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Angular measurements are often modeled as circular random variables,
where there are natural circular analogues of moments, including correlation.
Because a product of circles is a torus, a d-dimensional vector of circular
random variables lies on a d-dimensional torus. For such vectors we present
here a class of graphical models, which we call torus graphs, based on the
full exponential family with pairwise interactions. The topological distinction
between a torus and Euclidean space has several important consequences.

Our development was motivated by the problem of identifying phase cou-
pling among oscillatory signals recorded from multiple electrodes in the
brain: oscillatory phases across electrodes might tend to advance or recede
together, indicating coordination across brain areas. The data analyzed here
consisted of 24 phase angles measured repeatedly across 840 experimen-
tal trials (replications) during a memory task, where the electrodes were in
4 distinct brain regions, all known to be active while memories are being
stored or retrieved. In realistic numerical simulations, we found that a stan-
dard pairwise assessment, known as phase locking value, is unable to describe
multivariate phase interactions, but that torus graphs can accurately identify
conditional associations. Torus graphs generalize several more restrictive ap-
proaches that have appeared in various scientific literatures, and produced
intuitive results in the data we analyzed. Torus graphs thus unify multivariate
analysis of circular data and present fertile territory for future research.

1. Introduction. New technologies for recording electrical activity among large net-
works of neurons have created great opportunities to advance neurophysiology, and great
challenges in data analysis (e.g., Steinmetz et al. (2018)). One appealing idea, which has gar-
nered substantial attention, is that under certain circumstances, long-range communication
across brain areas may be facilitated through coordinated network oscillations (Buzsáki and
Draguhn (2004), Ching et al. (2010), Fell and Axmacher (2011), Sherman et al. (2016)). To
demonstrate coordination among oscillatory networks, computational neuroscientists have
examined phase coupling across replications (trials) of the experiment. That is, when the
phase of an oscillatory potential at a particular location, and a particular latency from the
beginning of the trial, is measured repeatedly it will vary; phase coupling refers to the ten-
dency of two phases, measured simultaneously at two locations, to vary together, i.e., to be
associated, across trials. The data we analyze here consist of 24 phase angles recorded simul-
taneously, on each of many trials, from several brain regions known to play a role in memory
formation and recall (Brincat and Miller (2015, 2016)), prefrontal cortex (PFC) and three
sub-areas of the hippocampus, the dentate gyrus (DG), subiculum (Sub) and CA3. Being an-
gles, phases may be considered circular random variables. A commonly-applied measure of
phase coupling, known as Phase Locking Value (PLV), is an estimator of the natural circular
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FIG. 1. Rectangular coordinates are unable to accurately represent strong positive association between two
circular random variables. (A) Scatter plot of simulated observations from a pair of dependent circular variables
in rectangular coordinates, with three observations highlighted in red, black, and blue (simulated plot is similar
to real data plots, but somewhat more concentrated for visual clarity; see Klein et al. (2020a), Figure S5). The
highlighted observations are shown on circles at the top of the figure (one angle as a dashed line, one as a solid
line; positive dependence implies a consistent offset between the angles). While the black and blue points follow
the diagonal line, the red point falls near the upper left corner due to conversion to rectangular coordinates. (B)
Probability density representing the two variables, plotted both in rectangular coordinates and on the torus, with
the same three points marked. On the torus, there is a single band with high probability, which wraps around and
connects to itself as a Möbius strip, and all three points fall on this strip.

analogue of Pearson correlation under certain assumptions (which we review). PLV, however,
like correlation, cannot distinguish between direct association and indirect association via al-
ternative pathways. Thus, a large PLV between PFC and DG does not distinguish between
direct coupling and indirect coupling via a third area, such as via CA3 (neural activity in PFC
could be coupled directly with that in CA3, and that in CA3 with that in DG). To draw such a
distinction we need, instead, a circular measure that is analogous to partial correlation. More
generally, we wish to construct circular analogues of Gaussian graphical models. Because
key properties of Gaussian graphical models are inherited by exponential families, and the
product of circles is a torus, we consider exponential families on a multidimensional torus
and call the resulting models torus graphs. We used torus graphs to provide a thorough de-
scription of associations among the 24 repeatedly-measured phases in the Brincat and Miller
data and, in particular, we found strong evidence that the association between activity in PFC
and DG is indirect, via both CA3 and Sub, rather than direct.

When circular random variables are highly concentrated around a central value, there is
little harm in ignoring their circular nature, and multivariate Gaussian methods could be ap-
plied. However, in most of the neurophysiological data we have seen, including those an-
alyzed here, the marginal distributions of phases are very diffuse, close to uniform, so the
topological distinction between the circle and the real line is important. The torus topology
is consequential not only for computation of probabilities but also for the interpretation of
association. Figure 1 displays the inability of rectangular coordinates to preserve the cluster-
ing of points around a diagonal line under strong positive association. Furthermore, unlike
the Gaussian case where a single scalar, correlation, describes both positive and negative as-
sociation, on the torus, positive and negative association each have both an amplitude and a
phase, so each pairwise association is, in general, described by 2 complex numbers. Also, in
the Gaussian case, it is possible to interpret the association of two variables without knowing
their marginal concentrations. This is no longer true for torus graphs.

After defining torus graphs and providing a few basic properties in Section 2, in Section 3
we consider several important alternative families of distributions for multivariate circular
data that have appeared in the literature, and show that they are all special cases of torus
graphs. In Section 4, we step through the interpretation of phase coupling in torus graphs by
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considering in detail the bivariate and trivariate cases. In Section 5, we provide estimation
and inference procedures and, in Section 6, document via simulation studies the very good
performance of these procedures in realistic settings. Our analysis of the data appears in
Section 7 and we make a few closing remarks in Section 8.

2. Torus graph model. Suppose X is a d-dimensional random vector with j th element
Xj being a circular random variable, which may be expressed as an angle in [0,2π), though
other choices of angular intervals, such as [−π,π), are equivalent. When d = 2, X lies on
the product of two circles (a torus), and in general it lies on a multidimensional torus. When
considering phase coupling in neural data, X represents a vector of phase angle values ex-
tracted from oscillatory signals for a single time point from each of d signals, with repeated
trials providing multiple observations.

The torus graph model may be developed by analogy to the multivariate Gaussian distri-
bution, a member of the exponential family that models dependence between d real-valued
variables. In general, for a random vector Y, an exponential family distribution is specified
through a vector of natural parameters η that multiply a vector of sufficient statistics S(y)

summarizing information from the data that is sufficient for the parameters (Wainwright et al.
(2008)) and has a density of the form:

p(y;η) ∝ exp
(
ηT S(y)

)
.

In the bivariate Gaussian distribution, Y ∈ R
2 and the sufficient statistics corresponding

to the natural parameters are y and yyT , which describe the first- and second-order behavior
of the variates. For a vector of angular variables X ∈ [0,2π)2, we follow Mardia and Pa-
trangenaru (2005) by representing the angles using rectangular coordinates on the unit circle
as Y1 = [cosX1, sinX1] and Y2 = [cosX2, sinX2]. The first-order sufficient statistics are y1
and y2. The second-order behavior is described by:

y1yT
2 =

[
cosx1 cosx2 cosx1 sinx2
sinx1 cosx2 sinx1 sinx2

]
.

This choice of sufficient statistics leads to the following natural exponential family density
parameterized by η = [η1,η2,η12]:

p(x;η) ∝ exp

⎛
⎜⎜⎝ηT

1

[
cosx1
sinx1

]
+ ηT

2

[
cosx2
sinx2

]
+ ηT

12

⎡
⎢⎢⎣

cosx1 cosx2
cosx1 sinx2
sinx1 cosx2
sinx1 sinx2

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .(2.1)

The first two terms correspond to marginal circular means and concentrations of each vari-
able, while the third term is a pairwise coupling term describing dependence between the
variables. In the absence of pairwise coupling, the marginal distributions are all von Mises
(Fisher (1993), p. 48), and if d = 1, the torus graph model is itself von Mises. Extending
Equation (2.1) to d > 2 yields

p(x;η) ∝ exp

⎛
⎜⎜⎝

d∑
j=1

ηT
j

[
cosxj

sinxj

]
+ ∑

j<k

ηT
jk

⎡
⎢⎢⎣

cosxj cosxk

cosxj sinxk

sinxj cosxk

sinxj sinxk

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .(2.2)

The normalization constant is intractable, though numerical approximations may be used in
the bivariate case (Kurz and Hanebeck (2015)).
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Applying trigonometric product-to-sum formulas to the pairwise coupling terms of Equa-
tion (2.2) yields an equivalent, alternative parameterization in terms of natural parameters φ:

p(x;φ) ∝ exp

⎛
⎜⎜⎝

d∑
j=1

φT
j

[
cosxj

sinxj

]
+ ∑

j<k

φT
jk

⎡
⎢⎢⎣

cos(xj − xk)

sin(xj − xk)

cos(xj + xk)

sin(xj + xk)

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .(2.3)

We define a d-dimensional torus graph to be any member of the family of distributions spec-
ified by Equations (2.2) or (2.3). In the form of Equation (2.3), the sufficient statistics involv-
ing only a single angle are

S1
j (x) = [

cos(xj ), sin(xj )
]T

,

and the sufficient statistics involving pairs of angles are

S2
jk(x) = [

cos(xj − xk), sin(xj − xk), cos(xj + xk), sin(xj + xk)
]T

.

