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A major challenge in contemporary neuroscience is to analyze data from
large numbers of neurons recorded simultaneously across many experimen-
tal replications (trials), where the data are counts of neural firing events, and
one of the basic problems is to characterize the dependence structure among
such multivariate counts. Methods of estimating high-dimensional covaria-
tion based on `1-regularization are most appropriate when there are a small
number of relatively large partial correlations, but in neural data there are
often large numbers of relatively small partial correlations. Furthermore, the
variation across trials is often confounded by Poisson-like variation within
trials. To overcome these problems we introduce a comprehensive method-
ology that imbeds a Gaussian graphical model into a hierarchical structure:
the counts are assumed Poisson, conditionally on latent variables that fol-
low a Gaussian graphical model, and the graphical model parameters, in turn,
are assumed to depend on physiologically-motivated covariates, which can
greatly improve correct detection of interactions (non-zero partial correla-
tions). We develop a Bayesian approach to fitting this covariate-adjusted gen-
eralized graphical model and we demonstrate its success in simulation stud-
ies. We then apply it to data from an experiment on visual attention, where
we assess functional interactions between neurons recorded from two brain
areas.

1. Introduction. Neurons communicate primarily through series of rapid elec-
trical discharges known as action potentials or spikes, which take place over ap-
proximately 1 millisecond (ms); see Figure 1. Sequences of spikes (or spike trains),
rather than individual spikes, encode how an animal responds to a stimulus or exe-
cutes a movement. Spike trains tend to be irregular, so it is natural to model them as
arising from a point process, for example a Poisson process, or to model the num-
ber of spikes in time bins as random variables that follow, for example, a Poisson
distribution. In fact, modeling of spike trains was a major motivation for develop-
ment of point process theory and methods (Cox and Lewis, 1972; Perkel, Gerstein,

MSC 2010 subject classifications: Primary 60K35, 60K35; secondary 60K35
Keywords and phrases: Bayesian inference, Gaussian graphical models, Gaussian scale mixture,

high dimensionality, lasso, latent variable models, macaque prefrontal cortex, macaque visual cortex,
Poisson-lognormal, sparsity, spike-counts.

1

http://www.imstat.org/aoas/


2 G. VINCI ET AL.

and Moore, 1967a,b). While a faculty member at the University of Chicago, Steve
Fienberg interacted with one of the major figures in mathematical modeling of in-
teracting neurons, Jack Cowan (Wilson and Cowan, 1972), and this led Steve to
work on a foundational question: What simple principles can be used to generate
point process models of neurons? After taking a crack at this, and publishing a short
paper, Steve summarized the field in a very nice review article (Fienberg, 1974),
which provides a great snapshot of the state of data analysis at that time. Back
then the focus was almost entirely on analytically tractable methods, so the subject
of Steve’s review was diffusion models, and their extensions, applied to sponta-
neously active neurons (that is, neurons recorded in vitro, having been removed
from a living animal). The main results involved characterizing the stochastic pro-
cess from simple assumptions and determining the resulting waiting-time distribu-
tion for boundary crossings, where, for neurons, the waiting times become times
between successive spikes. Steve ended his article with a discussion of model fit-
ting, and said, “Little in the way of statistical methodology is available to help with
the problem of discriminating among intrinsically different models providing ade-
quate fits to a set of data.” When Steve was writing this, one of the most important
new ideas in statistics, generalized linear models, had just been developed and, as
computer power increased and desktop computers became standard equipment in
statistical research environments, resulting techniques became practical and could
be applied to solve many of the problems Steve had discussed (Brillinger, 1988). It
took a long time until such approaches began to be applicable to a variety of animal
experiments, and to penetrate the literature in neurophysiology (Kass, Ventura, and
Brown, 2005; Kass et al., 2018).

As recording technologies have progressed, neurophysiology has continued to
generate interesting statistical problems. Even though many studies rely on results
involving individual neurons, much of the emphasis has shifted to multivariate ef-
fects in multiple-neuron data. In this paper, we analyze data from multiple neurons
recorded during an experiment on the neurophysiology of attention. We all know
that, when faced with a task, we are likely to perform better if we pay attention to
what we are trying to do. But what are the mechanisms by which the brain allocates
attention? This question has been posed with considerable experimental precision
in studying visual processing by non-human primates and there is a substantial lit-
erature on the neurophysiological basis of visual attention (Maunsell, 2015). The
data we consider here come from two key regions of the brain that are involved in
visual processing. The first, prefrontal cortex (PFC) is generally considered to be
involved with aspects of control and, in particular, control of attention. The second,
area V4, is a mid-level visual region, meaning that it receives inputs from earlier
visual-processing regions and sends outputs to later regions, and there is good ev-
idence of changes in activity among neurons in V4 when a subject pays attention



ADJUSTED REGULARIZATION IN LATENT GRAPHICAL MODELS 3

A

B

C

FIG 1. (A) Sketch of primate brain with the approximate recorded regions of prefrontal cortex (PFC)
and visual area V4 indicated in blue and green, respectively. (B) Utah array with 10x10 recording
electrodes shown next to a penny to compare sizes. Utah arrays implanted in each of PFC and V4 of
a non-human primate recorded the spikes of neurons. (C) In each trial of the experiment, spike trains
of V4 and PFC neurons were recorded simultaneously. Each row in the diagram is the spike train for
one neuron in a particular trial, with spike times being indicated as vertical tick marks. The spike
counts over the 500 ms are shown on the right.

to a visual stimulus. What is not known are the ways the neural networks in these
areas cooperate, and the extent to which there are changes in patterns of activity,
both within and across areas, when the subject pays attention. Thus, the statisti-
cal challenge was to construct a framework for identifying patterns of covariation
in the activity of many neurons recorded, simultaneously, from PFC and V4. As
we will next explain, the methods we have developed should be useful in various
contexts, but especially for studies involving spike trains among cortical neurons,
meaning neurons residing within the cerebral cortex, the part of the brain most
closely associated with higher-level processing.

A small subset of the data is shown in Figure 1. As illustrated there, each ex-
perimental trial consisted of multiple spike trains recorded over 500 ms: each row
in the diagram is the spike train for one neuron, with the whole set of neural spike
trains being recorded simultaneously on one particular experimental trial. The total
number of spikes for each neural spike train, known as that neuron’s spike count,
is shown on the right. Here we follow a standard simplification by analyzing the
spike counts instead of the spike trains. Although the approach we report here could
be extended to point processes, we chose to tackle this simpler problem first be-
cause, as we will indicate, describing multivariate interactions among the counts
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was itself a substantial project. In this context, typical questions of scientific inter-
est would be, How strong is the covariation among neurons within PFC and V4,
and how strong is the covariation across these two regions? How does this covari-
ation change when the animal pays attention? We assess covariation in terms of
partial correlation within Gaussian graphical models (GGMs). Partial correlation
serves to identify the unique association of pairs of neurons, based on input signals
that are not common to other recorded neurons. In a GGM, the d-dimensional data
vector follows a multivariate Gaussian distribution having a precision matrix (in-
verse covariance matrix) Ω, and edges connect nodes wherever there are nonzero
partial correlations. Because our data set, like many others, involves moderately
large numbers of nodes (here, the neurons), i.e., d is moderately large, estimation
of Ω requires some form of regularization, and it would be natural to consider
the graphical LASSO and its variants, which use `1 regularization (Yuan and Lin,
2007; Ravikumar et al., 2011; Chandrasekaran et al., 2012). However, two major
complications arise. First, the correlation across repeated trials between the spike
counts of two neurons is corrupted by Poisson-like variation within the trials of
each neuron, and this attenuates the estimates of across-trial correlations (Behseta
et al., 2009; Vinci et al., 2016). Second, methods based on `1 regularization are
better suited to estimate sparse networks (Rothman et al., 2008; Ravikumar et al.,
2011) but in the context of spike count data, networks are not typically very sparse.
In previous work we handled the first problem for pairs of neurons using bivariate
hierarchical models (Vinci et al., 2016), where pairs of spike counts were assumed
to be Poisson with bivariate log-normally distributed latent means; correlation be-
tween the latent means can then be thought of as a Poisson de-noised version of
spike count correlation. We also handled the second problem, while ignoring the
first, by allowing the LASSO penalty to vary with the pair of neurons based on in-
formative covariates (Vinci et al., 2018a), which improved the detection of correct
edges and the accuracy of partial correlation estimates. In this paper we combine
those two previous strategies to provide a more comprehensive solution. The fun-
damental idea is that the observations (here, the spike counts) are considered to
depend on latent variables (here, the logs of their Poisson means) that follow a
Gaussian graphical model where partial correlations are zero with probabilities de-
termined by covariates.

