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This tutorial describes the implementation of torus graphs and gives detail on
how to use the code. The code is implemented in Matlab.

You can use start here results fig8 S8.m to follow Sections 1-7 of this tutorial
and obtain the results for Fig. 8 in the main text and Fig. S8 in the supplement.

The rest of the code is organized as follows:

• results fig4 figS10.m

Realistic simulated data sets based on positive rotational dependence, dimen-
sions 3 and 5.
• results fig5 figS4.m

Investigation of the ability of torus graphs to recover the true structure as a
function of true edge density, sample size, and data dimension.
• results fig7 figS7.m

Torus graphs and PLV graphs to infer low-dimensional networks of interest in
real LFP data.
• results fig9.m

Comparison between phase angles from three LFPs located in PFC and the
theoretical torus graph distribution.
• results figS11.m

Investigation of False Positive Rate (FPR) and False Negative Rate (FNR) for
graphs of varying dimensions as sample size increases.
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Fig T1. (A) Input to obtain a TG: data matrix of angle observations over repeated trials. (B)
Example TG; this is a conditional independence graph, meaning there are no edges between pairs of
nodes that are conditionally independent given the other nodes in the network.

T1. Torus Graph (TG) model, basic usage. Let X ∈ [−π, π)d×1 be a d-
dimensional circular random vector with d ≥ 21. The word “circular” in this context
refers to angles, thus we consider j = 1, .., d simultaneous angle measurements. We
are interested in phase coupling at a fixed frequency and time point over measure-
ments of the same experimental condition (repeated trials). The input to obtain a
TG is the data matrix of angle observations: x = {x(1),x(2), ...,x(N)} (Figure T1).

The function TG=torus graphs(x) fits a TG model using the observed
data x in the same format as in Figure T1. The output TG is a bi-
nary “graph with undirected edges” object, see https://www.mathworks.

com/help/matlab/ref/graph.html.

T2. Edgewise statistical testing. To obtain the binary undirected graph, we
perform edgewise statistical tests. Briefly, for a pair of nodes, the null hypothesis is
that of conditional independence given the other nodes in the network (no edge).
For each edge we obtain a p-value using the results of Lemma 5.1 in the main text.
We reject the null hypothesis if the p-value is less than the predefined alpha level.

1The TG function works for any choice of circular domain in radians, such as [0, 2π).

https://www.mathworks.com/help/matlab/ref/graph.html
https://www.mathworks.com/help/matlab/ref/graph.html
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You can define an alpha level in the second input of the torus graphs
function as: [TG, edges]=torus graphs(x, alpha level). The default value
is alpha level=0.05. The second output, edges, is a structure that contains
three fields: all possible edges between node pairs (egdes.all possible),
corresponding p-values (egdes.p vals), and edges for which we reject
the null hypothesis, p val<alpha level (edges.active). For the phase dif-
ference model with uniform margins, the edges structure also contains
egdes.cond coupling coeff, see Section T5 below and Section 4.4. in the
main text for details.

Fig T2. (A) Example of data matrix input to TG with electrodes grouped using labels di. (B)
Example output graph. Only the cross-region edge decisions are given when you provide grouping
information.

T3. Grouping electrodes by brain region. If the nodes can be grouped
according to brain regions, and those group labels are available, the torus graphs

function can take that information to output a network with as many nodes as brain
regions (see Figure T2).

You can use [TG, edges]=torus graphs(X,alpha level,di) where the third
input is di = [d1, d2, ..., dm], and has the number of electrodes in each of m
regions (where the dimensions are ordered by regions, as shown in Figure
T2). Note that d =

∑m
i=1 di.
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T4. TG probability density function. Using the natural parameters φ, the
TG density is:

p(x|φ) ∝ exp

 d∑
j=1

φT
j

[
cosxj
sinxj

]
+
∑
j<k

φT
jk


cos(xj − xk)
sin(xj − xk)
cos(xj + xk)
sin(xj + xk)


(T4.1)

We define a d-dimensional torus graph to be any member of the family of distri-
butions specified by Equation T4.1. The sufficient statistics involving only a single
angle are

S1
j (x) = [cos(xj), sin(xj)]

T ,

and the sufficient statistics involving pairs of angles are

S2
jk(x) = [cos(xj − xk), sin(xj − xk), cos(xj + xk), sin(xj + xk)]T .

We will use φ and S ≡ [S1,S2] to refer to the full vectors of parameters and sufficient
statistics for all angles. Because each angle has two marginal parameters, and each
unique pair of angles has four coupling parameters, we have 2d+4[d(d−1)/2] = 2d2

parameters. The vector of natural parameters is real-valued, i.e. φ ∈ R2d2 .

In [TG,edges,phi hat,inference]=torus graphs(X,alpha level,di), the
third output (phi hat) is the vector of estimated φ parameters. The
fourth output (inference) is a structure containing three fields: the
asymptotic covariance estimate for φ (inference.Sigma hat), the test
statistic for each edge group (inference.t hat), and the number of
degrees of freedom for each edge group (inference.dofs).

T5. TG submodels. If you have reason to believe that your data could be
described by a submodel, you can fit a submodel by setting some of the entries
of φ, corresponding to specific types of sufficient statistics, to zero. For instance, a
phase difference submodel sets the parameters corresponding to phase sums to zero,
while a uniform marginal model sets the parameters corresponding to marginal
concentrations to zero.

In [TG,edges,phi hat,inference]=torus graphs(X,alpha level,di,sel mode),
the fourth input is a 1 by 3 Boolean array to select a submodel. The first
entry corresponds to marginal concentrations, the second entry to phase
difference concentrations, and the third entry to phase sum concentra-
tions. The default is to fit [true, true, true], which corresponds to
the full TG model; [false, true, true] fits a uniform marginal model,
[true, true, false] fits a phase difference model.
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T6. Exploratory data analysis. To guide selection of a submodel, we can
use the Rayleigh test for uniformity applied on the concentrations of the angles
(marginally), on the pairwise phase differences, and on the pairwise phase sums.
The null hypothesis of this test is that the input vector of angles is uniformly dis-
tributed on the circle, i.e. zero marginal concentration. We will have d p-values for
the the tests of marginal concentrations and d(d− 1)/2 p-values for phase sums or
phase differences. Instead of interpreting the p-values individually, we combine them
using Fisher’s method for combining p-values. Then for example, if the marginal
concentration p-value is < 0.05, we might choose to fit a model with marginal con-
centrations, but not if p > 0.05.

You can use the following function to get combined p-values (Fisher’s
method) from Rayleigh tests: [marginal, phase diffs, phase sums]=

submodel eda(x). The input is the data matrix x and, for each case, the
output is a structure with two fields: individual p-values and aggregated
p-values.

T7. Sampling from a TG. As detailed in the main text, we can use a Gibbs
sampler to sample from a TG distribution.

You can use the function Xsamp=sampleGibbs tutorial(d,phi hat,opt) to
draw samples from a torus graph. The output is a data matrix of samples.
The inputs are the dimension (d), a vector of parameters (phi hat), and
a Gibbs sampler options structure (opt) with fields for number of desired
samples, burn-in, and thinning. Note that higher dimensional models may
require more samples to accurately represent the target distribution.
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