We will use φ and S ≡ [S1,S2] to refer to the full vectors of parameters and sufficient statistics
for all angles. The natural parameter space is given by

� =
{
φ :

∫
[0,2π)d

exp
(
φT S(x)

)
dx < ∞

}
,

which implies that φ ∈ R
2d2

(because each angle has two marginal parameters, and each
unique pair of angles has four coupling parameters, leading to 2d + 4[d(d − 1)/2] = 2d2

parameters).
We prefer the parameterization of Equation (2.3) because it offers a simple interpretation:

the sufficient statistics containing phase differences correspond to positive rotational depen-
dence between the angles, while the sufficient statistics containing phase sums correspond to
negative rotational (or reflectional) dependence. Positive rotational dependence occurs when
phase differences are consistent across observations, that is, Xj − Xk ≈ ξ or Xj ≈ Xk + ξ ,
for some angle ξ . Then conditionally on Xj = xj , Xk is obtained by rotating from xj by
approximately ξ . Reflectional dependence instead refers to consistency in the phase sums
so that Xk ≈ −Xj + ξ , meaning that conditionally on Xj = xj , Xk is obtained by rotating
from −xj by approximately ξ . To demonstrate how each type of dependence might arise in
repeated observations of neural oscillations, we show pairs of phase angles under each type
of dependence in Klein et al. (2020a), Figure S2; in addition, bivariate torus graph densities
dominated by each type of dependence are displayed in Klein et al. (2020a), Figure S1. While
we have observed both kinds of dependence in neural phase angle data, rotational dependence
appears to dominate in the data we analyze in this paper (see Section 7).

Because the natural parameter space is R2d2
and the d-dimensional torus is compact, the

full 2d2-dimensional exponential family is regular (see Brown (1986), p. 2). We call the full
family a torus graph model and we summarize its properties, given above, in the following
theorem.

THEOREM 2.1 (Torus graph model). The d-dimensional torus graph model is a regular
full exponential family. Equation (2.3) provides a reparameterization of the family in Equa-
tion (2.2) in which the expectations of the sufficient statistics are the first circular moments
and, for d ≥ 2, the second circular moments represent rotational and reflectional dependence
between pairs of variables. In Equation (2.3), the natural parameter has components φj ∈ R

2

corresponding to the first circular moment of Xj and φjk ∈ R
4 corresponding to the second

circular moments representing dependence between Xj and Xk .
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We prove Theorem 2.1 in Klein et al. (2020a), Section S1 by writing the angles as com-
plex numbers and considering the complex first moments and complex-valued covariances
between the variables.

Because the torus graph is an exponential family distribution with sufficient statistics cor-
responding to first circular moments and to pairwise interactions between variables, it is
similar to the multivariate Gaussian distribution, and, as in a Gaussian graphical model, the
parameters correspond to a conditional independence graph structure. Specifically, as we
state in Corollary 2.1 and prove in Klein et al. (2020a), Section S3, the pairwise coupling
parameters φjk correspond to the structure of an undirected graphical model, where an edge
is missing if, and only if, the corresponding pair of variables are conditionally independent
given all the other random variables. This suggests that an undirected graphical model struc-
ture may be learned through inference on the pairwise interaction parameters, or by applying
regularization in high dimensions to shrink the pairwise interaction parameters.

COROLLARY 2.1 (Torus graph properties). The d-dimensional torus graph model has
the following properties:

1. It is the maximum entropy model subject to constraints on the expected values of the
sufficient statistics.

2. In the torus graph model, the random variables Xj and Xk are conditionally indepen-
dent given all other variables if and only if the pairwise interaction terms involving Xj and
Xk vanish (that is, if the entire vector φjk = 0 in the density of Equation (2.3)).

Another interesting property of the torus graph model, given in Theorem 2.2 and proven in
Klein et al. (2020a), Section S6, is that the univariate conditional distributions of one variable
given the rest are von Mises, enabling Gibbs sampling to be used to generate samples from the
distribution. In addition, Theorem 2.2 shows torus graphs are similar to other recent work in
graphical modeling in which the joint distribution is specified through univariate exponential
family conditional distributions (Chen, Witten and Shojaie (2015), Yang et al. (2015)).

THEOREM 2.2 (Torus graph conditional distributions). Let X−k be all variables except
Xk . Under a torus graph model, the conditional density of Xk given X−k is von Mises; specif-
ically,

p(xk|x−k;φ) = 1

2πI0(A)
exp

(
A cos(xk − �)

)
,

where Im denotes the modified Bessel function of the first kind of mth order and A and � are
defined as

A =
√√√√(∑

m

Lm cos(Vm)

)2
+

(∑
m

Lm sin(Vm)

)2
,

� = arctan
(∑

m Lm sin(Vm)∑
m Lm cos(Vm)

)
,

where

L = [κk,φ·k], V =
[
μk,x−k,x−k + h

π

2
,−x−k,−x−k + π

2

]
,

and φ·k denoting all coupling parameters involving index k, hj = −1 if j < k and hj = 1
otherwise.
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3. Important subfamilies of the torus graph model. In this section, we discuss some
important subfamilies of the torus graph model that are particularly relevant to the applica-
tion to neural data. In particular, for neural phase angle data, the marginal distributions are
often nearly uniform, prompting consideration of a uniform marginal model in which the
parameters φj corresponding to the first moments of each variable are set to zero, resulting
in a model with uniform marginal terms. In addition, while in our experience neural phase
angle data exhibit both rotational and reflectional covariance, in many data sets, the primary
form of dependence is rotational, prompting us to consider a submodel with parameters cor-
responding to reflectional dependence set to zero, which we will call the phase difference
submodel since all pairwise relationships are described by the sufficient statistics involv-
ing xj − xk . A subfamily that combines these two (that is, restricts the torus graph to have
marginal uniform distributions and no reflectional dependence) coincides with the models of
Zemel, Williams and Mozer (1993) and Cadieu and Koepsell (2010), which were developed
from Boltzmann machines and coupled oscillators, respectively.

The uniform marginal model, phase difference model, and a phase difference model with
uniform margins all correspond to affine restrictions on the parameter space. This implies
(see Klein et al. (2020a), Section S2) that each is itself a regular exponential family, so that
each inherits many nice properties, such as concavity of the loglikelihood function, as a func-
tion of the natural parameter. Most previous work in multivariate circular distributions has
focused on the so-called sine model (e.g., Mardia, Taylor and Subramaniam (2007)), which
is again a subfamily, but it is not itself a full regular exponential family and does not, in
general, have a concave loglikelihood function. As a result, estimation and inference are less
straightforward than for either the torus graph model or the full regular exponential family
submodels (Mardia, Kent and Laha (2016)). We summarize properties of these subfamilies
in Theorem 3.1, which is proven in Klein et al. (2020a), Section S2.

THEOREM 3.1 (Torus graph subfamilies). The uniform marginal model, the phase dif-
ference model, and a model combining both parameter space restrictions, form full regular
exponential families but the sine model does not.

We note that the sine model may provide parsimonious fits to data for which the marginal
distributions appear unimodal. Even though the torus graph is a full regular exponential fam-
ily, and is therefore identifiable, when the data are highly concentrated it may be hard to
estimate all four coupling parameters, a phenomena we explore with simulations in Klein
et al. (2020a), Figure S3. Neural phase angle data, however, often tend to have low concen-
trations while still exhibiting strong pairwise dependence (Figure 9). As shown in Mardia,
Taylor and Subramaniam (2007), when the concentration is low relative to the pairwise inter-
action strength, the sine model fitted density enters a regime of multimodality. In Section 7
we demonstrate lack of fit of the sine model to our neural data.