The key to our approach is the availability of informative covariates, which rests
on well-documented neurophysiology concerning correlation among pairs of cor-
tical neurons. In several studies, Pearson correlation has been shown to depend
strongly on both inter-neuron distance (physical distance between the neurons) and
tuning curve correlation (similarity of the two neurons’s average activities over dif-
ferent stimuli): the dependence is typically weaker at larger inter-neuron distance,
and stronger for larger tuning-curve correlation (Smith and Sommer, 2013; Goris,
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Movshon, and Simoncelli, 2014; Yatsenko et al., 2015; Vinci et al., 2016). These
covariates are available, but their effects may vary across brain areas, neuron types,
and recording techniques. In Vinci et al. (2018a) we introduced informative covari-
ate vectors Wij composed of inter-neuron distances and tuning curve correlations
to estimate a GGM using a Bayesian `1 regularization framework (the graphical
LASSO with adjusted regularization, or GAR), where partial correlations between
neurons i and j can be penalized differently according to a data driven function of
Wij . Through an extensive simulation study we showed that this physiologically-
motivated procedure performs substantially better (in terms of correct edge detec-
tion and accuracy of partial correlation estimates) than off-the-shelf generic tools,
including not only graphical LASSO but also several of its variants that have ap-
peared in the literature, the adaptive graphical LASSO (Fan et al., 2009), the latent
variable graphical model (Chandrasekaran et al., 2012), and Bayesian graphical
LASSO (Wang, 2012). Improvements in functional connectivity estimation pro-
vided by auxiliary variables had previously been observed in analyses of other
kinds of neural data by either using a weighted `1 penalty on the precision matrix,
with weights taken to be inverse functions of metrics of the strength of anatomical
connections (MEG data, Pineda-Pardo et al. (2014); fMRI and dMRI data, Ng et
al. (2012); where the strength of anatomical connections were taken to be the fiber
density and fiber count between regions, respectively), or by constraining the sup-
port of the precision matrix to reflect structural connections (fMRI data, Hinne et
al. (2014); the zeros were imposed in the precision matrix where structural connec-
tions were not found). However, those studies differ from Vinci et al. (2018a) in
that the dependence of the regularization on the covariates Wij was pre-specified
rather than learned from the data. In Vinci et al. (2018a), GAR used thresholding of
estimated partial correlations to set edges to zero. Here, we instead use spike-and-
slab priors where the probability of zero for the (i, j) partial correlation depends on
Wij , and we let the dependence on Wij be data driven. We also include a Poisson
observation model as in (Vinci et al., 2016) to avoid attenuation of correlation.

In Section 2 we provide details about our latent covariate-adjusted GGM within
a Poisson-lognormal multivariate hierarchical model, and we develop Bayesian
methods for estimation in Section 3. Our approach can also treat other exponential
families, and thus provides a methodology for covariate-adjusted regularization in
generalized graphical models. Section 3 also provides methods to infer graphs with
signed edges by controlling the Bayesian false discovery and false non-discovery
rates of edge detection. In Section 4 we apply our methodology to the spike count
data from areas PFC and V4, and we use inter-neuron distance as the auxiliary
quantity Wij . In Sections 4.1 and 4.2, and in Appendix A (Vinci et al., 2018b), we
demonstrate the benefit of our methodology compared to competing methods, and
in Section 5 we add a few remarks, especially concerning opportunities for future
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research.

2. A Bayesian hierarchical model to include auxiliary variables. Assume
that X(1), ..., X(n) iid∼ N(µ,Ω−1) are n independent and identically distributed
(iid) d-dimensional Gaussian random vectors with mean vector µ and covariance
matrix Ω−1. In our context, X(1), ..., X(n) are the latent log means of the observed
spike counts Z(1), ..., Z(n) of d neurons in n identical experimental trials. Even
though trials are identical, the neurons’ mean spike counts, also called firing rates,
can vary from trial to trial due to several sources of variability, including attention,
arousal, and adaptation (Churchland et al., 2011; Goris, Movshon, and Simoncelli,
2014; Vinci et al., 2016). We can therefore think of Ω−1 as containing de-noised
versions of spike count covariances. Goris, Movshon, and Simoncelli (2014) and
Vinci et al. (2016) showed that Gamma or lognormal distributions provide adequate
fits to latent firing rates, hence our choice of a multivariate normal distribution to
model the joint vector of log firing rates.

To analyze the neural data in Section 4, we further assume that the d-dimensional
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where the dependence structure of the observed spike counts Z(r) is governed by
the dependence structure of their latent log firing rates X(r). Vinci et al. (2016)
showed that the hierachical model in Equation 2.1 provides a good fit to the spike
counts of pairs of neurons (d = 2).

In Bayesian GGMs, a prior h is assumed for the precision matrix Ω, and it is
often taken to be a product of Laplace distributions over the entries ωij of Ω (Wang,
2012), that is:

(2.2) h(Ω | (λij)i≤j) ∝
∏
i≤j

lij(ωij) I(Ω � 0),

where lij(ω) ∝ e−λij |ωij |, I(Ω � 0) constrains the support of the distribution h on
the positive definite cone of d × d symmetric matrices, thereby ensuring ωii > 0
for all i = 1, ..., d, and the parameter λij determines the amount of shrinkage to-
wards zero of ωij . In this framework, the maximum a posteriori estimator of Ω
corresponds to the graphical LASSO (Yuan and Lin, 2007). Here we use a more
general spike and slab type prior (George and McCulloch, 1997), replacing the
Laplace distribution lij in Equation 2.2 by a two-component mixture composed of
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a point-mass at zero with mixing proportion πij , and a Gaussian scale mixture dis-
tribution pij centered at mij . The point-mass component allows exact zero entries
in Ω (i.e. Ω can be sparse), which might induce better concentration around zero
of the smaller partial correlation estimates when the graph is indeed locally sparse.
Banerjee and Ghosal (2015) and Wang (2015) had previously used a spike and slab
prior to estimate graphs, but they assumed the same parameters across all entries
of Ω and took pij to be a Laplace distribution, which is centered at zero. However,
allowing for non-zero mean parameters mij , as we do here, can be useful to better
regularize locally dense precision matrices Ω, where many entries are non-zero, as
might happen with neural data. The analytic expression for our spike and slab prior
is:
(2.3)

h(Ω | (λij ,mij , πij)i≤j) ∝
∏
i≤j
{πijpij(ωij) + (1− πij)δ(ωij)} I(Ω � 0),

where δ(0) =∞ and δ(x) = 0 for all x 6= 0 is the Dirac delta function, πij ∈ [0, 1],
πii = 1 for all i,

(2.4) pij(ω) =

∫
λij
v
φ

(
λij
v

(ω −mij)

