Fig. 5d.
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Figure C.2: Information flow by partialR2 for the top three factors. In this figure, we characterize
dynamic information flow in terms of partial R2. We show dynamic information flow from V 4→
PFC (blue) and PFC → V 4 (orange). The results in the first panel are consistent with those in the
first panel of Fig. 5d.
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