4. Phase coupling in torus graphs. In this section, we discusss the distinction between
bivariate measures of phase coupling, such as PLV, and multivariate measures. In Section 4.1,
we briefly review bivariate phase coupling measures based on the marginal distributions of
pairwise phase differences. In Sections 4.2 and 4.3 we investigate bivariate and trivariate
examples analytically. We show that when a trivariate distribution of angles follows a torus
graph, the marginal distributions of pairwise phase differences may be influenced by the
marginal distributions of each variable and by indirect coupling through other nodes. This
fundamental limitation of bivariate phase coupling measures can produce inaccurate phase
coupling descriptions in multivariate systems. For the special case of phase difference mod-
els with uniform margins, in Section 4.4 we propose a transformation of the torus graph
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parameters that produces a generalization of PLV to multivariate data (where coupling be-
tween two variables is measured conditionally on all other variables), having the nice feature
that, like PLV, it falls between 0 and 1.

4.1. Bivariate phase coupling measures. The most common bivariate phase coupling
measure between angles Xj and Xk is the Phase Locking Value (PLV) (Lachaux et al.
(1999)), defined by

P̂jk =
∣∣∣∣∣ 1

N

N∑
n=1

exp
{
i
(
x

(n)
j − x

(n)
k

)}∣∣∣∣∣,(4.1)

where x
(n)
j is the nth observation of Xj .

We have used the notation P̂jk to indicate it may be viewed as an estimator of its theo-
retical counterpart Pjk . In Klein et al. (2020a), Section S7, we show that Pjk corresponds to
a measure of positive circular correlation under the assumption of uniform marginal distri-
butions. The value of Pjk falls between 0 and 1, with 0 indicating no consistency in phase
differences across trials and 1 indicating identical phase differences across trials.

One way to assess significance of P̂jk is Rayleigh’s test for uniformity of the phase dif-
ferences (Kass, Eden and Brown (2014), p. 268); other assessments of significance typi-
cally involve permutation tests or comparison to non-task recording periods (Rana, Vaina
and Hämäläinen (2013)).

A similar approach to characterizing bivariate phase coupling follows from considering
the univariate random variable Yjk = Xj − Xk . If Yjk is distributed as von Mises with con-
centration parameter κ , then

P̂jk = I1(κ̂)

I0(κ̂)
,(4.2)

where κ̂ is the maximum likelihood estimator for κ (Forbes et al. (2011), p. 191). More
generally, any measure of the concentration of the marginal distribution of phase differences
around a mean direction may be used as a measure of bivariate phase coupling (Aydore,
Pantazis and Leahy (2013)). We will refer to measures based on the marginal distribution of
phase differences as bivariate phase coupling measures.

4.2. Marginal distribution of phase differences in a bivariate torus graph. Because bi-
variate phase coupling measures are based on the marginal distributions of phase differences,
we investigate here the form of the marginal phase difference distributions in a bivariate torus
graph model to determine how the torus graph parameters influence the phase differences.
For the most straightforward and analytically tractable exposition, we consider the bivariate
phase difference model. We will use the notation

φjk = [αjk, βjk, γjk, δjk]T
to refer to elements of the pairwise coupling parameter vector, and use trigonometric identi-
ties to write the marginal terms as a function of κ and μ (see Klein et al. (2020a), Section S2,
for details). Then the bivariate phase difference model density is

p(x1, x2) ∝ exp

{
α12 cos(x1 − x2) + β12 sin(x1 − x2) +

2∑
j=1

κj cos(xj − μj)

}
.

Let W = X1 − X2(mod 2π) be the phase differences wrapped around the circle so that
W ∈ [0,2π). As shown in Klein et al. (2020a), Section S4, the unnormalized theoretical
distribution of W is a product of two functions:

pW(w) ∝ f (w;κ,μ) · g(w;α12, β12),(4.3)
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FIG. 2. Examples of bivariate torus graph densities and the resulting marginal distributions of phase differences
upon which bivariate phase coupling measures would be based. As shown in Equation (4.3), the density of phase
differences, p, is affected not only by coupling (through g) but also by marginal concentration (through f ).
As a result, bivariate phase coupling measures like PLV could give misleading results. (A) Left: bivariate torus
graph density with independent angles and non-uniform marginal distributions; density is shown on the torus and
flattened on [−π,π ] with marginal densities on each axis. Right: analytical phase difference density (p, solid)
which is a product of a direct coupling factor (g, dashed) and a marginal concentration factor (f , dotted). Here, p
is concentrated solely through the marginal concentration factor f , implying bivariate phase coupling measures
would indicate coupling despite the independence of X1 and X2. (B) Similar to A, but with coupling between
angles and uniform marginal distributions; only in this case does p correctly reflect the coupling.

where

f (w;κ,μ) = I0
(√

κ2
1 + κ2

2 + 2κ1κ2 cos
(
w − (μ1 − μ2)

))
and

g(w;φ12) = exp
{√(

α2
12 + β2

12

)
cos

(
w − arctan

(
β12

α12

))}
.(4.4)

The first factor, f , is proportional to the density of the difference of two independent
von Mises random variables with concentrations κ1, κ2 and means μ1,μ2 (Mardia and
Jupp (2000), p. 44) and reflects the influence of the marginal distributions of X1 and X2
on the phase differences. Such convolved densities are unimodal on [0,2π) with mode
μ1 − μ2(mod 2π) and concentration increasing with the argument of I0(·). The second fac-
tor, g, is proportional to a von Mises density that depends only on the phase difference and
the coupling parameters.

The functional forms of f and g show that the distribution of phase differences is influ-
enced both by the coupling parameters and by the marginal concentration parameters, which
implies that bivariate phase coupling measures reflect both coupling and marginal concentra-
tion. In Figure 2, we illustrate effects on P̂jk of pairwise dependence and marginal concentra-
tion. Even when the variables are independent, if the marginal distributions are not uniform,
the distribution of phase differences will have nonzero concentration due to the influence
of f . Thus, PLV is only appropriate when the marginal distributions are uniform. In con-
trast, torus graph parameters can separate the influence of marginal concentration and phase
coupling to provide a measure of the dependence between angles.
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4.3. Marginal distribution of phase differences in a trivariate torus graph model. While
we have shown that torus graph models are preferable to bivariate phase coupling measures in
the bivariate case, the biggest advantage of using torus graphs comes from the ability to work
with multivariate data and determine unique associations between each pair of variables after
conditioning on the other variables. For instance, in a trivariate torus graph model with direct
coupling only from nodes 1 to 3 and nodes 2 to 3 (Figure 3(A)), if we were to apply bivariate
phase coupling measures to all pairwise connections, we would likely infer a connection
between 1 and 2 because we would be measuring the bivariate association between phase
angles without taking into account node 3.

To demonstrate analytically how this happens, we consider a trivariate phase difference
model with marginal concentrations equal to zero for simplicity, which has density

p(x1, x2, x3) ∝ exp

⎧⎨
⎩

∑
(j,k)∈E

[
αjk

βjk

]T [
cos(xj − xk)

sin(xj − xk)

]⎫⎬
⎭ ,(4.5)

where the edge set E = {(1,2), (1,3), (2,3)}. Letting W = X1 − X2(mod 2π) be the phase
difference between nodes 1 and 2, we show in Klein et al. (2020a), Section S4, that the
unnormalized density of W is given by the product of two factors:

pW(w) ∝ g(w;φ12) · h(w;φ13,φ23).(4.6)

The first factor is the same as g in Equation (4.4) and reflects direct connectivity between
X1 and X2 as it depends only on the coupling parameters for the pair, φ12. The second
factor reflects indirect connectivity through the other nodes, as it depends on the coupling
parameters for the other pairs:

h(w;φ13,φ23) ∝ I0
(√

s + 2t cos(w − u)
)
,

where

s = α2
13 + β2

13 + α2
23 + β2

23,

t =
√(

α2
13 + β2

13

)(
α2

23 + β2
23

)
,

u = arctan
(

β13

α13

)
− arctan

(
β23

α23

)
.

Therefore, h is proportional to the density of the difference of two independent von Mises

random variables with concentrations
√

α2
13 + β2

13 and
√

α2
23 + β2

23 and mean directions
arctan(β13/α13) and − arctan(β23/α23), respectively.