)
dGij(v),

φ(z) is the standard Gaussian density function, and Gij : R → [0, 1] is a cumu-
lative distribution function with Gij(0) = 0 and

∫∞
0 v−1 dGij(v) < ∞ (these

conditions are necessary and sufficient for the existence of pij (Andrews and Mal-
lows, 1974); see Lemma 1, Vinci et al. (2018b)). Without loss of generality, we
assume

∫∞
0 v2dGij(v) = 1, which implies

∫
(ω − mij)

2pij(ω)dω = 1/λ2
ij and

thus allows λij to be interpreted as the rate parameter of pij (see Lemma 1, Vinci
et al. (2018b)). Equation 2.3 includes common modeling choices as special cases,
where typically the prior parameters are the same for all (i, j), and mij = 0:
for example, Gaussian/ridge (Hoerl and Kennard, 1970), Laplace/lasso (Tibshirani,
1996; Yuan and Lin, 2007; Friedman, Hastie, and Tibshirani, 2008; Rothman et al.,
2008; Wang, 2012; Mazumder and Hastie, 2012), spike-and-slab with Laplace den-
sity (Banerjee and Ghosal, 2015; Wang, 2015), Elastic net (Zou and Hastie, 2005),
the latent variable graphical model (Chandrasekaran et al., 2012; Yuan, 2012; Gi-
raud and Tsybakov, 2012), as well as less explored choices; see Appendix A (Vinci
et al., 2018b).

The prior distribution for Ω in Equation 2.3 has a large number of parameters,
but when auxiliary variables are available, it makes sense to let them all depend
on those variables and thus reduce greatly the number of effective parameters, as
we now describe. Assume that q-dimensional auxiliary variables W = {Wij}i<j
that carry information about the network of neurons’ firing rates are available. We
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FIG 2. Example of a d-dimensional dependence graph specified by the hierarchical model in Equa-
tion 2.1, where d = 4 andW is inter-neuron distance, represented here as physical distance. Neuron
pairs (1,2), (1,4), and (2,3) are farther apart than the other pairs, and we assume they are not func-
tionally connected. The precision matrix Ω arises from a generative process that reflects the depen-
dence betweenW and functional connectivity, and here, accordingly, the entries for the three neuron
pairs that are far apart are zero. The Gaussian random vector X ∼ N(µ,Ω) has dependence struc-
ture specified by Ω. The missing edges correspond to zero partial correlations. (Z1, Z2, Z3, Z4) are
the observed spike counts and (X1, X2, X3, X4) their latent log means (firing rates).

incorporate that information in the prior distribution for Ω to model the neuro-
physiological mechanism involving W that gives rise to the neuronal correlation
structure in Ω. For example, if W is inter-neuron distance, then h might produce
covariance structures where two neurons are less dependent if they are farther apart.
An example of a 4-dimensional dependence graph is given in Figure 2. We thus let
the location, rate, and weight parameters in Equations 2.3 and 2.4 depend on W
according to

(2.5) mij = (αiαj)
−1f(Wij),

(2.6) λij = αiαjg(Wij),

(2.7) πij = η(Wij),

for i 6= j, where f : Rq → R, g : Rq → R+, and η : Rq → [0, 1] are flexi-
ble functions to be estimated from the data (see Figure 5), and α = (α1, ..., αd)
are parameters that ensure that f and g are on the scale of the partial correlations,
ρij = −ωij/

√
ωiiωjj , rather than on the scale of ωij ; more details are in Ap-

pendix C.1.5 (Vinci et al., 2018b). Letting πij , mij , and λij depend on Wij models
the information carried by W about Ω, which, when combined with the observed
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data
(
Z(1), ..., Z(n)

)
, can provide better inferences for Ω if W indeed contains rel-

evant information. If no auxiliary variables are available, the model can still be
used by letting f , g, and η be constants.

This framework generalizes the graphical LASSO with adjusted regularization
(GAR) of Vinci et al. (2018a). GAR assumes that the observation model is the
second line in Equation 2.1, with no Poisson hierarchy, and that the prior distribu-
tion for Ω is a product of Laplace distributions (Equation 2.2) with rate parameters
λij nonparametrically modulated by Wij , as specified in Equation 2.6. Vinci et al.
(2018a) applied GAR to square-rooted spike count data from macaque areas V1
and V4 with a two-dimensional Wij composed of inter-neuron distances and tun-
ing curve correlations; the square-root transformation was used to improve the fit to
a Gaussian distribution (Georgopoulos and Ashe, 2000; Yu et al., 2009; Kass et al.,
2014). The estimated rate function g in Equation 2.6 was non-linearly increasing
with inter-neuron distance and decreasing with tuning curve correlation.

Next, we present Bayesian algorithms to estimate the model described above,
and we fit it to multiple neuron spike data in Section 4. Estimating the Poisson-
lognormal model (Equation 2.1) in high dimensions can be heavily corrupted by
noise (Inouye et al., 2017), and we expect incorporation of auxiliary quantities W
to improve estimation.

3. Estimating the precision matrix and the graph. In this section we de-
scribe the Bayesian inference of Ω in the model described in Section 2. We start
with full and empirical Bayes algorithms for the case when the Gaussian compo-
nent X is observed (section 3.1), because they can be useful for Gaussian data, in
neuroscience or other fields. We can also extend these algorithms easily when X is
latent in an exponential family observation model; Section 3.2 treats the particular
Poisson lognormal case in Equation 2.1. The full Bayes algorithm uses the Gibbs
sampler to approximate the joint distribution of θ and Ω given Gaussian vectors
Xn =

{
X(1), ..., X(n)

}
, where θ = {f, g, η, α,m, λ}, and m = (m11, ...,mdd)

and λ = (λ11, ..., λdd) are the means and rates of the p.d.f. in Equation 2.4 for
i = j; f, g, η, and α are defined in Equations 2.5, 2.6, and 2.7. We assume that
f , g, and η are step-functions; more flexible nonparametric functions are too hard
to implement at present. The empirical Bayes algorithm computes first a point es-
timate θ̂ as the maximum of its marginal posterior, using an EM algorithm that
allows f , g, and η to be of any parametric or nonparametric forms, and then esti-
mate Ω through the posterior distribution h(Ω | Xn,W, θ̂).

We assign a prior density to θ of the form

(3.1) h(θ |W ) ∝ h∗(θ |W ) A(θ,W )−1,

whereA(θ,W ) is the intractable but bounded normalizing constant of Equation 2.3
(see Lemma 2, Vinci et al. (2018b)), and h∗(θ |W ) is a density on θ. Note that con-
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ditioning on W in Equation 3.1 means that the prior on θ depends on the auxiliary
quantity W , but it is θ and W together that specify the parameters in Equation 2.3.
We combine Equations 3.1 with the generative model h(Ω | θ,W ) (Equations 2.3
to 2.7), a prior distribution h(µ) on µ (e.g. h(µ) ∝ 1; see Appendix C.1.3, Vinci et
al. (2018b)), and the Gaussian likelihood function L(µ,Ω;Xn), to obtain the full
joint posterior distribution

(3.2) h(µ,Ω, θ | Xn,W ) ∝ h(µ) h(Ω | θ,W ) h(θ |W ) L(µ,Ω;Xn),

which yields posterior means or maximum a posteriori estimates for θ, µ, and Ω.