Equation (4.6) implies that the density of the phase differences for one pair of variables
depends on all of the coupling parameters, so a bivariate phase coupling measure such as
PLV will be unable to distinguish between the effects of direct coupling and indirect cou-
pling through other nodes. Consequently, bivariate phase coupling measures will accurately
represent the direct coupling between 1 and 2 only when there is no indirect path between 1
and 2 through the other nodes. In the most extreme case, bivariate phase coupling measures
could indicate coupling even when there are only indirect connections between two nodes
through the rest of the network. In Figure 3, we show examples to demonstrate how the phase
difference distribution is affected by both direct and indirect connections, which may result
not only in contributions to the observed phase difference concentration but also in shifts in
the mean phase difference. This demonstrates that bivariate phase coupling measures gen-
erally reflect both direct and indirect coupling; in contrast, torus graph parameters identify
direct coupling.
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FIG. 3. Examples of trivariate torus graph densities and the resulting densities of phase differences for each
pair of variables. As shown in Equation (4.6), in general, the density of phase differences, p, is affected not only
by direct coupling (through g) but also by indirect connections (through h). As a result, bivariate phase coupling
measures like PLV will generally reflect both direct and indirect coupling. (A) Left: ground truth graphical model,
with no direct connection between X1 and X2 but an indirect connection through X3. Right: analytical phase
difference densities for each pair of angles (p, solid) which are each a product of a direct coupling factor (g,
dashed) and an indirect coupling factor (h, dotted). The concentration in the phase difference X1 − X2 arises
solely due to indirect connections. (B) Similar to A, but with direct connection only between X1 and X2; in this
case, p reflects the direct coupling. (C) Similar to A, but with direct connections between all nodes. Notice that
indirect connections (h) still influence the distribution of phase differences X1 −X2 by multiplying with the direct
connection term (g), which increases the concentration of p and shifts the mean (compared to g).

4.4. Interpreting phase difference model parameters. An appealing feature of PLV is
that it always falls between 0 and 1, so it is easy to interpret its magnitude and to compare
PLV values for different pairs of variables. Unfortunately, the torus graph parameters lack
these qualities. However, for the special case of the phase difference model with uniform
margins, we propose a generalization of PLV based on a transformation of the torus graph
model parameters that offers increased interpretability, and that, unlike PLV, measures pair-
wise relationships conditional on the other nodes.

As shown in Equation (4.2), if the marginal phase difference is distributed according to
a von Mises distribution, then PLV corresponds to a function of the maximum likelihood
estimator of the marginal concentration parameter. Under the phase difference model with
uniform margins, we showed the marginal density of the phase difference X1−X2 factors into
terms corresponding to direct and indirect connections; the direct connectivity term g(w;φ12)

of Equation (4.4) has the form of a von Mises density depending only on the parameters φ12.
Therefore, in analogy to the definition of PLV for von Mises-distributed phase differences,
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we propose the following transformation of the parameters:

P̃jk =
I1

(√
α2

jk + β2
jk

)
I0

(√
α2

jk + β2
jk

) .

Like PLV, the measure always falls between 0 and 1 and therefore may be used to compare
relative edge strengths in the phase difference model with uniform margins.

5. Torus graph estimation and inference. Because the normalization constant is in-
tractable for the torus graph density and it cannot easily be approximated even for moderate
dimension, estimation and inference are not straightforward. In particular, maximum likeli-
hood estimation is not feasible. Instead, we turn to an an alternative procedure for estimation
and inference called score matching. In Section 5.1, we establish the applicability of the score
matching estimator, originally defined for densities on R

d , to multivariate circular densities
like torus graphs, then give the explicit form of the objective function and derive closed-form
estimators that maximize the objective function. Section 5.2 discusses two main approaches
for determining a graph structure, one based on the asymptotic distributions of score match-
ing estimators and the second based on regularization, which is particularly relevant for high-
dimensional problems.

5.1. Estimation. Score matching is an asymptotically consistent estimation method that
does not require computation of the normalization constant and is based on minimizing the
expected squared difference between the model and data score functions (gradients of the
log-density functions), which leads to a tractable objective function for estimating the pa-
rameters (Hyvärinen (2005)). It can be seen as analogous to maximum likelihood estimation,
which uses the negative log likelihood as a scoring rule; score matching instead uses the gra-
dient and Laplacian of the log density (with respect to the data) as a scoring rule (Dawid and
Musio (2014)). In addition, for real-valued exponential family distributions, the estimator
comes from an unbiased linear estimating equation, so asymptotic inference is straightfor-
ward (Forbes and Lauritzen (2015), Yu, Drton and Shojaie (2019)). However, the original
score matching estimator requires the density to be supported on R

d and the proof of con-
sistency relies on tail properties of such densities. We show that score matching estimators
applied to circular densities such as the torus graph model retain the same form and therefore
remain consistent. Score matching estimators have been considered previously for the phase
difference model with uniform margins (Cadieu and Koepsell (2010)) and the sine model
(Mardia, Kent and Laha (2016)), where the procedure requires modification because the sine
model is a curved exponential family distribution (Theorem 3.1).

The score matching objective function is the expected squared difference between the log
gradients:

J (φ) = 1

2

∫
pX(x)

∥∥∇x logq(x;φ) − ∇x logpX(x)
∥∥2

2 dx.(5.1)

The objective function depends on the unknown data density pX(x) in a nontrivial way, but
we show in Theorem 5.1, using techniques similar to Hyvärinen (2005, 2007), that the objec-
tive function may be simplified to depend on the data density only through an expectation,
allowing it to be estimated as an average over the sample (proof in Klein et al. (2020a),
Section S5).

THEOREM 5.1 (Score matching estimators for torus graphs). Under some mild regularity
assumptions (given in Klein et al. (2020a), Section S5), the score matching objective function
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for the torus graph model takes the form

J (φ) = Ex

{
1

2
φT �(x)φ − φT H(x)

}
,

where

H(x) = [
S1(x),2S2(x)

]T
is a vector with dimension 2d2 that is a simple function of the sufficient statistics and

�(x) = D(x)D(x)T ,

where

D(x) = ∇xS(x)

is the 2d2 × d Jacobian of the sufficient statistic vector. Specific expressions for the Jacobian
elements are given in Klein et al. (2020a), Section S5.

Theorem 5.1 shows that the score matching objective may be estimated empirically by
averaging over N observed samples. The empirical objective function is

J̃ (φ) = 1

2
φT �̂φ − φT Ĥ,(5.2)

where

�̂ = 1

N

N∑
n=1

�
(
x(n)), Ĥ = 1

N

N∑
n=1

H
(
x(n))

with x(n) denoting sample n. Taking the derivative of Equation (5.2) with respect to the pa-
rameter vector yields an unbiased estimating equation (Dawid and Musio (2014)), which has
a unique solution when �̂ is invertible:

�̂φ − Ĥ = 0 −→ φ̂ = �̂
−1

Ĥ.

The number of parameters for a d-dimensional torus graph is 2d2 so sample sizes may not
be sufficient for �̂ to be invertible. In particular, �̂ is a sum with Nd terms, so N must be
greater than 2d for �̂ to be invertible. In practice, the variance of estimated parameters will be
high if N is not much larger than 2d , leading to less accurate point estimates and inference.
We investigate the effect of sample size on the resulting inferences, using simulated data, in
Section 6.

For higher-dimensional problems, Equation (5.2) is a convex objective function that may
be minimized numerically with regularization. In torus graphs, a group 
1 penalty may be
placed on the groups of pairwise coupling parameters φjk to enforce sparsity in the estimated
edges, yielding the following objective function:

J̃λ(φ) = J̃ (φ) + λ
∑
j<k

‖φjk‖2.

Here, λ is a tuning parameter that may be selected by criteria such as cross-validation or
extended BIC (Lin, Drton and Shojaie (2016)). Other structured penalties may be used to en-
courage the model toward specific submodels (such as the phase difference model or the uni-
form marginal model). For instance, separate group 
1 penalties could be applied to the pairs
of coupling parameters corresponding to positive and negative dependence, or an 
2 penalty
on the marginal parameters φj could encourage low concentration. This type of penalization
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may improve behavior of the objective function, and could be especially useful when certain
subfamilies appear reasonable based on exploratory data analysis. The computational burden

of calculating �̂
−1

may be reduced using the conditional independence structure of the graph,
as we may estimate each four-dimensional group of parameters φjk using score matching on
the conditional distribution p(xj , xk|x−jk), which involves only 8(d − 1)-dimensional suffi-
cient statistics and thus uses only a subset of the rows of D(x), lessening the computational
burden of matrix inversion (Yu, Kolar and Gupta (2016)).