3.1. Posterior computation and estimation for observed Gaussian data. The
posterior distribution in Equation 3.2 is not analytically tractable because of the
positive definiteness constraint on Ω and the point-mass components in Equa-
tion 2.3 (when πij > 0). Instead, we use posterior simulations from the augmented
quantity (µ,Ω, θ, Y, V ), with posterior distribution

(3.3) ha(µ,Ω, θ, Y, V | Xn,W ) ∝ h(µ) ha(Ω, θ, Y, V |W ) L(µ,Ω;Xn),

where V = [Vij ] and Y = [Yij ] are nuisance parameters such that

(3.4) h(µ,Ω, θ | Xn,W ) = lim
a→0+

∫ ∑
Y ∈Y

ha(µ,Ω, θ, Y, V | Xn,W ) dV

and Y is the set of all 0-1 symmetric matrices with positive diagonal; in practice
we take a small a, e.g. a2 = 10−8. Basically, we replace the point mass component
in Equation 2.3 by a Gaussian distribution with a very small variance a2, so that it
is highly peaked around zero.

The second term on the right hand side of Equation 3.3 is given by
(3.5)
ha(Ω, θ, Y, V |W ) ∝ ha(Ω | θ,W, Y, V ) ha(V | θ,W, Y ) h(Y | θ,W ) ha(θ |W )

where
(3.6)
ha(Ω | θ,W, Y, V ) =

∏
i≤j

τijφ (τij(ωij − Yijmij)) I(Ω � 0) B(θ,W, Y, V, a),

with τij = Yijλij/Vij + (1− Yij)/a and Yii ≡ 1,∀i,

(3.7) ha(V | θ,W, Y ) = B(θ,W, Y, V, a)−1
∏
i≤j

gij(Vij) A(θ,W, Y, a),
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(3.8) h(Y | θ,W ) =
∏
i<j

π
Yij
ij (1− πij)1−Yij ,

(3.9) ha(θ |W ) ∝ h∗(θ |W ) A(θ,W, Y, a)−1,

B(θ,W, Y, V, a) is the normalizing constant of ha(Ω | θ,W, Y, V ), A(θ,W, Y, a)
is the normalizing constant of ha(V | θ,W, Y ), h∗ is as in Equation 3.1, and gij is
the p.d.f. ofGij in Equation 2.3. In Lemma 2 (Vinci et al., 2018b) we show that the
normalizing constants are finite and away from zero, that is 1 < A(θ,W, Y, a) <
∞ and 1 < B(θ,W, Y, V, a) <∞, so that Equations 3.6, 3.7, and 3.9 are well de-
fined distributions. Lemma 3 (Vinci et al., 2018b) shows that the quantity (µ,Ω, θ)
of a sample (µ,Ω, θ, Y, V ) drawn from ha(µ,Ω, θ, Y, V | Xn,W ) in Equation 3.3
gets closer to a genuine sample from h(µ,Ω, θ | Xn,W ) in Equation 3.2 as a →
0+.

The representation prescribed by Equations 3.3, 3.6, and 3.7 is computationally
convenient because it circumvents approximating intractable normalizing constants
(mainly due to the positive definiteness constraint Ω � 0 in Equation 2.3) and
provides a framework where sampling (Ω | rest) does not depend on the mixing
distributionsGij’s. Using a specific Gaussian mixture in Equation 2.4 only requires
a different sampling of (Vij | rest) (Equation C.1, Appendix C.1, Vinci et al.
(2018b)), which permits many different regularizations of the precision matrix Ω;
more details and examples are in Appendix A (Vinci et al., 2018b).

Full Bayes estimation. In Appendix C.1 (Vinci et al., 2018b) we describe a Gibbs
sampler algorithm to draw samples from the posterior distribution of (µ,Ω, θ, Y, V |
Xn,W ) in Equation 3.3, assuming that the model components f , g, and η in Equa-
tions 2.5, 2.6, and 2.7 are the step functions
(3.10)

f(w) =

Kf∑
k=1

γkIAk(w), g(w) =

Kg∑
k=1

βkIBk(w), η(w) =

Kη∑
k=1

χkICk(w),

where {A1, ..., AKf }, {B1, ..., BKg}, and {C1, ..., CKη} are partitions of the do-
main of the auxiliary variables W , and ID(w) = I(w ∈ D) is the indicator
function. Hence, sampling f , g, and η reduces to sampling their coefficients γ =

(γ1, ..., γKf ) ∈ RKf , β = (β1, ..., βKg) ∈ RKg+ , and χ = (χ1, ..., χKη) ∈ [0, 1]Kη .
The numbers of stepsKg,Kf , andKη and their locations can be chosen so that the
sample partial correlations plotted against W are approximately constant within
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each step. We use step functions because they are flexible, if not smooth, and they
allow the Gibbs sampler to run. Other functions are too difficult to implement at
present. In the future we may be able to implement continuous nonparametric func-
tions (e.g. a kernel smoother with a few degrees of freedom) as in the empirical
Bayes approach.

We also assume that mii and Vii in Equation 2.4 are such that mii ≤ 0 and
V 2
ii ∼ Γ(1, 1) for all i = 1, ..., d. The Bayesian counterparts of several penalized

MLE methods, such as the Glasso (Yuan and Lin, 2007) and the Sparse-Low rank
model (Chandrasekaran et al., 2012), require the same conditions.

Empirical Bayes estimation. Instead of jointly sampling θ and Ω given the data,
we estimate θ = {f, g, η, α,m, λ} as the maximizer of the marginal posterior
distribution

θ̂ = arg max
θ

h(θ | Xn,W )(3.11)

= arg max
θ

∫ ∫ ∫ ∑
Y ∈Y

ha(µ,Ω, θ, Y, V | Xn,W ) dV dµ dΩ,

and the precision matrix Ω is then inferred from the posterior distribution h(Ω |
Xn,W, θ̂). We solve Equation 3.11 using the Expectation-Maximization algorithm
described in Appendix C.2 (Vinci et al., 2018b). This simpler setting allows f, g,
and η to be of any functional form, either parametric or nonparametric.

3.2. Posterior computation and estimation for latent Gaussian data. We ex-
tend our graph estimation approach to the inference of Ω under the hierarchical
model in Equation 2.1 by supplementing the previous algorithms with a mecha-
nism to sample X given Z and the rest of the parameters and variables. Full and
empirical Bayes estimation algorithms are given in Appendix C.3 (Vinci et al.,
2018b) to obtain estimates of θ and Ω from the posterior distribution
(3.12)
ha(µ,Ω, θ, Y, V,Xn | Zn,W ) ∝ ha(Ω, θ, Y, V |W )L(µ,Ω;Xn)p(Zn | Xn)

where the first term on the right hand side is defined in Equation 3.5 and

(3.13) p(Zn | Xn) =
n∏
r=1

p(Z(r) | X(r))

is the likelihood of the observed independent random variables Z(1), ..., Z(n) con-
ditioned on X(1), ..., X(n). Appendix C.3 (Vinci et al., 2018b) provides algorithms
to fit the Poisson-lognormal model (Equation 2.1), where X | Z is sampled us-
ing rejection sampling. In Section 4 we apply this model to spike count data from
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macaque visual cortex using inter-neuron distance as an auxiliary variable W . Dif-
ferent observational distributions can be fitted in place of Poisson by just modifying
the sampling step of X given Z and all other parameters. For instance, if p(z | x)
is binomial or negative-binomial, then the sampling of X | rest may be performed
by using rejection sampling or the data augmentation strategy based on the Pólya-
Gamma distribution (Polson et al., 2013).

3.3. Graph estimation. Once the posterior distribution of (Ω | Xn,W ) is com-
puted, we use it to estimate the signed graph of the network, E(δ) = [Eij(δ)],
where the edge between nodes i and j is defined as

(3.14) Eij(δ) =


1, ρij > δ,
−1, ρij < −δ,

0, |ρij | ≤ δ

for some threshold δ ∈ [0, 1). Several estimates are listed below.

DEFINITION 1. A plug-in signed δ-graph is the signed matrix Ê(δ) = [Êij(δ)]
where

(3.15) Êij(δ) =


1, ρ̂ij > δ,
−1, ρ̂ij < −δ,

0, |ρ̂ij | ≤ δ,

and ρ̂ij is an estimate of ρij .