5.2. Inference. In our setting, the goal of inference is to determine a graph structure
by determining which pairs of variables {j, k} have nonzero φjk , indicating an edge between
nodes j and k. As shown in previous work, score matching estimators are asymptotically nor-
mal (Dawid and Musio (2014), Forbes and Lauritzen (2015), Yu, Drton and Shojaie (2019)),
that is,

√
N(φ̂ − φ)

d−→ N (0,�),(5.3)

where the asymptotic variance is given by

� = �−1
0 V0�

−1
0

with

�0 = E
[
�(x)

]
, V0 = E

[(
�(x)φ − H(x)

)(
�(x)φ − H(x)

)T ]
.

Sample averages may be substituted for the expectations to obtain an estimate of the asymp-
totic variance, and because the true value of φ is unknown, we may substitute either our
estimate φ̂ or a null hypothetical value.

By considering the marginal Gaussian distribution of each element of φ, confidence inter-
vals may be constructed in a standard way. However, in the torus graph model, there are four
parameters per edge, so individual parameters are not of primary interest. In addition, we may
be interested in testing hypotheses about groups of edges (for example, the null hypothesis
might be that there are no edges between regions A and B). Fortunately, inference on groups
of edges is also straightforward, as specified in the following lemma.

LEMMA 5.1 (Asymptotic distribution for groups of torus graph parameters.). A vector of
parameters indexed by an index set E of size |E|, denoted φE , satisfies

√
N(φ̂E − φE)

d−→ N (0,�E),

where �E is the corresponding submatrix of the asymptotic variance � of Equation (5.3).
We also have

N(φ̂E − φE)T �−1
E (φ̂E − φE)

d−→ χ2(|E|).
Lemma 5.1 enables computation of p-values for single edges (if E indexes the four param-

eters for a single edge) or for groups of edges. In particular, if E indexes the four parameters
corresponding to a single edge, then under the null hypothesis that φE = 0,

X2
E ≡ N φ̂

T

E�−1
E φ̂E

d−→ χ2(4),

so for an observed value of the test statistic X̂2
E , the probability statement P(X2

E ≥ X̂2
E),

which gives a p-value for the edge, may be evaluated using the χ2 distribution with 4 degrees
of freedom. Similarly, a χ2 distribution with two degrees of freedom may be used to test for
only rotational or only reflectional covariance, or to test for nonzero marginal parameters.
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Inference after regularization is less straightforward. Recent work has addressed inference
for score matching estimators when using an 
1 penalty on each parameter (Yu, Kolar and
Gupta (2016)), which could potentially be extended to torus graphs with a group 
1 penalty.
Other approaches for inference in high dimensions include the bootstrap or stability selection
(Meinshausen and Bühlmann (2010)). One parametric bootstrap approach is as follows. As-
sume we are interested in testing the null hypothesis that some particular subset of edges is
missing from the graph. We may first fit a null torus graph model in which the coupling pa-
rameters corresponding to the edge set of interest are set to zero, selecting the regularization
parameter by cross-validation of the score matching objective function. Next, B times, we
would draw samples of the same size as the data from the null torus graph model, re-select
the regularization parameter by cross-validation, and fit the unrestricted torus graph model to
the samples using this regularization parameter. By computing the distribution of a suitable
statistic (such as the number of nonzero edges or the maximal edgewise parameter vector
norm) from these fitted null models, we obtain an empirical estimate of the null distribution
of the statistic, which can then be used to judge the size of the same statistic computed on the
original data.

6. Simulation study. As our analytical results of Section 4 show, torus graphs can sep-
arate the effects of pairwise coupling and marginal concentration and have pairwise coupling
parameters that represent direct connections between nodes. In contrast, bivariate phase cou-
pling measures like PLV are sensitive to the marginal distribution of the variables and can
reflect not only direct connections but also indirect paths through the other nodes. We con-
ducted simulations to demonstrate these results. In addition, we explored the performance of
torus graphs in recovering graph structures in simulated data similar to real data to determine
how well we expect torus graphs to perform in the real data. Section 6.1 gives the simulation
details and Section 6.2 provides the results.

6.1. Simulation methods. When comparing PLV to torus graphs, we chose to generate
data using the notion of positive rotational dependence discussed in Section 2. This was
done to demonstrate that torus graphs recover interactions of this type even when data were
not directly generated from a torus graph model. To generate bivariate data with rotational
dependence and nearly uniform marginal distributions, we first drew N trials of phase angles
x1 from a von Mises distribution with low circular concentration κ1. Then, for each trial, we
let x2 = x1 + ξ + ε where ξ is a fixed phase offset and ε is noise drawn from a concentrated
mean-zero von Mises distribution with concentration κε (where, on a small number of trials,
we used less concentrated noise to emulate the noisiness present in real data). Extending to
more than two nodes follows a similar process, where data for an additional node is generated
based on data from a neighbor in the graph.

We generated synthetic data with two ground truth phase coupling structures that are in-
tended to reflect realistic scenarios (and with parameters chosen to produce samples that em-
ulate real neural phase angle data; Klein et al. (2020a), Figure S10 compares the simulated
data to real data, showing similar first- and second-order behavior and similar observed pair-
wise PLV values). First, we constructed five-dimensional data meant to emulate the effects of
spatial dependence, such as dependence between electrodes on a linear probe situated within
a single functional region, which, under a nearest-neighbor Markov assumption, would in-
duce sparse conditional independence graph structures (because each node would be directly
dependent only on its nearest neighbors on the probe). We coupled nodes in a linear chain and
chose ξ = π/100 and κε = 40 (with 15 of 840 trials contaminated with extra noise with con-
centration 0.1). Second, we constructed three-dimensional data meant to emulate the effects
of indirect connections, which may occur when electrodes are in different regions, but not all
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FIG. 4. The torus graph recovers the ground truth graph structures (top panel) from realistic simulated data
sets while a bivariate phase coupling measure, phase locking value (PLV), does not (edges shown for corrected
p < 0.001). Left: a 3-dimensional simulated example of cross-area phase coupling where regions X1 and X2 are
not directly coupled, but are both coupled to region X3. Right: a 5-dimensional simulated example of a graph
structure that could be observed for channels on a linear probe with nearest-neighbor spatial dependence. In both
cases, PLV infers a fully-connected graph due to indirect connections.

of the regions are communicating directly. In particular, x2 was concentrated at κ2 = 0.01,
x1 and x3 had phase offsets of ξ = π/6 and ξ = π/100, respectively, from x2, and the cou-
pling noise had concentration κε = 2 (with 75 of 840 trials contaminated with extra noise
with concentration 0.1). For each scenario, we simulated data of sample size 840 (to match
the sample size of the real data). Then, for each data set, we fitted a torus graph and selected
edges based on Lemma 5.1; we also used the Rayleigh test of uniformity to construct a graph
based on PLV (Kass, Eden and Brown (2014), p. 268). For both tests, we used an alpha level
of α = 0.001 with Bonferroni correction for multiple tests.

To gain intuition on how well torus graphs could be expected to perform in the real LFP
data we analyze in Section 7, we investigated how well torus graphs recover the edges for
varying dimensions, sample sizes, and underlying levels of sparsity in the edges. For this
simulation, we generated data from a torus graph model of varying dimension with zero
marginal concentration and with either 25% or 50% of edges present in the generating distri-
bution. By varying the threshold on the edgewise X2 statistics (Lemma 5.1), we computed an
ROC curve for each simulated data set. The ROC curves were averaged across 30 data sets,
then the area under the curve (AUC) was calculated as a measure of performance.

6.2. Simulation results. For the first set of simulations, Figure 4 shows that in both the
three-dimensional and five-dimensional cases, the torus graph recovered the correct structure
while the PLV graph recovered a fully connected graph. Although the performance of PLV
may be better for other graph structures, our analytical results in Section 4 suggest that graph
structures with indirect paths between nodes are likely to induce excess edges in the PLV
graph. To follow up on this result, we further explored the False Positive Rate (FPR) and
False Negative Rate (FNR) for PLV and torus graphs by repeating the simulations. We found
that PLV graphs have low FNR (near 0), but also have a very high FPR (near 1), so PLV likely
will not miss a true edge but will also add many additional edges (Klein et al. (2020a), Figure
S11). This result agrees with the notion that hypothesis testing based on PLV, even when
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FIG. 5. In simulated data with two different underlying edge densities, the average ROC curve area under
the curve (AUC) was computed across 30 simulated data sets as a function of sample size (shown along the
horizontal axis). The dimension of the data is indicated by line color and different markers. Panel A demonstrates
that if the true underlying graph has only 25% of all possible edges present, then even for 24 dimensional data
(diamond markers), a sample size of 840 (the size of our real LFP data set) is sufficient to reach AUC above 0.9.
While performance degrades when the underlying graph is more dense, panel B shows that performance is still
reasonable (AUC near 0.8) for 24 dimensional data with 840 samples.

corrected for multiple comparisons, cannot be reliably used to control FPR for multivariate
graphs because PLV measures both direct as well as indirect connectivity and thus tends to
overestimate connectivity. In contrast, torus graphs are more conservative in assigning edges
and control the FPR at the nominal level (though they tend to have higher FNR, especially
for low sample sizes).

Figure 5 displays the results of the second set of simulations, which investigated the ability
of torus graphs to recover the true structure as a function of true edge density, sample size,
and data dimension. Importantly, for simulated data of dimension 24 and sample size of 840
(matching the real LFP data), the torus graph model is able to achieve 0.9 AUC as long as
the graph is sufficiently sparse (around 25% of all possible edges present). In the real data
results of Figure 8(B), we in fact observe approximately 25% of edges present, suggesting
that this graph density may be reasonable for the real data. A more detailed investigation
of the ROC curves and precision curves by dimension with fixed sample size 840 is given
in Klein et al. (2020a), Figure S4, which again demonstrates that for a sufficiently sparse
underlying graph structure, the torus graph method is expected to perform well for the sample
size and dimension in the real LFP data. However, prior beliefs about the sparsity of the
underlying graph will play a role in judging the likely accuracy of results.

7. Analysis of neural phase angles. We demonstrate torus graphs in a set of local field
potentials (LFPs) collected from 24 electrodes in the prefrontal cortex (PFC) and hippocam-
pus (HPC) of a macaque monkey during a paired-associate learning task. Previous analysis of
these data in Brincat and Miller (2016) found that beta-band (16 Hz) phase coupling between
PFC and HPC peaked during the cue presentation and also increased with learning after the
subject received feedback on each trial. Here, we sought a more fine-grained description of
the phase coupling between PFC and HPC during the cue presentation period, and focused
on describing relationships between PFC and three distinct subregions of HPC: subiculum
(Sub), dentate gyrus (DG), and CA3.

First, we applied torus graphs to two different low-dimensional subnetworks: (i) a sub-
network consisting of five electrodes arranged linearly along a probe within CA3 and (ii)
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a collection of all trivariate subnetworks consisting of an electrode in each of the regions
Sub, DG, and PFC. The five-dimensional subnetwork was chosen as a proof of concept, be-
cause electrodes in the same region and with a linear spatial arrangement ought to exhibit a
nearest-neighbor conditional independence structure. We chose to examine connectivity be-
tween Sub, DG, and PFC because the patterns of connectivity between these three regions
could be informative about whether hippocampal activity is leading prefrontal activity and
because torus graphs should be able to disentangle the effect of direct and indirect connec-
tions to give a more informative connectivity structure than could bivariate phase coupling
measures. Second, we applied torus graphs to the full 24-dimensional data set by first test-
ing for the presence of any cross-region edges between PFC, Sub, DG, and CA3, and then
following up with post-hoc tests of individual cross-region and within-region edges to con-
struct a full 24-dimensional graph. Finally, we used a subset of the PFC electrodes to examine
the goodness-of-fit of the torus graph model to the data and to investigate whether any torus
graph subfamilies appeared to be appropriate for this data set.

We describe the data and preprocessing in Section 7.1 and give an outline of our data
analysis methods in Section 7.2. Section 7.3 presents the results and we discuss implications
of the results in Section 7.4.

7.1. Experiment and data details. The experimental design and data collection proce-
dures are described thoroughly in Brincat and Miller (2015, 2016). We use data from a single
animal in a single session comprising 840 trials in which a correct response was given. (The
sample size here is 840; a very small number of animals, usually 1 or 2, is standard practice
in nonhuman primate neurophysiology because, even though there is large subject-to-subject
variability in the fine details of brain structure and function, the overall structure and func-
tion of major brain regions is conserved, as are, typically, the primary scientific conclusions,
though it is common to replicate in a second animal results found in a single animal; we
also note that while part of the purpose of the original experiment involved learning, we are
here ignoring any transient learning effects, which take place rapidly.) Briefly, four images
of objects were randomly paired; the subject learned the associations between pairs through
repeated exposure to the pairs followed by a reward for correctly identifying a matching pair.
In each trial, the pairs of images were presented sequentially with a 750 ms delay period
between the images, during which a fixation mark was shown. All procedures followed the
guidelines of the MIT Animal Care and Use Committee and the US National Institutes of
Health. (The experimental procedures were painless to the animals, as all forms of sensation
originate outside the brain.) The data used in this paper contain 8 single-channel electrodes
in PFC and a linear probe with 16 channels in HPC, with HPC channels categorized based on
neural spiking characteristics into three subregions: dentate gyrus (DG), CA3, and subiculum
(Sub). Recording regions and data processing steps are depicted in Figure 6. We focus on a
time point at 300 ms after initial cue presentation, as PLV pooled across all sessions identified
phase coupling peaking near 16 Hz at this time point (Brincat and Miller (2016), Supplemen-
tary Figure 5); we verified that the session we used showed the same overall phase coupling
relationship. After downsampling the data to 200 Hz and subtracting the average (evoked)
response, we used complex Morlet wavelets with 6 cycles to extract the instantaneous phase
of each channel at 16 Hz in each trial.

7.2. Data analysis methods. To examine whether torus graphs could recover the spa-
tial features we would expect along the linear probe, we first applied torus graphs to the
5-dimensional network containing channels on a linear probe that are all within CA3, likely
to exhibit strong spatial dependence between neighboring channels, and used a hypothe-
sis test for each edge with α = 0.0001. We chose a stringent threshold because, based on
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FIG. 6. (A) Depiction of recording sites in ventrolateral prefrontal cortex (PFC) and hippocampus. (B) Prepro-
cessing to obtain phase angles: local field potential (LFP) signals are filtered using Morlet wavelets to extract
phase angles from 16 Hz oscillations at a time point of interest (two signals are shown for a single trial; repeated
observations of phase angles are collected across repeated trials).

the first simulation study of Section 6, we expected PLV to add extraneous edges, yet we
wanted to demonstrate that torus graphs and PLV give very different results even when a
small threshold is used. Then, to examine whether torus graphs appeared to disentangle the
effects of direct and indirect edges, we focused first on a trivariate network containing Sub,
DG, and PFC where there is a simple interpretation of direct edges because CA3 and Sub
send output signals from hippocampus while DG receives input signals to the hippocampus.
Therefore, prominent connections between CA3 and PFC and/or Sub and PFC would sug-
gest hippocampal activity may be leading PFC activity during this period of the task, while
dominance of connections between DG and PFC would suggest the opposite. Because there
are multiple channels in each of the three regions, we aggregated results across all possi-
ble triplets of channels from the three regions by inferring edges by majority vote across all
possible trivariate graphs (using an alpha level of p < 0.0001 for each edgewise test).

We also investigated the graphical structure between the four regions (PFC, DG, CA3, and
Sub) using a 24-dimensional torus graph on all electrodes; based on model selection tech-
niques described in the next paragraph, we used a phase difference model. First, we assessed
between-region connectivity between each pair of regions using the results of Lemma 5.1 to
test the set of null hypotheses that there were no edges between each pair of regions. For
example, there are 40 total possible edges between CA3 and PFC with two parameters for
each edge, so the hypothesis test for the existence of any edges between CA3 and PFC was
based on a χ2(80) distribution. For each pair of regions, we obtained a p-value for the entire
group of edges between the two regions under the null hypothesis that there are no edges be-
tween the two regions. Because we were interested only in further investigating cross-region
interactions with strong evidence, for this set of hypothesis tests, we chose a stringent alpha
level of α = 0.001 with a Bonferroni correction across all 6 between-region tests to control
for multiple tests. To better understand the individual connections driving this cross-region
connectivity, and to investigate within-region connectivity patterns, we then applied post-hoc
tests on the individual edges. That is, for each possible edge between pairs of regions that
were identified as having some connection by the first step, we obtained a p-value using
a χ2(2) distribution. Similarly, we calculated a p-value for each possible edge connecting
electrodes within the same region. In this case, we assigned edges using a less stringent alpha
level of α = 0.05 without correcting for multiple tests, as we expected the evidence for any
specific edge would be weaker than the evidence for cross-region connections and because
multiple comparisons were already taken into account in the first set of between-region tests.