DEFINITION 2. A posterior signed δ-graph performs a Bayesian test of the
hypotheses H0 : |ρij | ≤ δ, H1 : ρij > δ, and H2 : ρij < −δ and can be obtained
as the signed matrix Ê(δ) = [Êij(δ)] where

(3.16) Êij(δ) = arg max
s∈{−1,0,1}

Pδij(s),

and Pδij(s) = P(Eij(δ) = s | Xn,W ) is the posterior probability that Eij(δ) = s.

DEFINITION 3. A posterior signed (p, δ)-graph is the signed matrix Ê(p, δ) =
[Êij(p, δ)] where

Êij(p, δ) =


1, Pδij(0) < 1− p and Pδij(1) ≥ Pδij(−1),

−1, Pδij(0) < 1− p and Pδij(1) < Pδij(−1),

0, Pδij(0) ≥ 1− p.
(3.17)
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3.4. Edge error detection control. We choose the parameters δ and p of the
graph estimators by controlling edge discovery errors. Let Ê be an estimator of
E(δ). Define the false discovery proportion

(3.18) FDP =

∑
i<j |Êij | (1− |Eij(δ)|)∑

i<j |Êij |
,

and the false non-discovery proportion

(3.19) FNP =

∑
i<j(1− |Êij |)|Eij(δ)|∑

i<j(1− |Êij |)
,

which are, respectively, the proportion of incorrectly detected edges out of all de-
tections, and the proportion of missed true edges out of all non-detections. Further
define the signed false discovery proportion
(3.20)

FDP∗ =

∑
i<j

{
I(Êij > 0)I(Eij(δ) ≤ 0) + I(Êij < 0)I(Eij(δ) ≥ 0)

}
∑

i<j |Êij |
,

which takes into account sign errors of the detected edges. Lemma 5 (Vinci et al.,
2018b) shows that FDP ≤ FDP∗, so that controlling FDP∗ is a more stringent cri-
terion because it also takes into account the sign of the edges. Taking the expecta-
tions of FDP, FNP, and FDP∗ with respect to the Gaussian data Xn conditionally
on the true parameters µ and Ω gives the frequentist false discovery rate

(3.21) FDR = E[FDP | µ,Ω],

false non-discovery rate

(3.22) FNR = E[FNP | µ,Ω],

and signed false discovery rate

(3.23) FDR∗ = E[FDP∗ | µ,Ω].

Bounding either of these edge error metrics is a way to choose the parameters δ and
p of the graph estimators given in Definitions 1, 2, and 3. These metrics are easy to
compute in simulation studies, where the true graph is known, but not otherwise.
For experimental data, we use instead their Bayesian counterparts, obtained by
taking the expectations of FDP, FNP and FDP∗ conditionally on the Gaussian
data Xn and the auxiliary quantity W , yielding

(3.24) FDRΠ =

∑
i<j |Êij |P (Eij(δ) = 0 | Xn,W )∑

i<j |Êij |
,
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FIG 3. Bayesian FDRΠ, FNRΠ, and FDR∗
Π plotted against their frequentist counterparts. Results

obtained from simulated d-dimensional Gaussian vectors, d = 150, with 5580 edges and sample size
n = 5000. The error rates were computed from (p, δ)-graph estimates (Definition 3).

(3.25) FNRΠ =

∑
i<j(1− |Êij |)P (Eij(δ) 6= 0 | Xn,W )∑

i<j(1− |Êij |)
,

and
(3.26)

FDR∗Π =

∑
i<j{I(Êij > 0)P (Eij(δ) ≤ 0 | Xn,W ) + I(Êij < 0)P (Eij(δ) ≥ 0 | Xn,W )}∑

i<j |Êij |

The posterior probability P (Eij(δ) = 0 | Xn,W ) in Equation 3.24 can be inter-
preted as a local false discovery rate, so that the FDRΠ can be viewed as the global
false discovery rate of the set of putative signals (here edges) in a multiple hypoth-
esis testing problem (Efron et al., 2001; Scott et al., 2015). In simulations, FDRΠ,
FNRΠ, and FDR∗Π appear to control their frequentist counterparts (Figure 3; see
also Vinci et al. (2018a)).

3.5. ROC analysis. We use Bayesian edge discovery error rates to build the
graph estimates, as described above, and we evaluate their quality using sensitivity
and specificity:

(3.27) SPEC =

∑
i<j I(Êij = 0)I(Eij(δ) = 0)∑

i<j I(Eij(δ) = 0)
,

(3.28) SENS =

∑
i<j I(Êij 6= 0)I(Eij(δ) 6= 0)∑

i<j I(Eij(δ) 6= 0)
,
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which give the proportions of true edges correctly identified and of missing edges
correctly omitted, respectively. To account for sign detection performance we fur-
ther define the positive and negative sensitivities:

(3.29) SENS+ =

∑
i<j I(Êij > 0)I(Eij(δ) > 0)∑

i<j I(Eij(δ) > 0)
,

(3.30) SENS− =

∑
i<j I(Êij < 0)I(Eij(δ) < 0)∑

i<j I(Eij(δ) < 0)
,

which give the proportions of true positive and true negative edges correctly iden-
tified, respectively. The Receiver Operating Characteristic (ROC) curve displays
(1− SPEC) versus SENS for all possible settings (e.g. values of tuning param-
eters) of a graph estimator. An Area Under the ROC Curve (AUC) close to one
indicates good edge estimation performance, but does not account for the signs
of the connections. A three-class extension of the ROC curve that accounts for
connection sign is the ROC surface given by the graph of SPEC as a bivariate
function of SENS+ and SENS− over the set [0, 1]2. The Volume Under the ROC
Surface (VUS) is a three-class extension of the AUC that takes into account sign
detection performance. A graph with signed edges assigned at random has VUS
1/6 and AUC 1/2. We thus rescale VUS to ease its interpretation, according to
1/2 + (VUS− 1/6)6/10.

4. Estimation of functional connectivity in macaque areas V4 and PFC.
Neural spike train data were recorded simultaneously from visual area V4 and
PFC in the same hemisphere of a macaque monkey (Macaca mulatta) using two
100-electrode Utah arrays (Figure 1), while the animal was performing an orien-
tation change detection task1 (Figure 4). The visual stimuli consisted of drifting
gratings, i.e., alternating light and dark bars that move in a fixed direction within
a circular aperture displayed on a screen in front of the animal. Neurons in area
V4 fire more rapidly when the drifting gratings are placed in a particular region of
visual space, known as that neuron’s receptive field (RF). In the task, one stimulus
was placed in the location of the aggregate RFs of the V4 neurons, which was in
the lower left corner of the visual space, indicated by the dashed circles in Fig-
ure 4, and the other stimulus in the opposite hemifield, in the lower right corner.
The animal’s task (successful completion of which resulted in a juice reward) was
to make an eye movement (marked in orange) from the central blue fixation spot to

1All procedures were approved by the Institutional Animal Care and Use Committee of the Uni-
versity of Pittsburgh, and were in compliance with the guidelines set forth in the National Institutes
of Health’s Guide for the Care and Use of Laboratory Animals.
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Fixation (300-500 ms) Sample (400 ms)

Target (400 ms) Saccade (Correct)

non-targets               targets

Blank (300-500 ms)

60% 40%

Valid

(90%)

Invalid (10%)