To assess the appropriateness of torus graphs for this data set and to assess whether any
submodels were appropriate, we explored the first- and second-order behavior of the LFP
phase angles. To determine whether the uniform marginal model should be fitted, we tested
for uniform marginal distributions using a Rayleigh test on each electrode, marginally, then
obtained an overall decision regarding the null hypothesis that all distributions were uni-
form using Fisher’s method to combine p-values (Kass, Eden and Brown (2014), p. 301).
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FIG. 7. Torus graphs and PLV graphs from low-dimensional networks of interest in LFP data. Left: cross-region
connectivity between dentate gyrus (DG), subiculum (Sub), and PFC, where the torus graph (top panel) indicated
that DG and PFC are each coupled to Sub; in contrast, PLV (bottom panel) inferred a fully-connected graph.
Right: within-region connectivity in CA3, where the torus graph indicated a spatial dependence structure which
reflects the placement of channels along a linear probe, while PLV inferred a fully-connected graph.

Equation (4.6) showed that the marginal distribution of phase differences in a torus graph
model depends on the coupling parameters for all possible direct and indirect paths between
two nodes, so that any observed concentration of phase differences, marginally, could indi-
cate the presence of some nonzero coupling parameters (possibly corresponding to indirect
paths). Therefore, we applied the Rayleigh test to the observed phase differences for each pair
of variables, then combined p-values using Fisher’s method to test the null hypothesis that
all marginal phase difference distributions were uniform; we also performed a similar pro-
cedure on the observed pairwise phase sums. For these exploratory tests, we used a p-value
threshold of p < 0.05 so that we would be sensitive to departures from uniformity in either
the marginal distributions or the distributions of phase differences/sums. Finally, after fitting
the chosen model, we used Kolmogorov–Smirnov (KS) goodness-of-fit tests to determine
whether there was any evidence that LFP angles were drawn from a different distribution
than the fitted theoretical model. In particular, we tested for differences in the marginal dis-
tributions of the angles, then tested for differences in the marginal distributions of pairwise
phase differences and pairwise phase sums, and used Fisher’s method to combine p-values
within each of the three groups of tests. We used an alpha level of 0.05 for each test.

7.3. Data results. In the low-dimensional subnetworks, we found that the torus graph
recovered a structure consistent with nearest-neighbor coupling along the linear probe (Fig-
ure 7, top panel), while PLV suggested a fully-connected graph; Klein et al. (2020a), Figure
S7.B, shows p-values for the five-dimensional graph for both torus graphs and PLV. In ad-
dition, the top panel of Figure 7 shows that torus graphs appear to capture an interesting
trivariate network with no coupling between PFC and DG, but with each of PFC and DG
coupled with Sub. Klein et al. (2020a), Figure S7.C, shows p-values for all of the individual
trivariate graphs, indicating that in the majority of individual trivariate graphs, there was no
evidence for an edge between PFC and DG, while again, PLV suggested a fully connected
graph.

For the 24-dimensional torus graph applied to all electrodes, we found, first, using the
overall tests for the presence of any edges between each pair of regions, that there was appar-
ent connectivity between all hippocampal subregions (CA3, DG, and Sub) and connectivity
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FIG. 8. Torus graph analysis of coupling in 24-dimensional LFP data with four distinct regions: CA3 (red),
dentate gyrus (DG; blue), subiculum (Sub; green), and prefrontal cortex (PFC; grey). (A) Cross-region tests in-
dicated evidence for edges between DG and CA3, DG and Sub, CA3 and Sub, PFC and CA3, and PFC and Sub
(determined by testing the null hypothesis that there were no edges between a given pair of regions, corrected
p < 0.001). (B) For the significant cross-region connections, a post-hoc edgewise significance test examined the
specific connections between regions, with the 24-dimensional graph containing edges for p < 0.05. Compared
to the cross-region graph in A, notice that no edges from Sub to CA3 were individually significant at p < 0.05.
(C) The 24-dimensional adjacency matrix (with hippocampal electrodes ordered by position on linear probe) with
non-significant cross-region connections in white and other entries colored by edgewise p-value (with p > 0.05
in white). Despite having no built-in knowledge of spatial information, the torus graph recovered the linear probe
structure within hippocampus.

from CA3 to PFC and Sub to PFC (Figure 8(A)). In the follow-up post-hoc tests of individ-
ual edges, we observed dense connectivity within regions and somewhat sparser connectivity
between regions (as judged by the number of edges out of the possible number that could be
present; graph and adjacency matrix shown in Figure 8 panels B and C). Interestingly, none
of the individual CA3 to Sub connections were significant (the smallest p-values were around
0.1), suggesting that the aggregate effect of several weak edges led to the edge between CA3
and Sub in Figure 8(A). In the adjacency matrix corresponding to the 24-dimensional graph,
which is ordered to respect the position of channels on the hippocampal linear probe, entries
are colored by p-value (with white indicating non-significant entries at level α = 0.05); no-
tably, torus graphs recovered the linear probe structure across the entire hippocampus without
prior knowledge of this structure being used in the model or estimation procedure.

In our investigation of the appropriateness of submodels and goodness-of-fit, we show
results for three electrodes from PFC (results on the full data set were similar). Based on
a visual analysis of the marginal and pairwise behavior of the data, the phase difference
model appeared to be a reasonable candidate for these data. We found evidence that nei-
ther the marginal distributions nor the phase differences were uniform (Rayleigh/Fisher’s
method, p < 0.001); however, there was no evidence for concentration in the phase sums
(Rayleigh/Fisher’s method, p > 0.05). As a result, we selected the phase difference model to
investigate goodness-of-fit. In Figure 9(A), we show data from three PFC electrodes along
with their theoretical (fitted) phase difference model; along the diagonal, histograms for the
real data (blue bins) are shown with theoretical model densities (solid red traces), indicating
similar marginal distributions. Below the diagonal are two-dimensional histograms from the
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FIG. 9. Comparison between phase angles from three LFPs located in PFC and the theoretical torus graph
distribution demonstrates that torus graphs capture the salient first- and second-order behavior present in the
LFP phase angles. In contrast, the sine model fails to fit the data accurately (Klein et al. (2020a), Figure S6).
(A) Along the diagonal are the marginal distributions of the phase angles. The real data are represented by blue
histograms and the theoretical marginal densities from the torus graph model are overlaid as solid red traces.
Two-dimensional distributions (off-diagonal) show bivariate relationships, with theoretical densities above the
diagonal and real data represented using two-dimensional histograms below the diagonal. (B) Plots along the
diagonal same as panel A. Below the diagonal are distributions of pairwise phase differences and above the
diagonal are distributions of pairwise phase sums, represented by histograms for the real data and by solid
red density plots for the theoretical torus graph model. Both the real data and theoretical distributions exhibit
concentration of phase differences but not phase sums, suggesting prevalence of rotational covariance, and the
sufficient statistics are very similar for the theoretical and real data.

real data and above the diagonal are two-dimensional theoretical model densities, demonstrat-
ing that the torus graph appears capable of accurately representing the first- and second-order
behavior present in the real data. Figure 9(B) shows histograms of sufficient statistics from the
real data (phase angles along the diagonal, phase sums for each pair above the diagonal, and
phase differences for each pair below the diagonal), along with kernel density estimates (solid
red traces) for the statistics from the theoretical model. There is visual similarity between the
distributions of sufficient statistics, and, in both cases, we observed the concentration of the
pairwise phase differences indicating a prevalence of rotational dependence; this pattern held
in the observed sufficient statistics for all 24 LFP channels shown in Klein et al. (2020a),
Figure S9. The KS tests comparing the sufficient statistics of the fitted torus graph model to
the data failed to reject the null hypothesis (KS/Fisher’s method, p > 0.05, for each group of
statistics), indicating no evidence that the data were drawn from a different distribution than
the fitted model.

7.4. Summary and discussion of results. In the 24-dimensional analysis, PFC to hip-
pocampal connections appeared to be driven by a relatively small number of significant con-
nections from Sub to PFC and CA3 to PFC. However, the results did not show evidence
for connections between PFC and DG, which coincides with the analysis of the trivariate
subnetwork. In contrast, the PLV edgewise adjacency matrix (shown in Klein et al. (2020a),
Figure S8) was very densely connected and shows little resemblance to the structure recov-
ered by torus graphs; for any reasonable p-value threshold, the PLV graph would be nearly
fully connected, suggesting that PLV was unable to distinguish between direct and indirect
connections.