FIG 4. The experiment. A trial proceeded as follows: after an initial period of 300 to 500 ms of
fixation on the blue central spot in the center of the visual space, a sample stimulus was presented,
which consisted of two drifting gratings with orthogonal orientations appearing in the aggregate
receptive field (RF) of the V4 neurons being recorded, indicated by the dashed circle in the visual
space, and its opposite hemifield. The stimulus lasted for 400 ms and was followed by a blank period
of 300 to 500 ms. After this blank period, there was a 40% chance that a target (a changed orientation
in either the RF (“valid side") or its opposite hemifield (“invalid side") appeared, and a 60% chance
that the sample stimulus repeated, called a “non-target". The animal’s task was to make an eye
movement (a saccade, marked in orange) from the central blue fixation spot to the location where
the grating changed orientation. The animal was cued in blocks of trials to attend to (pay attention
to) either the aggregate V4 RF (“attend in”) or the location in the opposite hemifield (“attend out”),
while maintaining fixation on the central blue spot. We analyze the sample period, when the animal
presumably prepared to detect a change in grating orientation. The animal’s attention was validated
by behavioral metrics, including a decrease in response time and increase in hit rate when the target
appeared at the cued location as compared to the uncued location.

the location where the grating changed orientation. The drifting gratings changed
in a subtle way (a shift in orientation) that signaled the animal to respond with an
eye movement, and the animal was cued in blocks of trials to attend to one of the
two stimuli, either in the receptive fields of the V4 neurons being recorded (“attend
in”) or the location in the opposite hemifield (“attend out”). The four experimental
conditions were therefore defined by the combination of two variables:

1. ORIENTATION ϑ: a drifting grating at orientation degree ϑ = 135 or 45
was presented in the RF, and in the orthogonal orientation in the opposite
hemifield.

2. ATTENTION ζ: the animal was cued to either attend towards (ζ = 1, attend
in) or away from (ζ = 0, attend out) the receptive field.

This experiment was novel in that it directly investigated functional interactions
among large populations of neurons in two brain areas thought to play critical
roles in visual attention. A key feature of this experiment (like many others in neu-
rophysiology) involves the substantial number of repeated observations, or trials,
under identical experimental conditions. The trial-to-trial variation can provide a
means of assessing cooperative activity among neurons. The questions we seek to
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FIG 5. Step functions f(W ), g(W ), and η(W ) fitted to the data in condition (ϑ, ζ) = (45, 0): f ≈ 0
suggests that the partial correlations are centered around zero for all values of W , and η ≈ 1, that
the shrinkage induced by g is strong enough and/or there is not a large proportion of exactly zero
Ω entries; g increases with W , which means that the partial correlations are penalized more for
neurons that are farther apart.

answer are, How strongly connected, in the sense of covariation of firing rates, are
the neurons within V4 and within PFC? How strongly connected are the neurons in
PFC to those in V4? How does this connectivity change with attention? How does
connectivity change with the orientation of the grating?

A total of 666, 759, 954, and 1077 identical repeat trials of length 500ms, start-
ing at the stimulus onset of epoch “Sample (400ms)” in Figure 4, were recorded
under the four task combinations (ϑ, ζ) ∈ {(135, 1), (45, 1), (135, 0), (45, 0)}, re-
spectively, and 264 candidate neuronal units were identified across the two multi-
electrode arrays in one recording session. For our statistical analysis we retained
only the 148 neurons (71 in V4 and 77 in PFC) that had average firing rates greater
than 4 spikes per second in all four conditions. Their firing rates had maximum
67.46 spikes/s, mean 18.96, and 2.5th and 97.5th percentiles 4.78 and 56.80.

To estimate the functional connectivity between and within areas V4 and PFC
we fitted the 148-variate Poisson-lognormal (PLN) model (Equation 2.1) in each
of the four conditions using the full Bayes algorithm (Algorithm 1 in Appendix C.3,
Vinci et al. (2018b)), which provides estimates of the conditional dependence graphs
of the latent log firing rates X , with edges representing functional connections.
Specifically, we let the prior distribution for Ω be Equation 2.3, with the Gaussian
mixture distribution pij (Equation 2.4) taken to be normal with mean mij and rate
λij modulated by functions f(Wij) and g(Wij) (Equations 2.5 and 2.6), respec-
tively, and point-mass weight πij modulated by η(Wij) (Equation 2.7). Here, the
auxiliary quantity Wij is inter-neuron distance, measured by the distance between
electrodes. Neuronal dependences have been observed to weaken when neurons
are physically further apart in several cortical areas (Smith and Kohn, 2008; Smith
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and Sommer, 2013; Goris, Movshon, and Simoncelli, 2014; Yatsenko et al., 2015;
Vinci et al., 2016, 2018a), so we expect this quantity to be useful to improve graph
estimation. We let the regularizing functions f , g, and η be step functions2 with
five steps each, the last step modeling distances W greater than 5mm, which cor-
responds to pairs of neurons on different arrays; the first four steps are taken at
the quartiles of the interneuron distances that are less than 5mm, corresponding to
pairs of neurons on the same array. We did not consider including a low-rank co-
variance structure because the optimal number of factors in a factor model fitted to
the square-rooted spike counts of all 148 neurons (using ten-fold cross validation;
see Section 4.1 for details) was about 22 factors in each condition, suggesting that
the neurons’ covariation structure was not low dimensional. Here, the animal was
awake, while the very low-dimensional structure found by Ecker et al. (2014) was
in data recorded under anesthesia.

Figure 5 shows the fitted functions f , g, and η in condition (ϑ, ζ) = (45, 0);
fitted models in the other conditions were similar: f(W ) is close to zero, which
suggests that the partial correlations are centered around zero for all values of W ,
and η(W ) is close to one, likely because the shrinkage induced by g(W ) is strong
enough and/or there isn’t a large proportion of exactly zero Ω entries. However,
g increases with W , which suggests that incorporating W in the model helped
estimate the network (Vinci et al. (2018a); see also Figure 8). We drew similar
conclusions by inspecting the plot of unregularized square-rooted sample spike
count partial correlations versus inter-neuron distance (Figure 11, Appendix D,
Vinci et al. (2018b)): although they are noisy versions of the log firing rate partial
correlations, their values appear to be centered at zero and their spread to decrease
with inter-neuron distance. Therefore, to avoid the excess variability that typically
results from fitting non-existant or weak effects, we re-fitted the multivariate PLN
model to the data, assuming f = 0 and η = 1, i.e. πij = 1 and mij = 0 for all
(i, j) in Equations 2.3 and 2.4. Appendix D (Vinci et al., 2018b) contains some
diagnostic plots that suggest a good model fit. Figure 6C shows the re-estimated
penalty function g(W ) in the four task combinations: just as in Figure 5, g increases
with inter-neuron distance W . Note that W > 5 includes all the neuron pairs that
are in different brain areas, so that the penalty across areas is separate from that
within areas. The fitted penalty across areas is very strong, indicating much greater
sparsity (much less connectivity) across areas than within areas.

Figure 6A displays several versions of the graphs estimated by applying 5%
Bayesian FDR∗ control in the four experimental conditions. For ease of visual com-

2The full Bayes algorithm is currently implemented with f , g, and η in Equations 2.5, 2.6, and
2.7 being step functions, with steps at the quintiles of the distribution of Wij . The empirical Bayes
estimator is more attractive because f , g, and η can be any parametric or nonparametric functions,
but the fitting algorithm is very computationally expensive.
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FIG 6. (A) Functional connectivity graphs of log firing rates of neurons in PFC (round nodes) and V4
(squared nodes); 5% Bayesian FDR∗ (Equation 3.26, Section 3.3; (p, δ)-graphs where δ was taken
to be equal to the largest of the 20th percentiles of the magnitudes of the partial correlation estimates
across the four conditions). We show edges that appear only at orientation 135 degrees but not at
45 degrees, only at orientation 45 degrees but not at 135 degrees, and edges that appear for both
orientations. Blue and red edges are positive and negative connections, respectively; we blackened
the nodes that connect the two areas. (B) Correlations of log firing rates of the fitted PLN models
under the attend in and attend out conditions, for both orientations, among pairs of neurons for which
one neuron is in V4 and the other is in PFC. The magnitudes of correlations tend to be diminished
for the attend in condition (95% confidence intervals for the linear regression slopes of attend in on
attend out correlations are [0.74, 0.76] and [0.75, 0.77], respectively). (C) The estimated function g
(Equation 2.5) with 95% posterior intervals. The function increases with inter-neuron distanceW in
all conditions, which implies a stronger penalization on partial correlations for pairs of neurons that
are further apart.

parison, for both attend in and attend out conditions we have displayed edges that
appear only at orientation 135 degrees but not at 45 degrees, only at orientation 45
degrees but not at 135 degrees, and edges that appear for both orientations (i.e., in-
tersection of the two graphs under the two orientations). Table 1 contains the num-
bers of edges in these graphs, and the ratio (#intersection edges/#union edges) ∈
[0, 1], to quantify the similarity of functional connectivity induced by the two stim-
ulus orientations (45 and 135 degrees) in each of the two attention conditions.
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attend in attend out
135◦ only 208 284
45◦ only 277 325

intersection 147 251
graph similarity 23% 29%

TABLE 1
Number of edges and similarity of the graphs (135 degrees versus 45 degrees in the case of attend in

or attend out) displayed in Figure 6A.

There is substantial functional connectivity in pairs of neurons across regions, as
well as within regions; there is somewhat diminished connectivity (in terms of
number of edges) for the attend in conditions as compared with the attend out, and
somewhat greater connectivity for orientation 45 degrees than for 135 degrees.

We also observed diminished connectivity within V4 and PFC for the attend in
conditions as compared with the attend out in terms of edge correlation magnitudes
(not shown but similar to Figure 6B). The tendency for diminished magnitude of
correlation for the attend in condition is similar to previous findings of reduced
trial-to-trial pairwise correlation with attention found within single visual areas
(Cohen and Maunsell, 2009; Mitchell, Sundberg, and Reynolds, 2009; Snyder,
Morais, and Smith, 2016). Another report (Ruff and Cohen, 2016), however, found
that spike count correlations between visual cortical areas V1 and MT increased
when spatial attention was directed to the joint receptive fields of the recorded neu-
rons. One possible explanation lies in the role of these regions in spatial attention:
V1 is thought to provide feedforward input to MT neurons, while PFC has more
often been implicated in sending feedback connections to visual areas, including
V4. It is also of interest to examine pairwise correlation structure across areas,
which we can do here because neurons were recorded simultaneously in V4 and
PFC. Figure 6B displays a plot of the fitted correlations (the correlations among the
latent Poisson log means, representing the log firing rates) under the attend in and
attend out conditions, for both orientations, among pairs of neurons for which one
neuron is in V4 and the other is in PFC. Once again we find diminished magnitude
of correlation in the attend in condition.

Inverting the estimated precision matrix gives the covariance matrix, from which
we may compute R2 using a standard formula from multivariate analysis. In par-
ticular, we may choose a single neuron and ask how well its response (its log firing
rate) may be predicted based on all the other neurons within its area, or based on
all the neurons in the other area. Figure 7 displays plots ofR2 for all neurons in V4
and PFC, where the x-axis is R2 using neurons within the same brain area, and the
y-axis isR2 using the neurons in the other area. These plots show two things. First,
the prediction of a given neuron’s firing rate tends to be better when predicting
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FIG 7. Coefficients of determinations R2 of linear regressions of the log firing rate of each neuron in
V4 and PFC on the log firing rates of all other neurons within the same brain area (x-axis) and in
the other area (y-axis). The values of R2 were determined from the fitted precision matrix.

from neurons within the same brain area than from neurons in the other area. This
is not surprising. More interesting is the strong relationship between the two, and
the relatively small discrepancy between these predictions. This is especially true
for area V4 in the attend out condition: the blue dots in the lower left panel cluster
strongly around a line that is close to the diagonal; that is, a V4 neuron whose ac-
tivity is highly predictable (or much less predictable) from other V4 neurons is also
highly predictable (or much less predictable) from PFC neurons. This is a striking
result, suggesting that major sources of trial-to-trial covariation are shared across
these two areas, especially in the attend out condition.

4.1. Analyses with simpler graph estimators. For comparison’s sake, we re-
peated our data analyses with related methods applied to square-rooted spike-
counts (the square root transformation improves the fit of a GGM to count data).
The simplest estimator of the covariance matrix is the sample covariance matrix
(SAM) whose inverse can be used to obtain sample partial correlations that can be
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thresholded to obtain a graph. Specifically we applied the Fisher-transformation to
z-score the partial correlations and then applied classical 5% FDR control (Ben-
jamini and Hochberg, 1995; Benjamini and Yekutieli, 2001) on the p-values. The
graphical LASSO, Glasso (Yuan and Lin, 2007) and its adaptive variant AGlasso
(Fan et al., 2009) are graph estimators based on `1 penalization that favor zeros in
the precision matrix; graph structure can be selected via ten-fold cross-validation
(CV; Fan et al. (2009)). We do not show the graphs estimated using these three
methods, and instead summarize them in Table 2 in Appendix D.3 (Vinci et al.,
2018b), analogously to Table 1. Although the numbers of estimated edges are dif-
ferent than in Table 1, the inferences drawn from these numbers are qualitatively
similar to the PLN results, with the exception that Glasso suggests an increased
connectivity (in terms of number of edges) for the attend in conditions as com-
pared with the attend out, at the 45 degrees orientation.

For the R2 analysis reported in Figure 7, we further considered factor analysis
(FA): we let the data vector S be a noisy inflation of a latent lower dimensional
vector F ∼ N(0, Iq), according to S = AF + ε, where ε ∼ N(0, D), A ∈ Rd×q,
and D is a positive diagonal matrix; this in turn implies Ω−1 = AAT + D. If
q < d/2 then the number of parameters involved (d(q + 1)) is smaller than the
full dimensionality of a d × d symmetric matrix (d(d + 1)/2). For each of the
four experimental conditions, we computed the maximum likelihood estimate of
Ω of the d = 148 neurons assuming a factor structure with q selected via ten-fold
CV. We found that about 22 factors minimized the cross-validated error in each
condition. In Appendix D.3 (Vinci et al., 2018b) Figure 13 we reproduce Figure 7
with SAM, Glasso, AGlasso, and FA. Results from the first three methods appear
to be noisy versions of those in Figure 7. However, because FA allows the data
variables to be close to multicollinear, it produces an uninterpretable plot with all
values of R2 essentially equal to 1.

In the end, we have more faith in the inferences from our covariate-adjusted
PLN model, because in Vinci et al. (2018a) we showed via a large simulation study
that the simpler case of a covariate-adjusted GGM (GAR) applied to square rooted
spike counts with no hierarchical structure in Equation 2.1 improved graph esti-
mation, covariance structure inference, and thereby the accuracy of the results of
scientific investigations, compared to related methods; and in Section 4.2 we pro-
vide additional results that show that covariate-adjusted PLN is better than GAR
to extract latent firing rate network information, based on simulated data similar to
the experimental data analyzed here.

4.2. Properties of the multivariate PLN model with auxiliary regularization.
We simulate spike count data from a ground truth model similar to the PLN model
fitted to the experimental data (Figure 5), estimate the network of their latent firing
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rates using the PLN model, with and without auxiliary information, also estimate
the network of observed spike counts using a GGM applied to their square-roots
(GGM-sq), with and without auxiliary information, compare the fits to the ground
truth using ROC curves and surfaces (Section 3.5), repeat the simulation 20 times,
and report average ROC curves, AUC values, and VUS values.