Because the patterns of connectivity between hippocampal subregions and PFC recov-
ered by these analyses suggested that hippocampal activity was leading prefrontal activity
during this time period in the task, as a follow-up analysis, we considered whether lead-
lag relationships could be detected in the distribution of phase differences between PFC and
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FIG. 10. Circular histograms of phase differences, in degrees, from 24-dimensional LFP data for (A) significant
connections between PFC and hippocampus (specifically, CA3 and Sub) and (B) significant PFC, CA3, and Sub
within-region connections, The mean phase offset with 95% confidence interval is shown as a black dot with
a narrow gray interval. Observations were pooled across all significant edges within or between the regions.
The within-region phase differences were tightly concentrated around zero while the PFC-hippocampus phase
differences were centered below zero, indicating a possible lead-lag relationship with hippocampus leading PFC.

hippocampus (specifically, CA3 and Sub). Since most of the edgewise dependence in this
data set appears to correspond to positive rotational dependence (as judged by the relative
magnitude of the torus graph coupling parameters and the concentration of phase differences
but not phase sums in the observed sufficient statistics shown in Klein et al. (2020a), Figure
S9), the distributions of phase differences between PFC and Sub and between PFC and CA3
can summarize the overall PFC-hippocampus coupling. Figure 10(A) displays a circular his-
togram of the PFC to hippocampus phase differences with the mean phase difference and a
95% confidence interval, pooling across all significant (p < 0.05) pairwise phase differences
to compute an overall circular mean phase offset. These phase differences were centered at
−8.5◦ (95% CI: [−10.4◦,−6.6◦]), indicating that on average, hippocampal phase angles led
PFC phase angles, providing more evidence that hippocampal activity was leading PFC activ-
ity. The phase differences agree with those displayed in Brincat and Miller (2015), Figure 5.a
(though we examined a different time period of the trial and pooled only across significant
PFC to hippocampus connections). In contrast, Figure 10(B) displays within-region phase
differences tightly clustered around 0◦ (mean: −0.04, 95% CI: [−0.2◦,0.2◦]), indicating that
within-region phase coupling may be driven mostly by spatial correlations in the recordings.
These results suggest that due to the CA3 to PFC and Sub to PFC connections identified
in both the trivariate and 24-dimensional analyses and the overall negative phase difference
(PFC-hippocampus), hippocampal activity leads PFC activity during this period of the task.
Importantly, while aggregated pairwise phase differences may have given some evidence of
directionality, torus graphs provided detailed information about direct connections between
hippocampal output subregions and PFC.

In the low-dimensional subnetworks, we found that torus graphs yielded intuitive results
while PLV did not. In particular, for the five-dimensional subnetwork consisting of electrodes
along a linear probe, torus graphs inferred a nearest-neighbor conditional independence struc-
ture which we would expect for electrodes arranged linearly in space, while PLV inferred a
fully connected graph. In the trivariate subnetworks, torus graphs suggested connectivity be-
tween PFC and Sub and DG and Sub, but not between PFC and DG, while again, PLV inferred
a fully connected graph. Based on our analytic derivations in Section 4 and simulation study
in Section 6, PLV is likely not reflecting the correct dependence structures in either low-
dimensional network, and is instead reflecting both direct and indirect connections between
the nodes.

When we investigated possible use of submodels, we found that a phase difference model
appeared reasonable due to the lack of concentration in the phase sums, but that a uniform
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marginal model was not warranted. While we used the phase difference model on the full
24-dimensional data set, we found that we would have obtained nearly the same results using
the full torus graph model, with discrepancies for only a few edges in the post-hoc edgewise
test results shown in Figure 8(B) (which do not change the overall conclusions). We found
that torus graphs appeared to fit the data reasonably well, with both visual summaries and
KS tests suggesting that the marginal distributions of each angle and of the pairwise sum
and difference sufficient statistics were similar in the data and the fitted model. In contrast,
when we followed up by fitting a sine model to the same data (using code from Rodriguez-
Lujan, Larrañaga and Bielza (2017)), we observed multimodality in the bivariate densities
of the fitted model and a poor correspondence between the fitted and observed sufficient
statistics, leading us to conclude that, as discussed in Section 3, the sine model fails to match
the second-order dependence structure in the neural data due to low marginal concentration
(Klein et al. (2020a), Figure S6). KS tests comparing the fitted sine model phase sums and
differences to the data also suggested the data distribution does not match the sine model
distribution (KS/Fisher’s method, p < 0.0001, for both phase sums and phase differences).

Torus graphs provided a good description of the neural phase angle data and provided
substantive conclusions that could not have been obtained using bivariate phase coupling
measures like PLV.

8. Discussion. We have argued that torus graphs provide a natural analogue to Gaussian
graphical models: Theorem 2.1 and Corollary 2.1 show that starting with a full torus graph,
which is an exponential family with two-way interactions, setting a specific set of interaction
coefficients φjk to zero results in conditional independence of the j th and kth circular random
variables. We provided methods for fitting a torus graph to data, including identification of the
graphical structure, i.e., finding the non-zero interaction coefficients, corresponding to edges
in the graph (code, tutorial, and data provided in the supplements (Klein et al. (2020b)) and
at https://github.com/natalieklein/torus-graphs). We also demonstrated that previous models
in the literature amount to special cases, and therefore make additional assumptions that
may or may not be appropriate for neural data. In particular, while the uniform marginal
model or the phase difference model may be reasonable for neural phase angle data, the
most widely studied model in multivariate circular statistics, the sine model, is less well-
behaved and does not appear to be capable of matching the characteristics of neural phase
angle data. In addition, we showed that PLV is a measure of positive circular correlation under
the assumption of uniform marginal distributions of the angles, but that PLV is unable to
recover functional connectivity structure that takes account of multi-way dependence among
the angles. In our analysis of LFP phases 300 ms after cue presentation in an associative
memory task, the fitted torus graph correctly identified the apparent dependence structure of
the linear probe within CA3; it suggested Sub may be responsible for apparent phase coupling
between PFC and DG; and it led to the conclusion that, at this point in the task, hippocampus
phases lead those from PFC (by 8.5◦ with SE = 0.95◦).

Here, our torus graphs were based on phases of oscillating signals, with no regard to their
amplitudes. This is different than phase amplitude coupling in which the phase of one oscilla-
tion may be related to the amplitude of an oscillation in a different frequency band (Tort et al.
(2010)). Also, like other graph estimation methods, interpretations based on torus graphs as-
sume that all relevant signals have been recorded, while in reality, they could be affected by
unmeasured confounding variables (e.g., activity from other brain regions). In addition, in ap-
plications such as phase angles in LFP, several preprocessing steps (referencing, localization,
and filtering) are needed to extract angles from the signals. The torus graph implementa-
tion we have described here ignores these steps, and takes well-defined angles as the starting
point for analysis. Furthermore, local field potentials tend to be highly spatially correlated,
suggesting that inclusion of spatial information might be helpful for identifying structure.

https://github.com/natalieklein/torus-graphs
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Future work could include further investigation and theoretical analysis of how well torus
graphs perform when the sample size is smaller relative to the dimension of the data. In some
data sets, the full torus graph with 2d2 parameters may be overparameterized, and estimation
and inference may be more accurate using one of the subfamilies; we demonstrated a model
selection approach that indicated that the phase difference submodel would be reasonable for
this data set. Furthermore, even when a full torus graph model is used, interpretability of the
results could be enhanced by assessing evidence for reflectional and rotational dependence
separately; that is, instead of putting a single edge based on the test of all four coupling
parameters, we could construct a graph based only on the two parameters corresponding
to rotational (or reflectional) dependence. Finally, in the uniform marginal phase difference
model, the strength of coupling for each type of dependence could be quantified using the
measure we introduced in Section 4.4, which falls between 0 and 1, facilitating comparison
of relative strengths of the connections.

By extending existing models, torus graphs are able to represent a wide variety of multi-
variate circular data, including neural phase angle data. Extensions to this work could study
changes in graph structure across time or across experimental conditions, and could inves-
tigate latent variable models involving hidden states, or a spatial hierarchy of effects. We
anticipate a new line of research based on torus graphs.
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supplemental text with derivations, proofs, and further detailed discussion of points in the
main text, in addition to extra supporting figures (referenced in the main text) with descrip-
tive captions to assist in interpretation.

Supplement B. Code and tutorial (DOI: 10.1214/19-AOAS1300SUPPB; .zip). Code and
tutorial (latest version will be available at https://github.com/natalieklein/torus-graphs).
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