For the ground truth, we set f to zero and η to one, and we let g be an increasing
step function with values 10, 15, 15, 20, 30 over respective bins3 (0, 1], (1, 2],
(2, 3], (3, 4], (4, 5], with W ∼ Uniform(0, 5), and generate a precision matrix
Ω according to Equation 2.3. Partial correlations are then set to zero for W >
4 to mimic the experimental data, since only a few edges exist between V4 and
PFC in Figure 6A. We simulate n = 500 samples from a d = 50 dimensional
random vector following the multivariate PLN distribution in Equation 2.1 with
the generated Ω, and µ containing values observed in the experimental data. We
fit the GGM-sq and PLN models with f ≡ 0, g(w) a step function, and η ≡ 1,
denoted by (g) in the legend of Figure 8, f(w) and g(w) step functions, and η ≡ 1,
denoted by (f, g), etc. The (noW ) fit corresponds to using a flat regularization such
as the graphical lasso (Yuan and Lin, 2007; Wang, 2012), with f ≡ 0, g constant,
and η ≡ 1.

Figure 8A shows that the PLN fit retrieves the firing rate network better than the
GGM-sq fit, since all the PLN ROC curves are well above their GGM counterparts,
and that without auxiliary information, neither PLN nor GGM-sq provides as good
a fit as when W is incorporated in the estimation. Note that fitting f , g, and η as
functions ofW even if they do not all depend onW (only g actually depends onW
in this simulation) can degrade the fit somewhat but it remains far superior to the
fits that do not account for W . We provide more simulation results in Appendix A
(Vinci et al., 2018b).

In any statistical investigation about dependence among variables, including
graphs or multivariate regression, confounding variables are always there lurking
behind the scenes. One way to capture their effects is to include as many avail-
able variables as possible in the modeling, with the hope to capture the most rel-
evant ones. Alternatively, we may assume that a low dimensional latent quantity
is present. In the context of covariance estimation, factor analysis (FA; Ecker et
al. (2014); Rabinowitz et al. (2015)) and the sparse - low rank model (SPL; Chan-
drasekaran et al. (2012); Yuan (2012); Yatsenko et al. (2015)) have been used to
model the effects of such low dimensional latent components. The simulated data
here have been generated in a way that could reflect the real data we analyze, and in
Figure 8A we emulated the case where all neurons in the network were recorded.
We wanted then to consider also the situation where some neurons were latent, to

3The binning choice is equivalent to setting steps at quintiles of Wij , as we did with the experi-
mental data.
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FIG 8. ROC curves for firing-rate graph estimation based on Poisson-lognormal (PLN) and GGM
applied to square rooted spike counts (GGM-sq), averaged across repeat simulations, in the case of a
fully recorded network of 50 neurons (A) and a network with 50 recorded and 10 latent neurons (B).
The first set of parentheses indicates which functions of W were fitted in the adjusted regularization;
the second set contains the area under the curve (AUC) and rescaled volume under the surface (VUS,
Section 3.5), averaged across repeat simulations.

assess how differently FA and SPL would perform compared to GGM-sq (no W )
and the methods that use the auxiliary information of W . We thus repeated the
simulation, but generated count vectors for 60 neurons, and dropped 10 of them.
Results are in Figure 8B. The performances of FA and SPL (with optimal oracle
tuning parameter choices) are similar to the simpler GGM-sq (no W ), while our
approach maintains performance robustly. We also applied FA and SPL to the case
of fully recorded neurons, and conclusions about their performance were the same.
However, it is possible that a covariate adjusted version of FA or SPL might pro-
duce better results; their implementation is part of our future research.

5. Discussion. We have developed and studied a framework for estimating
generalized graphical models in the presence of auxiliary variables that carry in-
formation about the graph. The graph is defined by the precision matrix for a mul-
tivariate normal distribution of a latent random vector. Here, the components of the
latent random vector are logs of Poisson mean parameters, which in the context
of spike counts represent log firing rates. The research we report here greatly ex-
tends previous work by combining two previously separate aspects of the model:
the Poisson log-normal hierarchical aspect (which was previously considered only
in the bivariate case), and the idea of using covariates to control the penalty in a
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sparse Gaussian graphical model. Graphs are summaries of correlation structure,
and, together, Figures 6 and 7 indicate the kinds of physiological conclusions that
can be drawn from the methodology we have developed: we can either examine
the graph itself, as in Figure 6A, or we can look at summaries of the covariance
matrix, as in Figures 6B and 7.

The approach we took here was Bayesian, and relied on a flexible and data-
driven covariate-adjusted spike and slab model that includes several existing types
of network regularization models as special cases, e.g. ridge, lasso, and sparse -
low rank decomposition, and that can readily accommodate other types of less ex-
plored network regularizations, e.g. the Elastic Net, as described in Appendix A
(Vinci et al., 2018b). The fit of that model to the experimental neuron data of Sec-
tion 4 suggested that ridge or LASSO-type penalties were adequate for the data
we examined. Appendix A contains a toy example where the general spike and
slab prior performs better than the currently available priors. Additionally, while
our method and estimation algorithms were motivated by neuron spike count data,
they are generally applicable to different types of data whenever auxiliary variables
are available to help determine latent graphical structure; e.g. in Equation 2.1, the
Poisson distribution may be replaced by others, such as binomial and negative-
binomial, or continuous distributions. Because it allows for many precision matrix
regularizations and data types, it may be considered a unifying framework for es-
timating covariate-adjusted networks. In the future, covariate-adjusted regulariza-
tion could also be extended to multivariate time series and doubly-stochastic point
processes.

The neurophysiological variables used as auxiliary quantities in this and previ-
ous research (Vinci et al., 2018a) were pairwise, i.e. one quantity per neuron pair
(e.g. inter-neuron distance and tuning curve correlation), so it was a natural choice
to introduce such information through an entrywise regularization scheme target-
ing the entries of the precision matrix, rather than other features (e.g. eigenvalues,
factors) that do not map easily onto entrywise auxiliary information. We have pro-
vided evidence that this approach can do a good job with estimation of neuronal
covariance. Furthermore, graphs provide nice interpretations of the covariance ma-
trix. An alternative approach is to introduce latent factors, which can provide useful
dimensionality reduction.

To account for the effect of unrecorded neurons and other latent factors on the
dependence structure of the recorded neurons, our framework can be adapted in
at least two ways. One approach is analogous in construction to the latent graph-
ical model (Chandrasekaran et al., 2012), discussed in Appendix A (Vinci et al.,
2018b). Alternatively, one could assume X | F ∼ N(µ + AF,Ω−1), where
F ∼ N(0, Iq) are latent factors, q < d/2, A ∈ Rd×q, and Ω is sparse, so that
the covariance matrix of X is AA′ + Ω−1, where AA′ has rank at most q. By fur-
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ther assuming a prior distribution on Ω as in Equation 2.3, with continuous Laplace
p.d.f. components in Equation 2.4, and a prior distribution on A that constrains the
model to be identifiable, we can estimate AA′ and Ω by implementing our full
or empirical Bayes algorithms (Appendix C, Vinci et al. (2018b)) with additional
sampling steps for F | rest and A | rest. In either case, the sparse component
of the precision matrix would represent the dependence structure of the observed
variables conditionally on both observed and latent variables. Implementing these
approaches was beyond the scope of the work reported in this paper, but we plan
to investigate them in the future.
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SUPPLEMENTARY MATERIAL

Supplement to “Adjusted Regularization in Latent Graphical Models: Ap-
plication to multiple-neuron spike count data.”
(). Appendix containing: A additional details about adjusted regularization and
simulations, B lemmas with proofs, C algorithms, and D additional data analyses.
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